
MORPHOLOGICAL SKELETON REPRESENTATION AND CODING OF BINARY IMAGES

Petros A. Maragos and Ronald W. Schafer

School of Electrical Engineering
Georgia Institute of Technology

Atlanta, Georgia 30332

ABSTRACT

This paper presents a preliminary study on
using Mathematical Morphology to represent and
code a binary or a grey—tone image by parts of
its skeleton, a thinned version of the image. An
image can be uniquely decomposed into skeleton
components, and then reconstructed by dilating
these components. Since, for a certain category
of imagery, the skeleton components possess a
lower entropy than the original image, a run—
length or entropy coding scheme can be used to
achieve representation or transmission of the
image at a lower information rate than originally

required.

INTRODUCTION TO MATHEMATICAL MORPHOLOGY

Mathematical Morphology, as a method for
image analysis, was introduced by Matheron and
Serra [1]. Its purpose is the quantitative des-

cription of geometrical structures. To extract
information from an image object, Morphology
"hits" it first with a "structuring element."
The interaction with the structuring element
transforms the Object and reduces it to a sort of
caricature which is more expressive than the
actual initial phenomenon.

The most fundamental morphological transfor-
mations are erosion and dilation: Let X denote a
set in the continuous or digital 2—D Euclidean
space representing a binary analog or digital
image object. Then X (complement of X) denotes
the image background. Let B be the structuring
element, which is another set with a simple geo-
metrical shape, and denote by B the translate of
B whose center is situated at the point x.
Erosion of X by B is the Set of all points x such
that B is included in X (see Fig. 1). Symboli-
cally,

X®B={x: BC X}

Dilation of X by B is the set of all points x
such that 5x "hits' X; i.e. has a non—empty
intersection with X. Symbolically,

X®B={x: B(\X} (2)

Fig. shows the erosion and dilation of a set X
by a disk B. This figure illustrates that ero—

sion is a shrinking operation and dilation is an
expanding operation. Erosion and dilation are
dual operations w.r. to complementation: Eroding
X is equivalent to taking the complement of the
dilation of X. If we erode X by B and then
dilate the set X®B by B, we do not recover X.
We reconstitute only a part of X which is simpler
and has less details. It may be considered as
that part which is most essential morphological—

ly. We call this new set the opening of X w.r.
to B:

X5_(XQB)®B (3)

The opening is the domain swept Out by all the
translates of B which are included in X. This
operation smooths the contours of X, cuts the
narrow isthmuses, suppresses the small islands
and the sharp capes of X.

Although the above operations appear super-
ficially simple, we can perform an enormous
variety of image processing and image understand-
ing tasks just by combining erosions and
dilations, as is well developed in [lii.

SKELETON REPRESENTATION OF BINARY IMAGES

The skeleton is a topologically equivalent
thinned version of the image. It can be obtained
from morphological transformations which empha-
size features of the object associated with its
connectivity. In the 2—D continuous space it is
defined as follows: Let rB denote the disk of
radius r centered at the point x. Let
denote the set of the centers of the disks rBx
such that: i) rBx is the maximum disk centered
at x and contained in the Object X, and ii) the
disk rBx intersects the boundary of X at two or
more different places. Then, the skeleton S(X)
of X is defined as the set of the centers of the
maximum disks inscribable in X, and is a carica—

(1) ture containing information about the shape, size
and orientation of X. Some examples of skeletons
are shown in Fig. 2. The skeleton 8(X) can be
obtained from the set union of Sr(X) (Lantuejoul
[2]

8(X) = Ti 5 (X) = U [(x®rB)/(x®rB)d B (4)r>0 r r>0
r
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where "U" ("I") represents set union (dif
ference) , and dr is the infinitesimal small
radius,

consecutive pixels Xl,X2,...,XN, where x can be
either 1 or 0 according to whether x1 belongs to
the image object X or its background Xc respec-

Although the skeleton is not a well—digita—
tively. Let p(x1,x21.. .,XN) be the Nth—order
joint probability of these N pixels. Then the

lizable notion, Serra [1] gives an algorithm for Nth—order joint entropy (in bits/pixel) of the
the skeleton of digital binary images sampled on binary image XUXC is defined as

a hexagonal grid.

