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Abstruct - This paper develops the statistical properties of 
the nonlinear energy operator Y (s) = (;)2-s? and a related 
energy separation algorithm (ESA). The ESA uses Y to 
demodulate noisy AM-FM signals. The performance of Y and 
the ESA when applied to bandpass noisy AM-FM signals is 
examined. The predicted performance is found to be greatly 
improved if the local signal frequencies occur within the filter 
passband. Using this observation, a multiband energy 
operator and ESA approach is devised. The results suggest 
that greatly improved practical strategies are feasible for 
tracking and identifying local pattern coherencies manifested 
as local concentrations of signal frequencies. 

I. INTRODUCTION 
Methods for the accurate and efficient extraction of 

amplitude modulation (AM) and frequency modulation (FM) 
information in signals of the form 

are of increased recent interest, owing to heightened use of 
modulation models for e.g., speech signal production [I], [2] 
and certain structures in optical images [3]. In (1). s ( t )  has 
time-varying amplitude a(t) and instantaneous frequency 

so) = 4) cos[$(t)l (1) 

W i ( 0  = 4 ( t ) .  

where $I = d $ / d t .  The model (1) is most useful if a ( t ) ,  
Oi(t) do not vary too rapidly [5]. 

The simple and elegant nonlinear signal operator 
Y(s) = (S)2-S? 

developed by Teager [ l ]  and systematically introduced by 
Kaiser [4] is effective for detecting AM and FM modulation 
information in arbitrary AM-FM signals [ 5 ] ,  in speech 
signals [5], [6] and in its 2-D form, in image signals [7]. 
Indeed. for AM-FM signals of the form (1). 

Y(s) = n2(1)0?(1) 

Y( i )  = a2(t)wP(t) 

;; 20) = Y2(s) / Y ( i  ) 

with negligible error under general realistic conditions [ 5 ] ,  
[6 ] .  This motivated the energy separation algorithm (ESA): 

( 2 )  
( 3 )  

n 2  
W i ( t )  = Y(S ) / Y(s) 

to estimate u2 (t). (t). Maragos, Kaiser, and Quatieri 
[5], [6] analyzed (2), (3) in detail and developed error bounds, 
which under general conditions are quite small. 
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Here we assume the deterministic approximation errors in (2), 
(3) to be small, and consider the effects of noise on the 
effectiveness of the operator Y and the ESA. In significant 
noise, Y is rendered unpredictable and the ESA unreliable. 
However, multiband prefiltering of the noisy modulated 
signal can provide greatly improved results. 

II. STATISTICS OF Y 

Next the basic statistical properties of the operator Y 
applied to a random signal n(t)  are developed. Assume that 
n ( t )  is a zero-mean, stationary Gaussian process with 
autocorrelation R(T) and spectral density @(CO). 

Since n ( t )  is Gaussian, h( t )  and $ t )  are also, which 
simplifies the computation of the moments of 

Note that 
Y(n) = (h)2 - nii. 

Var[n] = R(O), 
var[i] = R(~) (o ) ,  

where dk)(7) = d kR(T) 1 dTk. Then 

Var[h] = -R(2)(0) 
E[&] = R(2)(0). 

E[Y(n)] = -2R(2)(0) = I o? @(U) dw, 
A R  

the spectral variance of n ( t ) .  The variance is found for 
Gaussian n(t)  using Isserlis's formula [8]: 

Both increase dramatically with higher frequencies in n(t). 
Clearly Y ( n )  can be negative - highly undesirable, in 

view of the interpretation of Y as energy and the definition of 
the ESA (2).  (3). Positivity of the output of Y has been 
explored in detail in [9]. 

Lastly, in evaluating the ESA the statistics of Y(h) are of 
use. From the preceding it is easily established that 

V ~ [ Y ( ~ ) ]  = 3 [ R ( ~ ) ( o ) ] ~  + R(o)R(~)(o) . 

E[Y(;r)] = z?(~)(O) 
V ~ [ Y ( ~ ) ]  = 3 [ R ( ~ ) ( o ) ] ~  + R ( ~ ) ( o ) R ( ~ ) ( o ) .  

