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Abstract Partial differential equations (PDEs) have become very useful modeling and
computational tools for many problems in image processing and computer vi-
sion related to multiscale analysis and optimization using variational calculus. In
previous works, the basic continuous-scale morphological operators have been
modeled by nonlinear geometric evolution PDEs. However, these lacked a vari-
ational interpretation. In this paper we contribute such a variational formulation
and show that the PDEs generating multiscale dilations and erosions can be de-
rived as gradient flows of variational problems with nonlinear constraints. We
also extend the variational approach to more advanced object-oriented morpho-
logical filters by showing that levelings and the PDE that generates them result
from minimizing a mean absolute error functional with local sup-inf constraints.
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1. Introduction

Partial differential equations have a become a powerful set of tools in image
processing and computer vision for modeling numerous problems that are re-
lated to multiscale analysis. They need continuous mahematics such as differ-
ential geometry and variational calculus and can benefit from concepts inspired
by mathematical physics. The most investigated partial differential equation
(PDE) in imaging and vision is the linear isotropic heat diffusion PDE because
it can model the Gaussian scale-space, i.e. its solution holds all multiscale lin-
ear convolutions of an initial image with Gaussians whose scale parameter is
proportional to their variance. In addition, to its scale-space interpretation, the
linear heat PDE can also be derived from a variational problem. Specifically,
if we attempt to evolve an initial image into a smoother version by minimizing
the L2 norm of the gradient magnitude, then the PDE that results as the gradi-
ent descent flow to reach the minimizer is identical to the linear heat PDE. All
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the above ideas are well-known and can be found in numerous books dealing
with classic aspects of PDEs and variational calculus both from the viewpoint
of mathematical physics, e.g. [5], as well as from the viewpoint of image anal-
ysis, e.g. [12, 6, 14].

In the early 1990s, inspired by the modeling of the Gaussian scale-space via
the linear heat diffusion PDE, three teams of researchers (Alvarez, Guichard,
Lions & Morel [1], Brockett & Maragos [3, 4], and Boomgaard & Smeulders
[19]) independently published nonlinear PDEs that model various morpholog-
ical scale-spaces. Refinements of the above works for PDEs modeling multi-
scale morphology followed in [8, 7, 6]. However, in none of the previous works
the PDEs modeling morphological scale-spaces were also given a direct vari-
ational interpretation. There have been only two indirect exceptions: i) Heij-
mans & Maragos [7] unified the morphological PDEs using Legendre-Fenchel
‘slope’ transforms, which are related to Hamilton-Jacobi theory and this in turn
is related to variational calculus. ii) Inspired by the level sets methodology
[13], it has been shown in [2, 15] that binary image dilations or erosions can
be modeled as curve evolution with constant (±1) normal speed. The PDE of
this curve evolution results as the gradient flow for evolving the curve by max-
imizing or minimizing the rate of change of the enclosed area; e.g. see [17]
where volumetric extensions of this idea are also derived. Our work herein is
closer to [17].

In this paper we contribute a new formulation and interpretation of the PDEs
modeling multiscale dilations and erosions by showing that they result as gra-
dient flows of optimization problems where the volume under the graph of
the image is maximized or minimized subject to some nonlinear constraints.
Further, we extend this new variational interpretation to more complex mor-
phological filters that are based on global constraints, such as the levelings
[10, 11, 9].

2. Background

Variational Calculus and Scale-Spaces

A standard variational problem is to find a function u = u(x, y) that mini-
mizes the ‘energy’ functional

J [u] =
∫ ∫

F (x, y, u, ux, uy)dxdy (1)

usually subject to natural boundary conditions, where F is a second-order con-
tinuously differentiable function. A necessary condition satisfied by an ex-
tremal function u is the Euler-Langange PDE [F ]u = 0, where [F ]u is the
Euler (variational) derivative of F w.r.t. u. In general, to reach the extremal
function that minimizes J , we can set up a gradient steepest descent proce-
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dure starting from an initial function u0(x, y) and evolving it into a function
u(x, y, t), where t is an artificial marching parameter, that satisfies the evolu-
tion PDE

∂u

∂t
= −[F ]u, [F ]u = FuFF − ∂FuFF x

∂x
−

∂FuFF y

∂y
(2)

This PDE is called the gradient flow corresponding to the original variational
problem. In some cases, as t → ∞ the gradient flow will reach the minimizer
of J . If we wish to maximize J , the corresponding gradient flow is ut = [F ]u.
(Short notation for PDEs: ut = ∂u/∂t, ux = ∂u/∂x, uy = ∂u/∂y, ∇u =
(ux, uy), ∇2u = uxx + uyy.)

