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ABSTRACT

The dynamics of air ow during speech production may
often result into some small or large degree of turbulence.
In this paper, we quantify the geometry of speech turbu-
lence as reected in the fragmentation of the time signal
by using fractal models. We describe an e�cient algo-
rithm for estimating the short-time fractal dimension of
speech signals based on multiscale morphological �lter-
ing and discuss its potential for phonetic classi�cation.
We also report experimental results on using the short-
time fractal dimension of speech signals at multiple scales
as additional features in an automatic speech recognition
system using hidden Markov models, which provides a
modest improvement in speech recognition performance.

1. INTRODUCTION

The dynamics of speech airow might create small or large
degrees of turbulence during production of speech sounds
by the human vocal tract system. Most approaches mod-
eling speech turbulence at the speech waveform level have
focused on the random nature of the corresponding signal
component. Another important aspect of speech sounds
that contain frication or aspiration is the high-degree of
geometrical complexity and fragmentation of their time
waveforms; due to lack of a better approach, this has been
left unmodeled and treated in the past simply as noise.
In this paper, we use fractals [1] to model the geometrical
complexity of speech waveforms via their fractal dimen-
sion, which quanti�es the degree of signal fragmentation.
First, we provide some motivation and justi�cation from
the �eld of speech aerodynamics for using fractal dimen-
sion to quantify the degree of turbulence in speech sig-
nals. Further, a simple and e�cient algorithm is described
for measuring the fractal dimension based on multiscale
morphological �ltering [3]. Some of our contributions in-
clude the measurement and study of the fractal dimen-
sion of speech signals in a short-time (phoneme-based)
and multiscale framework, which we believe is necessary
since speech signals are nonstationary and their fragmen-
tation may vary across di�erent time scales. In this area,
we extend the preliminary experiments in [2] by providing
measurements averaged over large numbers of phonemic
instances from the TIMIT and ISOLET databases. Aa
another contribution, we have used the multiscale fractal
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dimensions of speech segments as additional features in
an automatic speech recognition system based on hidden
Markov models (HMMs) and found them to o�er a mod-
est improvement to the speech recognition performance.

2. SPEECH AERODYNAMICS & FRACTALS

Preservation of momentum in the air ow during speech
production yields the Navier-Stokes governing equation
[4]

�(
@~u

@t
+ ~u � r~u) = �rp+ �r

2
~u (1)

where � is the air density, p is the air pressure, ~u is
the air particle velocity, and � is the air viscosity co-
e�cient. An important ow parameter is the Reynolds
number Re=�UL=�, where U and L are typical veloc-
ity and length scales. For the air we have very low �

and hence high Re. This causes the inertia forces (in
the left hand side of Eq. (1)) per unit volume to have a
much larger order of magnitude than the viscous forces
�r2~u. While � is low and may not play an important
role for the speech air ow through the interior of the
vocal tract, it is essential for the formation of boundary
layers along the tract boundaries and for the creation of
vortices. A vortex is a region of similar (or constant) vor-
ticity ~!, where ~! = r� ~u. There are several mechanisms
for the creation of vortices in the speech air ow: 1) ve-
locity gradients in boundary layers, 2) separation of ow,
and 3) curved geometry of tract boundaries. After a vor-
tex has been created, it can propagate downstream and
experience twisting, stretching, and di�usion of vorticity
[4]. As Re increases (e.g., in fricative sounds or during
loud speech), all these phenomena may lead to instabili-
ties and eventually result into turbulent ow, which is a
`state of continuous instability' [4] characterized by broad-
spectrum rapidly-varying (in space and time) velocity and
vorticity. Modern theories that attempt to explain turbu-
lence [4] predict the existence of eddies (vortices with a
characteristic size) at multiple scales. According to the
energy cascade theory, energy produced by eddies with
large size is transferred hierarchically to the small-size
eddies which actually dissipate this energy due to viscos-
ity. This multiscale structure of turbulence and several
of its geometrical aspects (e.g., shapes of turbulent spots,
boundaries of some vortices, shape of particle paths) can
be quanti�ed by fractals [1].

