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ABSTRACT.’ This paper develops a symbolic model- 
ing of images based on their shape-size information. First, 
multi-scale multi-shape structural distributions in the im- 
age are modeled via morphological openings, and a related 
shapesize descriptor, the pattern spectrum, is developed 
that can detect critical scales. Then the image is modeled as 
a nonlinear superposition of simpler parts (the “symbols”), 
which are translated and scaled shape patterns drawn from 
a finite collection. The model parameters are found by us- 
ing the information from openings and pattern spectrum, 
and via local searches a t  points of generalized skeletons. All 
these results appear promising for multi-scale image anal- 
ysis and shape recognition. 

1 Introduction 
A main approach in automated recognition [l] of 3-D vi- 
sual objects or 2-D image silhouettes is based on image 
decomposition into parts. For example, silhouettes can be 
modeled as a Boolean combination of smaller binary image 
objects. Similarly, image depth functions can be modeled as 
a max-superposition of the 2-D surface functions of simpler 
3-D objects. Some related recent research results include 

These paradigms can be viewed as cases of symbolic 
image representation and/or description, where the “sym- 
bols” are the simpler parts comprising the image and the 
model involves a nonlinear superposition of modified sym- 
bols. This paper develops a symbolic modeling of images 
based on their “morphology”, which is intuitively under- 
stood here as the shape-size information contained in the 
image. Our region-based model attempts to exactly repre- 
sent an image as a (binary or multilevel) Boolean combina- 
tion of translated and scaled patterns from a finite collec- 
tion K ,  in a minimal way agreeing with human intuition. 
Shape patterns in images may occur at multiple scales 141- 
[7]. Hence, we closely relate the model with the develop- 
ment of multi-scale nonlinear filters that smooth the image 
by probing it with all the patterns of K. A by-product 
of these multi-shape multi-scale filters is a shape-size de- 
scriptor, called pattern spectrum [8,9]. Both the pattern 
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spectrum and the related nonlinear filters are useful tools 
for multi-scale image analysis. In particular, they aid us 
significantly in solving the symbolic image modeling prob- 
lem, which is rigorously formulated based on concepts from 
mathematical morphology [ 10,111 and generalized morpho- 
logical skeletons [16]. Finally, an algorithm is provided that 
incorporates the above ideas to obtain the model parame- 
ters. 

2 Nonlinear Image Smoothing 
By scale we define here the smallest size of a shape pat- 
tern that can fit inside the image. So far [4]-[7], scale has 
been quantified by varying the average “width” a of the im- 
pulse response (e.g., a Gaussian, local averager) of a linear 
low-pass filter that smooths the image. This linear filtering 
approach has gained popularity because of its mathemati- 
cal tractability, its close relationships with Fourier analysis, 
and its plausibility for being used a t  the early stages of the 
human visual system. However, we also see three rather 
weak points: 1) Linear filters shift and blur important im- 
age features such as edges, 2) their implied scale parameter 
D is not directly related to our aforementioned size-based 
definition of scale, and 3) the multi-scale filtered versions 
of the signal do not correspond to a compact shape repre- 
sentation, except for the obvious one, that is, the difference 
signals between filtered versions a t  successive scales. Alter- 
natively, there is a large class of nonlinear filters that avoid 
some or all of the aforementioned problems. They include 
median filters and opening/closing [lo]-[15] filters. Many 
such nonlinear (e.g., opening, median) and linear (e.g., av- 
erager, Gaussian) smoothing filters can be represented ex- 
actly as a minimal superposition of morphological erosions 
or dilations [8,14,15]. Openings of sets in Euclidean spaces 
by convex sets of varying size (scale) were introduced by 
Matheron [lo] as an axiomatization of the concept of size. 
As shown in 1171, openings of 1-D boundary curvature func- 
tions of continuous binary images by disks do not intro- 
duce additional zero-crossings a t  coarser scales (larger disk 
radii). A multiresolution approach based on openings was 
developed in [18]. Median and opening/closing filters can 
be defined based on a scale parameter and provide signal 
smoothing by eliminating impulses or narrow peaks/valleys 
while preserving its edges. In this paper we deal only with 
openings/closings, because they are directly related to the 
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solution of the symbolic modeling problem and have many 
other useful properties. 

CONTINUOUS SIZE: Let R and Z denote, respec- 
tively, the set of real numbers and integers. Let B be a 
compact connected subset of R2; we call such B a continu- 
ous binary pattern. If B has size (by convention) one, then 
the set 

r B  = {rb: 6 E B} , r 2 0, (1) 

defines a pattern shaped like B of size r. Let g(z ,  y) be a 2-D 
real-valued function whose support is a compact connected 
subset of R2. Its umbra [12] is the set U(g) = { (z ,y ,u)  E 
R3 : g(z ,y)  2 a}. If we view g as a graytone pattern of size 
one, then we define the function 

as a pattern of continuous size r 2 0. That is, U(rg) = 
rU(g). The function rg has the same shape as g, but both 
its support and range are scaled by a factor r. 