In the gradient flow formulation the evolving function u = u(x, y, t) is a
family of functions depending on the time parameter t and hence J [u] = J(t).
Then [5]

d

dt
J [u] =

∫ ∫
ut[F ]udxdy (3)

Thus, we can also view the Euler derivative [F ]u as the gradient of the func-
tional J [u] in function space. This implies that, in getting from an arbitrary u0

to the extremal, the PDE (2) of the gradient flow provides us with the fastest
possible rate of decreasing J .

In scale-space analysis, we also start from an initial image uo(x, y) and
evolve it into a function u(x, y, t) with u(x, y, 0) = u0(x, y). The mapping
u0 �→ u is generated by some multiscale filtering at scale t ≥ 0 or by some
PDE. The PDEs of several known scale-spaces (e.g. the Gaussian) have a vari-
ational interpretation since they can be derived as gradient flows of functional
minimization problems where the marching time t coincides with the scale pa-
rameter. For example, if F = (1/2)||∇u||2, the gradient flow corresponding
to minimizing J =

∫ ∫
F is the isotropic heat diffusion PDE ut = ∇2u.

PDEs for Dilation/Erosion Scale-Spaces

Let k : R
m → R, m = 1, 2, ..., be a unit-scale upper-semicontinuous

concave structuring function. Let kt(x) = tk(x/t) be its multiscale version,
where both its values and its support have been scaled by a parameter t ≥ 0.
The multiscale Minkowski dilation ⊕ and erosion 	 of f : R

m → R by kt

are defined as the scale-space functions δ(x, t) = (f ⊕ kt)(x) and ε(x, t) =
(f 	 kt)(x):

δ(x, t) =
∨

y∈Rm

f(y) + kt(x− y), ε(x, t) =
∧

y∈Rm

f(y)− kt(y − x),

where
∨

and
∧

denote supremum and infimum, δ(x, 0) = ε(x, 0) = f(x). If
k(x, y) is flat, i.e. equal to 0 at points (x, y) ∈ B and −∞ else, where B is a
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unit disk, the PDEs generating the multiscale flat dilations and erosions of 2D
images f(x, y) by a disk B are [1, 4, 19]

δt = ||∇δ|| =
√

(δx)2 + (δy)2, εt = −||∇ε|| (4)

For 1D signals f(x), B becomes the interval [−1, 1] and the above PDEs be-
come [4]

δt = |δx|, εt = −|εx| (5)

If k is the compact-support spherical function, i.e. k(x, y) = (1− x2 − y2)1/2

for x2 + y2 ≤ 1 and −∞ else, the PDE generating these spherical dilations is
[4]

δt =
√

1 + (δx)2 + (δy)2. (6)

3. Variational Approach for Dilation PDEs

Let u0(x, y) be some smooth initial image over a rectangular image domain
R with zero values outside R. Without loss of generality, we can assume that
u0(x, y) ≥ 0 over R; otherwise, we consider as initial image the function u0−∧

u0. Let u(x, y, t) be some scale-space analysis with u(x, y, 0) = u0(x, y)
that results from growing u0 via dilation of the hypograph (umbra) of u0 by
some 3D structuring element tB = {tb : b ∈ B} of radius t ≥ 0, where
B ⊆ R