Our research was focused on three areas:
obtaining algorithms for skeletonizing digital
binary images on a rectangular grid; using parts

UN(X) = —(1/N) • .. . p(x1,...,x)
xl,...,xN

of the skeleton to code the image; and extending
the above ideas to grey—tone images. . log2p(xl,...,xN) (7)

Let R denote the unit—size square of a rec-
tangular grid (see Fig. 3) which is a square of
3x3 pixels, and let nR denote the square R magni—
fied n times which gives a square of (2n+1) x
(2n+1) pixels. Then a digital algorithm for S(X)

As is well known, EN is a nonincreasing function
of N and the limit as N + is the entropy of the
stochastic source. If we consider the dif—

of a rectangularly sampled image object X is ferent blocks of N pixels each as our messages,

n n
max max

S(X) = U a (X) = u [XØnR)/(X®nR)R] (5)n=0 n n0

we can employ Huffman coding or other suboptimum
coding procedures [4] to achieve transmission
rates very close to these Nth—order entropies.
Thus, hereafter we will be referring to these
Nth—order joint entropies of binary images as

Eq. (5) says that the skeleton subsets sn(X) form their achievable transmission rates.
a partition of S(X). Thus, S(X) is obtained by
successively eroding X by nR, and then keeping
from every eroded set (X ®nR) those parts only

Since every skeleton subset Sn(X) is a much
thinner binary image than X, then its Nth—order

which consist of angular points and lines without
thickness; these parts are the only ones remain—
ing after the set difference between (X®nR) and
its opening (XØnR)R. The maximum size
indicates the square of maximum size after which
a further erosion erodes X down to the empty set.

entropy, denoted by HN(sn) , will be much lower
than HN(X). And there might be cases where

nm
H(s ) << H(X) (8)

n=0
n

Now, the image X can be exactly reconstruct—
ed by dilating the subsets of its skeleton by
squares of corresponding size and taking their
union:

Thus, to transmit s(X) we need approximately
HN(Sn) bits/pixel. In addition to the sum of all
HN(Sn) we need information about "umax'" which
can be taken into account with the trivial amount

nmax
X = U [s (X)®nR] (6)

n0

of log2(M/2) bits, for a binary image of MXM
pixels.

When (8) holds, we can transmit all the
skeleton subsets of X independently at a total

Eqs. (5) and (6) imply that the datum of the rate less than the entropy of the original image,
image (set X) is equivalent to that of its skele— and fully reconstruct X without error as Eq. (6)
ton S(X) together with the size "n" of the indicates.
maximum square associated with each point of
S(X). In Fig. 4, proceeding from left to right A further reduction in information rate can
columns, we show an example of an image object X
and its erosions CX ®nR), the openings of these

be achieved by using not all but only some of the
skeleton subsets to reconstruct openings (smooth—

erosions, the skeleton subsets sn(X) , the dilated
subsets, the composition of the skeleton S(X) as
the union of the skeleton subsets, and finally

ed versions) of the original image:

nmax
the reconstruction of X as the union of the di—
lated skeleton subsets.

XkR = U [s(X) ®nRJ (9)

n=k

SKJLNTON IMAGE CODING That is, if in the union of the skeleton subsets
we omit the first k subsets (n=O,1,..,k—1), we

According to Shannons theory of discrete reconstruct the opening of X w.r. to kR. The
source coding [3] we consider the digitized larger the k, the fewer subsets we transmit, the
images as sample functions of a 2—D stochastic more we reduce the information rate, but the
process characterized by joint probability dis— smoother is the version X that we reconstruct.
tributions of all orders. In practice we measure As shown in the example of Fig 4, for N=4, the
histograms instead of probability distribu— original image X has an entropy of 0.34 bits/pix—
tions. Consider a 1—0 or 2—0 block of el. If we use all the skeleton subsets we
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reconstruct X perfectly at a rate of approxi-
mately 0.18 bits/pixel. If we desire to
reconstruct only the openings X, or X2R, we omit
the first one or two skeleton subsets and thus we
need approximately 0.16 or 0.14 bits/pixel re-
spectively. Table 1 illustrates that more infor—
mat ively.

