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ABSTRACT 

111 this p a p  we incorporate receut results frum AM-I'M 
models for texture analysis iuto the variational model of 
image segmcntation and exarniue the potential beiicfits o l  
using the combination of these two appruaches for texture 
segmentation. Using the Dominant Components Analysis 
(DCA) techiique we obtain a low-dimensional. yet rich tex- 
ture feature vector that proves to be useful for texture seg- 
mentation. We use an unsupervised scheme for texture seg- 
mentation, where only the number of regions is known a- 
priori. Experimental results on both synthetic and challeng- 
iug real-world images demonstrate the potential of the pro- 
posed combination. 

1. INTRODUCTION 

The segmentation of textured images is a long standing prob- 
lem in Computer Vision, which has been addressed from 
various perspectives, with variational models, e.g.[ll, 21, 
16, 201 and MRFs, e.g. [5,  131 being the most common 
approaches. As image intensity is a poor cue for texture 
segmentation, filtering the image with a Gabor filterbank is 
commonly used as a feature-extraction preprocessing step 
which results Ui detecting texture information that resides 
at different frequency channels. Region based segmenta- 
tion algorithms which subsequently group pixels into re- 
gions according to the proximity of the filter responses at 
these points are more global and therefore more efficient, 
contrary to edge based algorithms [12] which result in spu- 
rious edges, due to the inherently random nature of textures. 

In this paper we examine the potential benefits of using 
a more compact model for texture analysis that has been re- 
cently presented in [8], namely Dominant Component Anal- 
ysis (DCA). This representation summarizes all the texture 
information in a 3 dimensional feature vector, which in a 
loose sense best models the texture at each point using the 
AM-FM modulations model of images. This technique pro- 
vides us with a low-dimensional, yet rich feature set, that 
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proves to be useful for segmentation. As a segmentation al- 
gorithm we use curve-evolution implcmentcd with the IcvcI- 
sets technique. where the fnrccs that drive ihe evolutioii of 
the contours are determined by a region-based prohahilistic 
criterion.as in 121. 151. 

In the following section wc present the necessary back- 
ground for our segmentation algorithm. while hrieny men- 
tioning previous work, subsequently we mention the details 
of uur approach a id  finally we present experimeutal results 
that testify the power of the cornbiuation of the modulation 
features with the region-based curve evolution approach. 

2. BACKGROUND 

2.1. Curve Evolution for Textured Image Segmentation 

In the variational framework for segmentation, which we 
adopt in our approach, a labelling of the image is searched 
for that minimizes a certain energy functional which en- 
codes the desired features of a segmentation. This labelliug 
is initialized by assigning the same label to pixels inside 
a closed contour while the energy criterion is expressed in 
terms of these contours: The segmentatiou of the image 
is derived by numerically solving curve evolution PDEs, 
where the forces that drive the evolution are determined by 
Euler-Lagrange equations which give the direction of steep 
est descent of the energy functional. 

In [211 the functional that was proposed to be minimized 
was the likellhood of the data inside each region Ri con- 
tained in the interior of curve ri: 

where Pi is the PDF of the feature vectors inside each re- 
gion, N is the number of regions and v is a weighting factor, 
punishing noiismooth curves. The probability distribution 
inside each region Ri is considered Gaussian: specifically, 
for texture segmentation, where high-dimensional feature 
vectors are commonly used, multivariate Gaussians are used 
to model their distributions inside each region: 
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Minimizing (1 )  w.r.1 r results i n  the curve evolution equa- 
t ions: 

where P, is the likelihood of the feature I under the compet- 
ing neighboring hypothesis. c. li, is the curvature of ri and 
f i i  is the nonnal to I';. Minimizing ( I )  w.r.t. pi, Ci results 
in setting the parameters of the Gaussian distributions to 
their ML estimates. Iterating the minimization w.r.1. p i ,  C ,  
and r; results in  a greedy algorithm for the minimization of 
( I )  conceptually similar to the EM algorithm. The paramct- 
ric distributions employed in [21. 151 have been recently 
replaced with non-parameuic distributions e.g. in [9. 171, 
which result in similar evolution equations. 

111 LlS] this idea was impleinented and exteiided using 
the level-set technique, which has inany computational ad- 
vantages, since it handles automatically topological changes 
and lends itself to cllicicnt implementations. 

A problem that arises when filtering the image with a 
Gabor filterbank is the high dimensionality of the derived 
feature veclnr at each point. which results in maiy p)tential 
suboptimal segmeutatioiis as grouping the data in high di- 
mensional spaces becomes hard. In the supervised texture 
seginentatioii case e.g.[16] this problem can be bypassed 
by choosiug these channels that maximally separate differ- 
ent textures. It is however harder to tackle the unsuper- 
vised problem, since choosing the 'best' channels - which is 
equivalent to projecting the features onto a subspace where 
some unknown n-priori classes become maxiinally separated- 
is usually performed using heuristic criteria, as e.g. in [181. 

hi a recent attempt to alleviate this problem, Rousson et 
al. [171 used a vector valued difhsion procedure to smooth 
a low dimensional image feature set, which gave good tex- 
ture segmeiitation results, using a4-dimensional feature vec- 
tor. In  the information theoretic approach of [9] textured 
image segmentation is accomplished without using a fea- 
ture extraction stage. using as the sole criterion the max- 
imization of the mutual information between region label 
and image intensity. In the work presented here we are us- 
ing features that are based on a different approach to texture 
analysis, which builds on the AM-FM model [3, 71 of tex- 
tured signals. 