3 is a unit-radius compact symmetric convex set. From mathematical
morphology we know that this 3D propagation of the graph of u0 corresponds
to a function dilation,

u(x, y, t) = u0(x, y)⊕ kt(x, y), kt(x, y) = sup{v : (x, y, v) ∈ tB}, (7)

of u0 by a structuring function kt that is the upper envelope of tB. We shall
study three special cases of B: 1) a vertical line segment Bv, 2) a horizontal
disk Bh, and 3) a sphere Bn. From (7), the three corresponding dilation scale-
spaces are:

B = v.line: u(x, y, t) = u0(x, y) + t
B = disk: u(x, y, t) =

∨
||(a,b)||≤t u0(x− a, y − b)

B = sphere: u(x, y, t) =
∨

||(a,b)||≤t u0(x− a, y − b) + t
√

1− (a
t )

2 − ( b
t )

2

(8)
While we know the gererating PDEs for the above scale-spaces (see [4]), in

this paper our goal is to provide a variational interpretation for these PDEs and
their solutions in (7). Define the multiscale volume functional

V (t) =
∫ ∫

u(x, y, t)dxdy =
∫ ∫

R

∫∫
(t)

u(x, y, t)dxdy (9)
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where R(t) is the Minkowski dilation of the initial rectangular domain R with
the projection of tB onto the plane. We wish to find the PDE generating u
by creating a gradient flow that maximizes the rate of growth of V (t). The
classic approach [5] is to consider the time derivative V̇ (t) = dV/dt as in
(3). However, this is valid only when u is allowed to vary by remaining a
function, e.g. u → u + ∆tg where g is a perturbation function. Thus, u is
allowed to vary in function space along a ray in the ‘direction’ of g. However,
in our problem we have such a case only when B = Bv. In the other two
cases u evolves as a graph by dilating its surface with a 3D set ∆tB. To
proceed, we convert the problem to a more usual variational formulation (i) by
modeling the propagation of the graph of u as the evolution of a multiscale
parameterized closed surface �S(q1, q2, t), and (ii) by expressing the volume
V as a surface integral around this closed surface. A similar approach as in
step (i) has also been used in [18] for geometric flows of images embedded as
surfaces in higher-dimensional spaces.

We start our discussion from a simpler (but conceptually the same as above)
case where u0 = u0(x) is a 1D nonnegative image with nonzero values over
an interval R. Let u(x, t) = u0(x)⊕ kt(x) be the multiscale dilation of u0 by
a structuring function kt that is the upper envelope of a 2D set tB where B is
a 2D version of the previous 3D unit-radius symmetric convex set; i.e., B is
either 1) a vertical line segment Bv, or 2) a horizontal line segment Bh, or 3) a
disk Bn. First, we model the propagation of the graph of u as the evolution of
a multiscale parameterized curve �C(q, t) = (x(q, t), y(q, t)), whose top part
is the graph of u traced when q ∈ R(t)s and whose bottom part is the interval
R(t) traced when q ∈ R(t) [where Rs = {−q : q ∈ R}]. This implies

y(q, t) = u(x, t), xq = −1, yq = −ux, q ∈ R(t)s

y(q, t) = 0, xq = 1, q ∈ R(t) (10)

where subscripts denote partial derivatives. Then, we consider the area A(t)
under u and express it (using Green’s theorem) as a line integral around this
closed curve:

A(t) =
∫

u(x, t)dx =
1
2

∫
C

∫∫
(t)

(xyq − yxq)dq =
1
2

∫ Lc(t)

0

∫∫
< �C, �N > ds

(11)
where s is arclength, < · > denotes inner product, �N is the outward unit
normal vector of the curve, Lc(t) = L(t) + Len(R(t)) is the length of the
closed curve C(t), and L(t) =

∫
R

∫∫
(t)

√
1 + u2

xdx is the length of the graph of
u. Next follows our first main result.

Theorem 1 Maximization of the area functional A(t) when the graph of
u(x, t) is dilated by tB with unit curve speed, where B is any of the follow-
ing unit-radius 2D summetric convex sets, has a gradient flow governed by the
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following corresponding PDEs:

B = vert.line =⇒== ut = 1 (12)

B = horiz.line =⇒== ut = |ux| (13)

B = disk =⇒== ut =
√

1 + |ux|2 (14)

with u(x, 0) = u0(x).