ID. ENERGY OFBANDPASS AM-FM SIGNALS 

f( t )  = S ( f )  + n(t) 

Consider the noisy AM-FM signal 

with s ( t )  given by (l), n( t )  given in Section 11. Define the 
bandpass filter with center frequency w c  , impulse response 

g d t )  = 2 hdt) sin (Wet), 

GJw) = (10) [HcA@U,) - HcAww,)l 

(4) 

(5 1 
and frequency response 
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where 

H ( w )  is a low-pass filter with even-symmetric impulse 
response h(t) and Q > 0 is a bandwidth parameter. 

Defme the kth-order spread about w = fa : 

Hdw) = Cr’W(do), 

VJk)(a) = & [IR(a&a)%f(o)l2 dw]-= (6) 

mmnuzed at a = 0 VA”(0) = iaf { VJk) (a)). Note that 

so the bandwidth of H J w )  increases linearly with 6. 
Assume the (+U), (-0) parts of GAo) do not overlap: 

We assume constant energy across scales: 
1 WAw)12d w =  1. 

. .  . 
v&z) = ov,‘”(a/a). 

K ; ~ w ) l 2  = I H,(m wc) P+ I H , ( W  oc) 12. 

E R  
Now denote the filtered signal-plus-noise combination 

fJ0) = sdr) + noo) 
where s, ( t )  = s ( t )  * g u ( r ) ,  n u ( r )  = n ( t )  * gu( t ) .  The 
rest of this section is devoted to analyzing the bandpass filter 
/ energy operator system depicted in Fig. 1. 

A. Filtered Signui Approximutions 
The following important approximation is made 

throughout this paper: if s ( t )  = u(t)cos[q(t)J is input to 
the linear system with frequency response CJo) (5 ) .  then 
the response s&) can be approximated 

For sinusoidal s( t ) ,  (7) is exact; indeed, (7) is a quasi- 
extension of the concept of linear system eigenfunction. 
Generally the error is bounded as follows. First: 

Ap(gu) = [ jR f2p  lgd(t)12 dt]  

6(a) = [ 16(t)12 dr]ln 

a t )  = a(t)&rwi(t)llcos{w+ LGJo,(t)l). (7) 

Theorem I - Let &(I) = BAt) - At) I. Then 

where U, = SUP iu(r)i. 

E&) 5 ~~,,, A2(g&wi) + 2 AI(g&6(a). 
4 

I 

Theorem 1 bounds E, in terms of the duration of gdr) and 
the smoothness of the AM-FM functions U and m i  expressed 
as Sobolev 2-norms [3]. Theorem 1 also approximates the 
derivatives of the response sAt): ( D  = d 4dt  k) 

D ks&) = a(r) lo,(r)l k IGJw,(r)]l 

-COS (q(r)+LGJIwi(r)]+A+). (8)  

n 

Fig. 1. Block diagram of basic single-band energy operator. 

We assume (8) for A = 1, 2, 3. By Theorem 1. the validity of 
(8)  requires that A,,,@ kgu), be small A S 3. 

Reasoning similar to Theorem 1, approximate the energy 
Y of the filtered signal component s& and its derivative: 

h 

~(s,) = a2( t )o? ( t ) -~~wi ( t )112  (9) 
h h 

and Y(dJ = w?(r)Y(su). First define fu= fR lg,,(z)l dr. 

Theorem 2 - Let q r )  = IY(su) - Y (su)l . Then 
h 

B .  Filtered Noise Approximations 
Denote the autocorrelation of n ~ ( t )  by R ~ ( ‘ F )  with 

spectrum O ~ W )  = G ~ ( w ) I ~ O ( W ) .  Of interest are the (24-  
derivatives of R ~ T )  at T =  0 

An important approximation will often be used: 
4 2  ) RP (0) = R~ (a). (11)  

Ru (a) = (-l)k&G&)12ru (12) 

where for a E R 

and the filtered noise power: 

4% ) 

ru=& I R ~ ~ J 2 w w ~ .  
The veracity of (1 1) is made clear next. 

Theorern 3 - Let E :‘)(a) = U?&=) (O)-Ru (a)l. Then 

E !)(a) 5 2a%,,, [ 21CTdg vi1)(-) 

where Om,, = S y  I@(w)l and Vf ’ is given by (6). 
The validit of ( l l ) ,  (12) requires two assumptions. First, 

the spread Vi’’ about (a- o c ) / ~  must be small: a must fall 

within the (small) passband of Go. Even then 1lGda)l - 
IG w c)ll should be small, implying that the in-band 

amplitude response ICa(w)l be flat (Fig. 2). 