2.2. Dominant Compunents Analysis 

Locally narrowband 2D signals can he modeled as spatial 
AM-FM smctures 

f ( X > Y )  = 4z,y)C=[4(z>lJ)lr fi(.,Y) = V+(%Y) 
(4) 

that are 2D nonstationary sines with a spatially varying am- 
plitude u(z, y)  and a spatially-varying instantmeous fre- 
quency vector i i ( z , y )  = ( ~ ( z , y ) , ~ ( z , y ) ) .  Particularly 
in image signals, the amplitude is used to model local im- 
age contrast and the frequency vector contains information 
about the locally emergent spatial frequencies. These mod- 
ulation models have been proposed by Bovik et al. [31 and 
extended by Ravlicek [71 for wideband image signals. Any 
image can be thought of as a sum of locally smooth, nar- 

rowband modulating signals as: 

h' 

f(:c, lJ) = Ea&,{,) cl.i[&t(:C,y)], (3 
h = l  

An efficient and computationally simple approach for  
extracting the 2D amplitude and frequency signals was de- 
veloped in 1141 based on the 2D Tcager-Kaiser Energy Op- 
erator Q(/) IlVfl12 - fV'f. Applying Q to a 21) 
AM-FM sigoal f yields approximately the product 01. the 
instantaneous amplitude and frequency magnitude squared. 
Using as J' bandpass filtered versioiis of an image has a reg- 
ularizing effect. thereby dealing with stability issues of the 
Teager operator. I f  we apply the cilcrgy operator on the i n -  
age derivatives i j . f / i h  a id  8J'/d:{,. it is possihle to separate 
the eiwgy into its amplitude and frequency coinpoileiits via 
a nonlinear algorithm called Energy Separation Algorithm 
(ESA) [141. Multiband filtering approaches [2. 11 for tex- 
lure analysis are applied to decompse an AM-FM mod- 
elled irnagc oTthe fonn ( 5 )  into narrowhand. locally varying 
components. The Ihminait Cornponcnt Analysis (DCA) 
scheme [a, 61. chnoses at each pixel the most powerful nf 
thcsc chamiels a i d  estimates the AM-FM model parameters 
at Ihat point,using the outputs o l  that channel. This way. the 
outputs of the filtered images are combined, resulting i n  a 
low dimensioiial texture descriptor. 

The only previous work we are aware of where it has 
been attempted to couple modulation features with curve 
evolution models is [221 where a geodesic active contour 
has been used to perform texture segmentation on a modu- 
lation based feature space. However the segmentation prob- 
lem is formulated as a data clustering problem and a purely 
statistical algorithm performs most of the segmentation task. 

3. VARIATIONAL SEGMENTATION ON A 
MODULATION BASED FEATURE SPACE 

We have approached the basic DCA using a modified de- 
cision logic based on the Teager-Kaiser Energy Operator. 
In order to capturc image modulation information at vari- 
ous scales and orienlations, a bank of Gabor filters hi has 
been used since they are compact, smooth and attain the 
lower bound in a time-frequency uncertainty relationship 
[4]. Each bandpass image I" = I * hi is demodulated via 
the ESA and at a pixel-wise basis, a value is kept for the 
amplitude and frequency signals from the bandpass image 
1, that maximizes the Energy Operator response: 

i = argniax *[(I * hj)(z,y)] (6) 

Due to lack of space, details about the methodology used 
for extracting dominant component features can be found in 
OUT companion paper [lo]. 

The feature vector we have used consists of the follow- 
ing componenu;: a) Amplitude b) Phase Gradient Magni- 
tude c) Phase Orientation d) Image Intensity. We include 
image intensity in our feature set as in [171, since this is still 
an important feature for non-textured regions. 

Curve evolution has been implemented using level-set 
method.? [19], where a very similar architecture with the 
one proposed in [151 has been used to implement region 
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competition. An explicit scheme has been used, aid no 
houndary based term was used. As io [ 18. 17. 201 the dis- 
tribution of the data inside each region is leamed in parallel 
with the evolution process, resulting in an adaptive scheme. 
For simplicity we model the distribution of the feature vec- 
tors inside each region with a multidimensional Gaussian 
with diagonal covariance matrix. which is reasonable, siucc 
the features we use should he uiicorrelatcd. We uote that 
the phase orientation data should be inndelled using a voii 
Mises distribution. which is the analog OS the normal dis- 
tribution for angular data. For the examples used in this 
paper a Gaussiai distribution worked well. even though this 
is not guaranteed in case the oriciitations imide a region are 
around 0 aid . 