Proof: Since we evolve u toward increasing A(t), the graph curve speed
�CtCC (q, t) must point outward for all q ∈ R(t)s, i.e. < �CtCC , �N >≥ 0. By (10),
we can write the area functional as

A(t) =
∫

R

∫∫
(t)

udx =
1
2

∫ L(t)

0

∫∫
< �C, �N > ds + Len[R(t)] (15)

Differentiating (15) w.r.t. t yields

d

dt
A(t) =

∫ L(t)

0

∫∫
< �CtCC , �N > ds + const (16)

where const = dLen[R(t)]/dt. When B is the disk, the velocity �CtCC is allowed
any direction and hence selecting �CtCC = �N guarantees that Ȧ(t) assumes a
maximum value (i.e. the flow has a direction in function space in which A(t)
is increasing most rapidly). When B is the vertical line, �CtCC must have only a
constant vertical component. When B is the horizontal line, �CtCC must have only
a horizontal component with value ±1 according to the sign of ux. Thus, the
three choices for structuring element B induce the following curve velocities:

B = vert.line =⇒== �CtCC = (xt, yt) = (0, 1)
B = horiz.line =⇒== �CtCC = (xt, yt) = (sgn(−ux), 0)
B = disk =⇒== �CtCC = (xt, yt) = �N = (−ux ,1)√

1+u2
x

(17)

In all three cases we shall use the relation

ut = yt − uxxt (18)

which follows from y(q, t) = u(x, t). When B is the vertical line, we have
xt = 0 and yt = 1. Hence, ut = 1 which proves (12). When B is the
horizontal line, yt = 0 and xt = sgn(−ux) which yields ut = |ux| and proves
(13). When B is the disk, we have xt = −ux/v and yt = 1/v where v =√

1 + u2
x. This and (18) yield ut = 1/v + u2

x/v = v, which proves (14). �
The volumetric extension of the above ideas to the case of a 2D nonnegative

image u0(x, y) whose graph surface is dilated by 3D sets tB to give the graph
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of a scale-space function u(x, y, t) is conceptually straightforward. First, we
model the boundary of the ordinate set of u (i.e. the part of the umbra of u
lying above the planar domain R) as a multiscale parameterized closed surface
�S(q1, q2, t), where (q1, q2) parameterize the surface as the two local coordi-
nates and are related to (x, y). The top part of this closed surface is the graph
of u and the bottom part is the planar domain R(t) of u. Second, we express
the volume V (t) and its derivative as a surface integral around this closed pa-
rameterized surface:

V (t) =
1
3

∫
< �S, �N > d�S,

d

dt
V (t) =

∫
< �StSS , �N > d�S (19)

For arbitrary 3D shapes enclosed by a surface, the above formulas were used
in [17] to derive volume minimizing flows for shape segmentation.

Theorem 2 Maximization of the volume functional V (t) when the graph sur-
face of u(x, y, t) is dilated by tB with unit surface speed, where B is any of the
following unit-radius 3D summetric convex sets, has a gradient flow governed
by the following corresponding PDEs:

B = vert.line =⇒== ut = 1 (20)

B = horiz.disk =⇒== ut = ||∇u|| =
√

u2
x + u2

y (21)

B = sphere =⇒== ut =
√

1 + ||∇u||2 (22)

with u(x, y, 0) = u0(x, y).

Proof: Due to lack of space we sketch the main ideas. Write (19) as

V (t) =
1
3

∫
S

∫∫
top

�S · �Nd�S+Area(R(t)), V̇ (t) =
∫

S

∫∫
top

�StSS · �Nd�S+const (23)

where StopSS is the top part of the surface. Over this part we select the optimum
surface velocity vector �StSS = (xt, yt, zt) that maximizes the volume rate of
change. Then we exploit the relationships among x, y and the local surface
coordinates q1, q2 as well as the relation z(q1, q2, t) = u(x, y, t) to express ut

as a function of ux, uy, which yields the PDE for u. �
So far, we have found a variational interpretation of some well-known multi-

scale morphological dilations and their corresponding PDEs as area or volume
maximization problems. It is straightforward to derive the corresponding mul-
tiscale erosions and their PDEs by considering the dual problem of area or
volume minimization. We omit the proofs.