4 

0 U 0 

Fig. 2. The validity of (11). (12) requires that the indicated 
(mowed) quantities be small. 
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We use in a specific form of (1 1). When analyzing f o ( t )  or 
noise ndt) at time t, we use (1 1) with a = Oi(t): 

R&%)(o) = R ,  [wi( t ) l .  (13) 
This is a time-varying approximation to the autocorrelation 
of the filtered noise. In using (13). there is a tacit assumption 
that wherefdt) is being analyzed, it is being done so with a 
filter that is concentrated in the vicinity of wi ( t ) .  

C .  Filtered Noisy AM-FM Signal Approximations 
First note that 

YW,) = Y(s,) + ~ ( k )  + &&- s&- &no 

with zero-mean trailing terms. From (13) the expected energy 
of the filtered signal-plus-noise is approximately: 

E[Y'(f,l= w,2(t)lC(r[w;(f)li2[a2(t) + 2 r ~ l  
E[YidI  = o~( t )Eo[wXt ) l l2 [a2 ( t )  + 2 r~l .  

(14) 

(15) 
Although the ratio of (15) to (14) is an appealing 

approximation of the expected value of the ESA (2), such an 
approximation must be carefully justified, particularly since 
the energy operator may take values near zero. 

V~~[YW,)I 5 4oP(t)i~o[w,~r)114ro1a2(r)+ r,i 
var[ylf,)] = 4w,S(r)i~(r[w i( t) l~4rda2(t)+ r,] . 

IV. COMPUTING THE ESA IN NOISE 
Here we justify the ESA (2). (3) in the presence of noise, 

where filtering is applied to reduce the noise contribution. 
Figure 3 depicts the analyzed ESA system. 

A. Lurge SNR ESA Approximations 
Define the instantaneous signal-to-noise ratio: 

SNRdt) = aqt )  / Tu. 
For SNR,(t)  large, 2nd-order approximations to the 
exwcted ESA (2). (3) are useful : 

. lGdOi(t)112 

= a2(t)lGJw,(t)]P (large SNR). (17) 
The justifications for (16), (17) and the following are omitted 
here to conserve space. For the variances of the ESA: 

- -  

Fig. 3. Diagram of basic ESA with noisy input. 

and 

Although the variances (18), (19) increase dramatically with 
the fourth powers of w;( t ) .  a(t) ,  the ratios of (18). (19) to 
the squares of (16). (17) are negligible at reasonable values of 
S N R d t ) .  Both ratios fall below 0.1 for S N R d t )  < 34. It 
subsequently follows that for SNRdt)  sufficiently large: 

n 2  
m i  ( r )  5 0,2 ( t )  (20) 

;; 2(t) = a2(t)lGJwi(t)]12. (21) 
In (21) w ;(t)  may be estimated using (20) then used to 
compute G J w i ( t ) ] .  Another approach is to use filters with 
flat in-band responses, as discussed earlier. 

V.MULTIBANDFLL.TEXINGANDESA 
Figure 4 diagrams a multiband energy operator system. A 

signal f ( t )  passes through multiple filters g m ( t ) ,  Gm( U )  

with Wm, Om, producing outputs fm(t), m = 1 ,..., M. 
Following filtering, energy demodulation using Y is 

applied to each output. At each instant the response having 
the maximum normalized energy 

. - , .  
is input to the ESA. Hence a h e r  is available with large 
response, yielding stable computation of the ESA (depicted 
by dotted lines in Fig. 4). 

Criteria for the filters g, can be explored in depth; a 
variety of criteria affect the design. Due to space, these are 
not fully developed here. Briefly, to reduce the errors in the 
Theorems, products of the form Al(h)VH("(O) be small, 
suggesting that hdt) be Gaussian. The functions (4) are then 
Gabor functions. Another important criterion is that the 
passband of H (  O )  be approximately flat. This conflicts 
with a Gabor configuration. While it is interesting to 
consider the design of low uncertainty filters that have 
relatively flat passbands, there is no immediately apparent 
procedure for such a design. In any case, the error bounds in 
the preceding give worst-case performance. 