All the above considerations motivated our use of frac-
tals as a mathematical and computational vehicle to ana-
lyze various degrees of turbulence in speech signals. One
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Figure 1: (a,c,e) show speech sounds sampled at 30kHz. (b,d,f) show their corresponding MFDs.

of the main quantitative ideas that we focus on is the frac-
tal dimension of speech signals, because it can quantify
their graph's roughness (fragmentation). Since the rela-
tionship between turbulence and its fractal geometry or
the fractal dimension of the resulting signals is currently
not well understood, conceptually equating the amount
of turbulence in a speech sound with its fractal dimension
may be a simplistic analogy. However, we have found
the short-time fractal dimension of speech to be a feature
useful for speech sound classi�cation into phonetic classes,
segmentation, and recognition.

3. FRACTAL DIMENSIONS OF SPEECH

Let the continuous real-valued function S(t), 0 � t � T ,
represent a short-time speech signal, and let the compact
planar set F = f(t; S(t)) 2 IR2 : 0 � t � Tg represent
its graph. Mandelbrot de�nes the fractal dimension of
F as equal to its Hausdor� dimension DH ; in general,
1 � DH � 2. The signal S is called fractal if DH > 1.
Another fractal dimension which is closely related to DH

and much easier to compute is the Minkowski-Bouligand

dimensionD. Dilating F with disks of radius " and mea-
suring the area A(") of the dilated set, yields D as the
constant in the power law A(") / "2�D as " ! 0, which
A(") obeys if F is fractal. D is identical to the box count-
ing dimension in continuous time but is more robust to
compute in discrete time [3]; henceforth, we shall use D
as the `fractal dimension'.

In continuous time, D will not change if we replace the
disks in covering F with other compact planar shapes B
[3]. Thus, if "B = f"b : b 2 Bg and AB(") = area(F�"B)
where � is the morphological set dilation,

D = lim
"!0

log[AB(")="
2]

log(1=")
: (2)

For reducing the computational complexity, it is desirable
to obtain the area AB(") by using 1D operations on S(t).
Thus, if the function G"(t) = supfy 2 IR : (t; y) 2 "Bg is
the top boundary of "B and if S�G" and S	G" are the
morphological function dilation and erosion of S by G at
scale ", then [3]

AB(") =

Z
T

0

[S�G"(t)� S	G"(t)]dt+O("2): (3)

These signal dilations and erosions create an area-strip as
a layer either covering or being peeled o� from the graph
of the speech signal at various scales.

For a discrete-time �nite-length speech signal S[n],
n = 0; 1; : : : ;N , we use covers at discrete scales " =

1; 2; : : :, and restrict the function G[n] (at scale " = 1)
to have a centered 3-sample support and only two pos-
sible shapes: a triangle, de�ned by Gt[�1] = Gt[1] = 0
and Gt[0] = h � 0, or a rectangle, de�ned by Gr [�1] =
Gr[0] = Gr [1] = h � 0. This yields the following scale-
recursive algorithm [3]:

S�G[n] = max
�1�k�1

fS[n+ k] +G[k]g ; " = 1

S �G"+1 = (S�G")�G ; " � 2:
(4)

where " = 1; 2; 3; : : : ; "max. Likewise for the multiscale
erosions S	G". Next, we compute the areas AB["] by

replacing the
R
T

0
in (3) with summation

P
N

n=0
. Finally,

we �t a straight line using least-squares to the plot of
(logAB["]="2; log 1="). The slope of this line gives us the
fractal dimension of S. As height h = G[0], we set h = 0,
which makes the algorithm faster and invariant to a�ne
transformations in the signal's range.

For real-world signals with some fractal structure, the
assumption of a constant D at all scales " may not be
true. Hence, instead of a global dimension, we estimate
the multiscale fractal dimension MFD["], which for each
" is equal to the slope of a line segment �tted via least-
squares to the log-log plot over a moving window f"; "+
1; : : : ; " + 9g of 10 scales.