Among the three cases for B, only when B is a vertical line we can also de-
rive the corresponding PDE by using standard variational calculus, as follows.
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Proposition 1 Maximizing the functional J [u] =
∫ ∫

R

∫∫
u(x, y, t)dxdy has a

gradient flow governed by the PDE ut = 1.

Proof: By writing J =
∫

F with F (u) = u, the gradient flow will have the
general form of (2), i.e. ut = [F ]u. This yields ut = 1, which is the PDE (20).
�

In Theorems 1 and 2 we derived the morphological PDEs by maximizing
area or volume functionals, either unconstrained if we move in the space of
functions (as was the case when B is the vertical line and as explained in
Prop.1) or with some geometrical constraints if we move in the space of graphs.
Next we interpret our variational results for the multiscale flat dilations and
erosions as a maximization and minimization, respectively, of the area or vol-
ume of the image u but under the constraint that all evolutions u have the same
global sup or inf as u0. This constrained optimization will prove useful for the
levelings too.

Theorem 3 (a) Maximizing the volume functional by keeping invariant the
global supremum

max
∫ ∫

R

∫∫
u dxdy s.t.

∨
u =

∨
u0 (24)

has a gradient flow governed by the PDE generating flat dilation by disks:

ut = ||∇u||, u(x, y, 0) = u0(x, y) (25)

Similarly, the dual problem of minimizing the volume functional by keeping
invariant the global infimum

min
∫ ∫

R

∫∫
u dxdy s.t.

∧
u =

∧
u0 (26)

has a gradient flow governed by the isotropic flat erosion PDE:

ut = −||∇u||, u(x, y, 0) = u0(x, y) (27)

(b) For 1D signals u(x), maximizing (or minimizing) the area functional by
keeping invariant the global supremum (or infimum) has a gradient flow gov-
erned by the PDE generating flat dilations (or erosions) by intervals [−t, t]:

max
∫
R

∫∫
u dx s.t.

∨
u =

∨
u0 =⇒== ut = |ux|

min
∫
R

∫∫
u dx s.t.

∧
u =

∧
u0 =⇒== ut = −|ux|

(28)

with initial condition u(x, 0) = u0(x).

Proof: Under the sup constraint, the velocity vector for the propagation of the
graph of u must have a zero vertical component. Hence, the only directions
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allowed to propagate the graph of u must be parallel to the image plane. This
expansion is done at maximum speed if it corresponds to dilations of the graph
(and equivalently of the level sets) of u by horizontal disks in the 2D case
and by horizontal line segments in the 1D case. Thus, we have the case of
multiscale dilations of the graph of u by horizontal disks or lines for which we
use the results of Theorems 1 and 2. Similarly for the erosions. �

4. Variational Approach for Levelings

Here we consider morphological smoothing filters of the reconstruction
type. Imagine creating a type of image simplification like a ‘cartoon’ by start-
ing from a reference image r(x, y) consisting of several parts and a marker
image u0(x, y) (initial seed) intersecting some of these parts and by evolving
u0 toward r in a monotone way such that all evolutions u(x, y, t), t ≥ 0, satisfy
the following partial ordering, ∀x, y ∈ R

t1 < t2 =⇒== r(x, y) (r u(x, y, t2) (r u(x, y, t1) (r u0(x, y) (29)

The partial order u (r f means that r ∧ f ≤ r ∧ u and r ∨ f ≥ r ∨ u. Further,
if we partition the following regions R− and R+ formed by the zero-crossings
of r − u0

R− = {(x, y) : r(x, y) ≥ u0(x, y)} =
⊔

i R
−
i

R+ = {(x, y) : r(x, y) < u0(x, y)} =
⊔

i R
+
i

(30)

into connected subregions, then the evolution of u is done by maintaining all
local maxima and local minima of u0 inside these subregions R−

i and R+
i ,

respectively:∨
R−

i

u =
∨
R−

i

u0 and
∧
R+

i

u =
∧
R+

i

u0, R = (
⊔
i

R−
i ) � (

⊔
i

R+
i ) (31)

where
⊔

denotes disjoint union. Since the order constraint r (r u (r u0

implies that |r−u| ≤ |r−u0|, the above problem is equivalent to the following
constrained minimization

min
∫ ∫

R

∫∫
|u− r|dxdy s.t.