TABLE 1
Nth—Order Entropies (bits/pixel) of a Skeleton

Reconstructed Image and Its Openings.

Image

N 1 2 4 8

0.47 0.22 0.18 0.15
0.22 0.19 0.16 0.13
0.20 0.17 0.14 0.10
0.07 0.06 0.05 0.03

The first—, second—, fourth— and eighth—order
entropies of the original binary image without
skeleton encoding are 0.79, 0.50, 0.34 and 0.23
respectively. Thus, as shown in Table 1, the sum
of the entropies of all or some of the skeleton
subsets is smaller than the entropies of the
original unencoded image.

SKELETON OF QEY-TONE IMAGES

In grey-tone Morphology [11 the binary ero-
sions and dilations are replaced by "mm" and
"max" operators respectively. Consider a nonne-
gative bounded function f(i,j) representing the
intensity of a sampled grey—tone image. Let

0f(i,j) m for every integer pair (i,j) in the
image support. All the zero—valued image samples
will belong by convention to the background of
the image object. Erosion or dilation of the
function f by the 2—D structuring element R is
defined [1] as

where Rt • denotes the square R centered at the
pixel (i,. The opening R of f w.r. to R is
defined as an erosion followed by dilation.

We provide now a digital algorithm for the
skeleton S(f) of f which will be the nonnegative
function:

n n
max max

S(f) = [(fØnR)—(f®nR)R]n0 n'O (11)

of (11) will be nonnegative functions. Similarly
as in Eq. (6) or (9) , the function f or its
openings can be reconstructed by summing alge-
braically all or some of the skeleton
subfunctions dilated by nR.

The implications and the coding efficiency
of the skeleton of the image function f in terms
of entropy considerations are still under inves-

tigation.

CONCLUSIONS

The results of this study indicate that a
digital binary image can be uniquely decomposed
into its skeleton and the maximum inscribable
squares, and uniquely reconstructed from its
skeleton. The skeleton provides useful informa-
tion about the shape, size and orientation of an

image. For certain categories of images the
total entropy of the skeleton subsets is lower
than the entropy of the original images. Origi-
nal 1 bit/pixel test images of irregularly and
regularly shaped objects were reconstructed with-
out error by their full skeleton at information
rates of =0.20 bits/pixel. Smoothed versions of
these images required rates of Only =0.15
bits/pixel. Finally, by using mm/max operations
instead of binary erosions/dilations, these ideas
can be extended to grey—tone images.
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Eq. (11) is a direct transposition of Eq. (5)
where we replaced the binary set union/difference
by an algebraic addition/subtraction. Because
the opening is an anti—extensive operation
(fR<f), the skeleton subfunctions in the brackets
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X2R

[f3Rju,j)=min{fr,s: (r,s)cR ] (ba)
(i,j)

[f(3r](i',j)=max[f(r,s): (r,s)R ] (lOb)
(i,j)



Figure 2 — Examples of Skeletons (after [11).
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Figure 3 — The 3 x 3 pixels square R
on a rectangular grid.

x S(X) XflR

n = 0 D
=

1

=D 0.18

= :.., • -
—

0.16

2
—

LIJ
,, ' •

Eli

-
-U 0.14

I

3
' •.•.- .z.-.

- 0.05

4
—
- 0.03

5
a a

7

0.01

Figure 4 — Step by step decomposition and
reconstruction of an image object X by the
components of its skeleton S(X)
(a) size — n of the structuring square nR
(b) eroded sets ( X(3nR
(c) openings of the eroded sets ( X®nR >R
(d) skeleton subsets s(X)
(e) dilated skeleton subsets sn(X)®nR
(f} set union of skeleton subsets sk(X) for

k=7,6 n-1,n
(g} set union of dilated subsets sk(x)®kR

for k = 7, 6 n-i, n , which gives the
opening XflR

0 01 (h) sum of the entropies H4( 5k of the
subsets , k = 7,..., n , which are
required to reconstruct the opening XnR
of the original object X

0.01

(a) (b) (c) (d) (e) (f) (g) (h)
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Figure 1 — Erosion and Dilation of a set X by B ( after [ 2 ] ).