Fig. 1 shows 30 ms segments of unvoiced fricative,
voiced fricative, and vowel speech sounds extracted from
words spoken by a male speaker and sampled at 30 kHz
(N = 900) together with their corresponding pro�les of
MFD["] for scales " = 1; ::; 90. We have conducted many
experiments similar to the ones shown in Fig. 1, from
which we conclude the following: 1) Unvoiced fricatives
(/f/, /th/, /s/), a�ricates, stops (during their turbulent
phase), and some voiced fricatives like /z/ have a high
fractal dimension 2 [1:6; 1:9] at all time scales (mostly
constant at scales > 1 ms), consistent with the turbulence
phenomena present during their production. 2) Vowels at
small scales (< 0:1 ms) have a small fractal dimension
2 [1; 1:3]. This is consistent with the absence or small de-
gree of turbulence (e.g., for loud or breathy speech) during
their production. However, at scales > 2 � 3 ms, i.e., at
scales of the same order as the distance between the ma-
jor consecutive peaks in the speech waveform their fractal
dimension increases appreciably. 3) Some voiced frica-
tives like /v/ and /th/ have a mixed behavior. If they
do not contain a fully developed turbulence state their
fractal dimension is medium-to-high [1:3;1:6] at scales
< 0:1 ms, increases at large scales > 3 ms (for the same
reasons as for vowels), and may decrease for intermedi-
ate scales. Overall, their dimension is high (> 1:6), al-
though often somewhat lower than the dimension of their
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Figure 2: (a,b,c,d,e,f): Mean and standard deviation (error bars) of the multiscale fractal dimension distribution for the
phonemes /aa/, /b/, /en/, /f/, /m/, /r/ calculated from the TIMIT database. Also comparison of mean MFD for (g)
phonemes /sh/, /zh/, /uh/ and (h) phonemes /t/, /d/. (20 ms analysis window, updated every 10 ms).

unvoiced counterparts. Thus, for normal conversational
speech, we have found that the short-time fractal dimen-
sion D (computed over � 10�30 ms frames and evaluated
at a scale < 0:1 ms) can roughly distinguish three classes
of speech sounds: (i) vowels (small D), (ii) low-turbulence
voiced fricatives, e.g., /v/,/th/ (medium D), and (iii) un-
voiced fricatives, high-turbulence voiced fricatives, stops,
and a�ricates (large D). However, for loud speech (where
the air velocity and Re increase, and hence turbulence oc-
curs more often) or for breathy voice (especially for female
speakers) the fractal dimension of several speech sounds,
e.g. vowels, may increase. In general, the fractal dimen-
sion estimates may be a�ected by several factors including
a) the time scale, b) the speci�c discrete algorithm, and
c) the speaking style. Therefore, we do not assign any
particular importance to the absolute estimates but only
to their average ranges for classes of speech sounds and
to their relative di�erences.

The short-time MFD computed over scales from 1/16
to 4 ms and averaged over multiple phonemic instances is
shown in Fig. 2. For each phoneme the mean and standard
deviation of the MFD is computed from 200 instances
(100 from male and 100 from female speakers) of each
phoneme in the TIMIT database. These multiple averag-
ing experiments verify our previous claims that, for nor-
mal conversational speech, the short-time fractal dimen-
sion D in small scales can help discriminate among broad
phonemic classes. Note that the standard deviation of the
MFD distribution is typically smaller forD computed over
smaller time scales (< 1 ms), with the exception of the
phoneme /b/. Further, the di�erences among the average
fractal dimensions are larger for smaller (< 1 ms) time
scales. Figure 2(g) compares the average MFD for the
unvoiced fricative /sh/, the corresponding voiced fricative
/zh/ and the vowel /uh/. Clearly the small and medium-
scale fractal dimension measurement is smaller for voiced
than for unvoiced sounds. Further, MFD is able to dis-
criminate between voiced and unvoiced plosives produced
with identical vocal tract con�guration (thus having very
similar short{time spectral envelopes), i.e., /p/ and /b/,

/t/ and /d/ e.t.c. For example, Fig. 2(h) shows the av-
erage MFD for the voiced{unvoiced plosive pair /d/ and
/t/. Again the MFD is smaller for the voiced /d/ than for
the unvoiced /t/. The discriminative power of the frac-
tal dimension for fricatives and plosives, where traditional
spectral features are inadequate, could be a valuable asset
for speech recognition as discussed next.

4. AUTOMATIC SPEECH RECOGNITION

Here we attempt to incorporate the fractal dimension in
a hidden Markov model (HMM){based speech recognizer;
mixtures of Gaussian distributions are used to model the
observation probabilities for each HMM state.