∨
R−

i

u =
∨
R−

i

u0,
∧
R+

i

u =
∧
R+

i

u0 (32)

Theorem 4 A gradient flow for the optimization problem (32) is given by the
following PDE

∂u(x, y, t)/∂t = −sgn(u− r)||∇u||
u(x, y, 0) = u0(x, y) (33)
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Proof: By writing the integral
∫∫
|u− r| as∫ ∫

R

∫∫
|u− r| =

∑
R−

i

∫ ∫
R

∫∫
−
i

(r − u) +
∑
R+

i

∫ ∫
R

∫∫
+
i

(u− r) (34)

we can decompose the global problem (32) into local constraint maximization
and minimization problems over the regions R−

i and R+
i respectively. Apply-

ing Theorem 3 to these local problems yields local evolutions that act as flat
dilations when u < r and as erosions when u > r. The PDE (33) has a switch
that joins these two actions into a single expression. �

The PDE (33) was introduced in [11] and then studied systematically in [9].
For each t, at pixels (x, y) where u(x, y, t) < r(x, y) it acts as a dilation PDE
and hence shifts outwards the surface of u(x, y, t) but does not introduce new
local maxima. Wherever u(x, y, t) > r(x, y) the PDE acts as a flat erosion
PDE and reverses the direction of propagation. In [9] it was proved that this
PDE has a steady-state u∞(x) = limt→∞ u(x, t) which is a leveling of r with
respect to u0, denoted by u∞ = Λ(u0|r).

Levelings are nonlinear filters with many interesting scale-space properties
[11] and have been used for image pre-segmentation [11, 16]. They were de-
fined geometrically in [10, 11] via the property that if p, q are any two close
neighbor pixels then the variation of the leveling between these pixels is brack-
eted by a larger same-sign variation in the reference image r; i.e., if g is a
leveling of r, then

g(p) > g(q) =⇒== r(p) ≥ g(p) > g(q) ≥ r(q) (35)

In [9] they were defined algebraically as fixed points of triphase operators
λ(f |r) that switch among three phases, an expansion, a contraction, and the
reference r. Further, the leveling of r w.r.t. f = u0 can be obtained as the limit
of iterations of λ:

u∞ = Λ(u0|r) � lim
n→∞

λn(u0|r) (r · · ·λ(u0|r) (r u0 (36)

The simplest choise for λ is λ(f |r) = [r ∧ δ(f)] ∨ ε(f), where δ and ε are
dilations and erosions by a small disk, but there are many more sophisticated
choises [11, 9]. A numerical scheme proposed in [9] to solve the PDE (33)
also involves iterating a discrete algorithm that is essentially a discrete triphase
operator whose iteration limit yields a discrete leveling.

Levelings have many interesting scale-space properties [11]. Due to (29)
and (35), they preserve the coupling and sense of variation in neighbor image
values, which is good for edge preservation. Further, due to (31) the levelings
do not create any new regional maxima or minima. In practice, they can re-
construct whole image objects with exact preservation of their boundaries and
edges. The reference image plays the role of a global constraint.
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5. Conclusions

We have developed a new formulation based on functional extremization to
derive the PDEs generating well-known multiscale morphological operators,
both of the basic type acting locally on the image like dilations and erosions
by compact kernels, as well as of the reconstruction type like the levelings
which depend on global constraints. The functionals used were the image vol-
ume/area for dilations and the L1 norm of residuals between the simplified
image and the reference for the levelings. Maximization or minimization of
these functionals was done subject to some nonlinear constraints. This varia-
tional approach to multiscale morphology gives a new insightful interpretation
to morphological operators and offers useful links with optimization problems.
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