We ohscrved that using inorc robust estimates nf the 
Gaussian distribution parameters results in grcatcr invari- 
ance to initializatioii: wc used the -trimmed incm of the 
data and the -trimmed mean absolute deviation of the points 
frnm this value. fbr = 10%: the deviation was norinalizcd 
with the lacror 1/.8 10 compensate for the reductinn in the 
varince caused by using a subset nf the sample that is closer 
to this value. This gracefully deals with spuriously high 
amplitude estimates. caused occasionally by the ESA algo- 
rithm, at places where pre-smoothing does not eliminate er- 
rors. At a pre-processing level we have experimented with 
the coupled difhsioii of the vector-valued data. like in [17]. 
where an orientation diffusion term is introduced into the 
evolution equations for the directions feature channel, in or- 
der to obtain smoother estimates. No significant changes in 
performaice were observed using the latter enhancements, 
since the modulation features are sufficiently smooth, con- 
trary to the nonlinear structure tensor [171 data. 

4. EXPERIMENTAL RESULTS 

In the results presented here our only intervention has been 
in predefining the number of regions in the image; even 
though various statistical criteria can be used to find the 
‘correct’ number of regions we believe this is a very hard 
problem to solve automatically, since even humans may dis- 
agree about the correct number of segments in an image. 

In Fig. [ 11 we show how the system performs with some 
simple synthetic images: one can note from the bottom row 
that scale information is included in the feature vector, con- 
W a r y  to [ 171; the inner texture is a scaled version of the outer 
texture, so the magnitude of the frequency vector helps dis- 
criminate among them. In Fig. [2] results with a real image 
are demonstrated, which contains both textured and non- 
textured regions. In Fig. [3] we notice that columns have 
been detected as a unified textured region, as the amplitude 
strength is almost constant, while the flowers, the steps and 
the bushes form separate regions. 

5. DISCUSSION & CONCLUSION 

Comparing our proposed algorithm for texture segmenta- 
tion to related work on unsupervised curveevolution based 
texture segmentation we believe it is advantageous in the 
following aspects: 

Fig. 1. Kesults with synthetic tcxturcs 

- The representation of the texture in tenns of its domi- 
nait components results in a low-dimensional feature space. 
where it is no longer necessary to search in a supervised or 
unsupervised setting for low-dimensional projections of the 
feature set, as e.g. in [18,16]. Howeverthis low-dimensional 
feature vector is expressive enough for the discrimination of 
a wide variety of textures. 
-Comparing our work with the most up-to-date publication 
where lowdimensional feature spaces are used [171. we 
mention that the feature set we use is richer in its cxpres- 
sive ability, even though it is of the same dimensionality: 
texture scale is naturally represented by the gradient mag- 
nitude, while good feature localization is achieved without 
anisotropic diffusion being necessary. 
- The fact that modulation features can be used to recon- 
strnct a signal, makes them interpretable in terms of gener- 
nrive models which model the observed data. As such, they 
are amenable to a probabilistic treatment, and comparable 
to other features, that may compete for the ‘explanation’ of 
the observed data. In our companion paper [lo], we explore 
the ability of incorporating the extraction of modulation fea- 
tures with the discrimination of texturedhon-textured re- 
gions, which is very active area of current research, and 
where we have obtained promising results. 
- The Geodesic Active Contour model used in [221 is used 
at a post-processing stage to eliminate small & fragmented 
regions. The most important part of the segmentation is ac- 
complished during the previous step, where the image data 
ace clustered using a purely feature-driven criterion, disre- 
garding any geometrical information. This diminishes the 
benefits of the region competition framework, that allows 
region, geomeuy as well as shape based knowledge to be 
incorporated into the evolution equations, thereby interleav- 
ing the use of geometrical and statistical information. 

Summing up, we believe that the proposed method is 
characterized by simplicity and efficiency and combines the 
best of the DCA and curve evolution methods. Even though 
a three dimensional feature vector cannot discriminate be- 
tween any set of textures, promising results have been oh- 
tained on both synthetic and real images, showing that OUT 
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Fig. 2. (a) Input Image, (h.c) Amplitude, d, estirnatcs using LXA. (d) Segmented image 

. *  

Fie. 2. ia) IilDut Image. (h.ci AlI~D~~tude. d. estirnatcs using LXA. (d) Segmented image 

Fig. 3. (a) hiput Image, (b-d) Amplitude, &, d, estimates using DCA. (e-h) Detecled rcgioiis using curve evolulinn 

method is applicable to a wide variety of [extured images. [ I11 T.S. h r .  D. Mumford, and A. Yuillr. “Tr‘xluru segmentation by min. 
imiiing vector-valued energy funrtionals: the couplcd-membrane 
model.” inP,nc. ECCV. 1992. 

[I21 I .  Malik and P Perona. “Prratentive texture disaimination with early 
vision mechanisms,” JOSA A. vol. 7(5). pp. 923-932, 1990. 

[I31 R.S. Manjunath and R. Chellappa, “Unsuprrvised texture segmm- 
talion using makov random field models,” IEEE T “ s .  011 PAMI. 
vol. 13(5), pp.478-482, 1991. 

[I41 P. Maragos and A.C. Bovik. “Image demodulation using multidi- 
mensional energy separation.” JOSA A, vol. 12(9). pp. 1867-1876. 
1995. 
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