To successfully incorporate a feature in a pattern clas-
si�er the new features must contain if possible only infor-
mation relevant to the discrimination task, i.e., not be re-
dundant or irrelevant. The fractal dimension of a speech
signal is de�ned in this paper to be a 2D distribution in
time and scale. The main issue is how to represent this 2D
distribution so that it �ts in the HMM framework. The
feature vectors used in speech recognition are typically
computed over a 20-30 ms window and are updated every
5-10 ms. Fractal dimension is a feature with high tem-
poral resolution thus it might be advantageous to avoid
over-smoothing. An 8 ms averaging window (updated ev-
ery 10 ms) was used to compute the fractal features in
this paper. The `standard' speech recognition features
(i.e., cepstrum and energy) were computed using a 20 ms
window.

The second issue to be resolved is the dimensional-
ity of the fractal feature vector. Smaller dimensionality
presents a computational advantage but comes with a per-
formance tradeo� if relevant information is lost during the
dimensionality reduction process. It is clear from Fig. 2
that the fractal dimensions of adjacent scales are highly
correlated. Further, the fractal dimension of large scales
(> 1.5 ms) provide little information relevant to the dis-
crimination task at hand. Various empirical procedures
exist for decorrelating a feature vector. We chose the sim-



Table 1: Word Percent Correct for the E-set Recognition Task

using 5{Mixture Gaussians per HMM State.

fE;C1::C12;�E;�C1::�C12g fE;C1::C12;�E;�C1::�C12g fE;C1::C12;�E;�C1::�C12g
+ +

fD1;�D1g fD1;D11;�D1;�D6;�D11;�D16g

81.2% 83.5 % 84.5%

Table 2: Word Percent Correct for the E-set Recognition Task.

Features fE;C;�E;�C;��E;��Cg fE;C;�E;�C;��E;��Cg
+

Models fD;�Dg

5{mixture Gaussians 85.6 % 86.3%
10{mixture Gaussians 88.6 % 88.9%

plistic approach of sparsely sampling the low-end of frac-
tal scales (< 1 ms).

The feature vector augmented with fractal features as
described above was applied to the speech recognition task
of the highly confusable e-set consisting of the following
spoken letters: b, c, d, g, p, t, v, z. The e-subset of
the ISOLET database consists of 2700 word occurrences
sampled at 16 kHz [5]. The HMM-based HTK recognition
package was used for all experiments [6]. A hold-one-out
(\round-robin") procedure was used during training so
that all 2700 words were available for testing.

The `standard' feature set consisted of the energy E,
the �rst twelve cepstrum coe�cients C1::C12 computed
from a mel �lterbank [7] and their �rst time derivatives
�E and �C1::�C12. The `standard' feature vector was
augmented by the fractal dimension at scale one D1 =
MFD[1] and its �rst time derivative �D1. Scale one cor-
responds to a time scale of 1/16 ms. The fractal features
are assumed to be independent of the `standard' features
and to belong in separate probability `streams'. Five-state
left-right hidden Markov models were used in these experi-
ments. As shown in Table 1, combining the `standard' and
the fractal features gives a modest 12% reduction in the
word error rate over using the `standard' features alone.
Further improvement is achieved when the higher-scale
fractal dimensions (scales 6, 11 and 16, corresponding to
time scales of 0.38, 0.69 and 1 ms) are used in addition to
D1 as shown in the third column of Table 1; this yields
an error reduction of 18%. Further augmentation of the
fractal feature vector has not shown experimentally any
performance improvement. Henceforth, we refer to the
feature vector consisting of fD1;D11;�D1;�D6;�D11;

�D16g as the `fractal' feature vector.

Next, we attempted to improve overall performance
by augmentation of our feature set with the second time
derivatives of the energy and cepstrum features f��E;
��C1::��C12g and by doubling the complexity of the
HMM models, i.e., using 10 instead of 5 Gaussian distri-
butions per mixture per state. As shown in Table 2, as
the complexity of the models and/or the dimensionality of
the `standard' features increases the improvement in per-
formance achieved by using the fractal features becomes
marginal.

Preliminary experiments on general phoneme recogni-
tion tasks have shown similar performance improvements
when the `standard' feature vector was augmented with

fractal features. Overall, we have found that, fractal fea-
tures can provide modest improvement to recognition per-
formance with a small increase in the dimensionality of
the feature vector.
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