Fig. 4. Multiband filtering and ESA applied to 
noisy AM-FM signal. 
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A. Multiband Filtering 
Make the practical assumption that the system of interest 

produces signals falling m a specific band of frequencies with 
fixed upper bandlimit 52 c. Others have used time/frequency 
windows of constant width on a log scale [ 101. [ 111. Theorem 
3 gives additional motivation. The modeling error is 

approximately scaled by 2 k - 1  [ vi2-')( 7)lk; to 

maintain consistent performance across channels, let Qm = 
constant. Also define the subband center frequencies to have 
I-octave separation: o ; m = 1 ...., M-1 
and the baseband center frequency: oy = 2-M a,. 

o m  

= 3-2-("'+') 52 

Assume (sine) Gabor wavelets: 
Gm(@)=+& [~XP(- ( - )~  I * x P ( - ( ~ )  @ + m m  2 11. 
which satisfy the usual wavelet admissibility/reconsuuction 
conditions [lo], [ll]. However, here it is most important that 
the frequency domain be adequately sampled. One-octave 
(half-peak BW) filters achieve both prescriptions: 

tJm=2p(ln 2)'f2=2-('"+1)(hl 2)-1h2c. 

W. EXAMPLE 
Assume WU>G that l2 = 1. Consider a pure chirp signal: 

so) = a0 c w w 2 )  
over the time window t E [1/(2M%), 1/(2~0)]  over which 
o ,(t) = 2wot falls in the band [21-M, 11 (avoiding the 
baseband). First consider the noise-free case. From (9). (lo), 
for the normalized energy of the filter response at time t :  

'y(J 
~ &2(2w)2 . I ","I (20  Of 1 I 

IG m ( m m 1  2 

Isms* la2 =1 S m s M  

m (mm 1 
so, to select the (index of the) analysis channel at time t :  

m*(t) = arg max m w * c )  arg min 124,t - w,~. 

[assuming H ( 2 w  +  cy^) = O]. Then m = m*(t) for 
( &) 2-m< t s (& ) 2-'" . (22) 

Now suppose s(t) is immersed in Gaussian white noise: 

Of course. for this noise model, image prefiltering using 
bandpass filters is an absolute necessity. From Section III-C, 
for m = m*(t), the normalized energy moments are 

@(U)=&; W E  R. 

E ~ ( f m ) l  ( 2 ~ 1 2  (a 8 + 4 q ~ m )  
IC m ( a m  y 2 

2 0 0 1 - o m  2 . exP( -4 7 ) 1 

- e x P ( - 4 7  ) I .  (24) 

(23) 

v'y(fm)l 5 2q0rn(2~)4  (a 6 + 2VtJm) 
IG m ( m m  )I 

2 o I y - o ) m  2 

Expressions for YQm) are the same [multiplied by (24,t)Zl. 

of-band expected energy using (1 1) with a = wq: 
Now suppose q # m*(t). Determine the normalized out- 

E['y(nq )I 2qapo 4' (25) 
IGq("q)I2 

A. Channel Selection 
From (22) 2 o 0 t > ( 9 ) 2 - ~  when m=m*( t ) ,  so the ratio 

of (23) to (25) is bounded below by ( &) 2 3q-w S ~ O ,  

where SNO = 1 q). For snro large, the in-band channel will 
dominate the noise channels. However, it should be observed 
that Y can be sensitive when a low frequency signal is to be 
detected in high-frequency noise. 

B. ESA Computution 
If the correct channel is selected, the ratio of the square of 

(23) to (24) to the is bounded below by 2'" fi snro. So. for 
reasonably high snro the normalized energies satisfy 

E[Y(fm)l = a 8 (2*)2 
I G  m ( m m  1 * 
IC m (mm 1 2 

E [ W m ) l  EcI (2wpt)4 . 
As desired the ESA will then yield for t satisfying the above: 

A 2  
mi ( t )  J ( 2 ~ ) ~  ;; 2(f)] = a a 

W. FUTURE WORK 
Future work includes digital versions using the discrete- 

time energy operator [4] and extensions to allow the analysis 
of multi-component AM-FM signals: 

K 

- 1  
s(t) = kz a ko) cos[# &Wl. (26) 

This will involve tracking multiple components that merge, 
vanish, or contain discontinuities. Although the problem is 
difficult, the model (26) may find widespread application. 
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