DISCRETE SIZE: Both (1) and (2) are not useful for 
defining the size of discrete patterns; e.g., if BC Z2 is con- 
vex, r B  is not convex for r > 2. This led us to give an 
alternative definition of discrete size based on set dilation. 
The dilation (also called Minkowski sum) of sets X and Y 
i s t h e s e t X @ Y  = { a + b : a ~ X , b E Y }  = U p G Y X + p ,  
where X + p = { U  + p : a E X} is the translate of X by 
the vector p. Let B be a discrete binary pattern, that is, a 
finite connected subset of the discrete plane Zz. If B is of 
size (by convention) one, the sets 

nB = B@B@. . . @B (3) - 
n times 

define binary patterns of size n = 0 , 1 , 2 , .  . .. If B is convex, 
then nB is shaped like B but has size n. Similarly, let 
g(z ,  y) be a discrete graytone pattern, that is, a real-valued 
function whose support is a finite connected subset of Zz, 
of size one. If ( f @g) (2, y ) = max(i,j) { f (z - i, y - j) + g (i, j) } 
denotes the dilation [12] of functions f and g, 

ng = g@g@. . . $9 (4) - 
n times 

defines function patterns of discrete size n = 0 ,1 ,2 , .  . .. 
Multi-scale Openings and Closings 

For sets X,Y in R" or Z", the opening [lo] of X by Y 
is the set XOY = (XeY)@Y, where X e Y  = {p : Y + 
p c  X} is the erosion of Y from X. Similarly, the closing 
[lo] of X by Y is the set XOY = (X@Y)eY. (For set 
and function erosion, dilation, opening, and closing, we had 
used in earlier work (8],[9],(14]-[16] the definitions of [lo, 
111; in this paper we use the slightly different definitions of 
[12,13] because they are simpler.) We henceforth denote a 
discrete binary image by a set X in Zz. Let B C Z 2  be a 
fixed pattern. We define 

XonB = ( ( X e B ) e B  . . . eB]  @Bel? .  . . @ B  . ( 5 )  c- 
n times n times 

as the multi-scale opening of X by B at  scale n = 0 ,1 ,2 , .  . .. 
A dual multi-scale filter is the closing X.nB = (X@nB)BnB.  
If n = 0, then XOnB = XOnB = X. If B has a regular 
shape, then XOnB and XOnB provide multi-scale nonlin- 
ear smoothing of the boundary of X, but they are region- 
based image operations. The opening suppresses the sharp 
capes and cuts the narrow (relative to nB) isthmuses of X, 
because 

XOnB= U n B + z .  ( 6 )  
nB+& x 

Hence, XOnB eliminates from X all objects of size < n 
(with respect to B), that is, objects inside which nB can- 
not fit. That is why, we use the size n of nB as synonymous 
to the scale a t  which the filter XOnB operates. The cl05 
ing XOnB provides a multi-scale nonlinear smoothing of 
the background of X by filling in the gulfs and the small 
(relative to nB) holes of X. 

If f is a graytone image function, and g is a graytone 
pattern on Zz, we define 

f o n g  = ( feng)@ng = [(f e g ) e g . .  . e g ]  @g@g. .  . $9 (7) -- 
n times n times 

as the multi-scale opening of f by g at  scale n = 0 , 1 , 2 , .  . ., 
where (feg)(z,Y) = dn(i , j){f(z + i , ~  + j) - g( i , i ) }  is 
the erosion [12] of f by g. Likewise, the function f a n g  = 
( f@ng)eng is the multi-scale closing of f by g. See Fig. 1 
for examples. To implement f@g and f e g  we assume that 
f and g are equal to -CO outside their supports, where 
Spt(f)  = ( ( 5 , ~ )  : f ( z , y )  # -CO} denotes the support of 
such functions f ;  see also [11]-[14]. 

Let g be a binary function equal to 0 inside its support 
and -CO elsewhere, and let B = Spt(g) be its correspond- 
ing binary pattern. Then f@g becomes ( f @ B ) ( z , y )  = 
ma(i,j)eB{f(z - i , ~  - j)}, and fes becomes ( f e B ) ( z , y )  
=min(i,j)Es{f(z + a,y + j)}. These local min/maz gray- 
tone image operations were introduced in [19] and related 
to binary shrink/expand operations; the latter were used 
extensively in [20]. The functions fOnB = (fenB)@nB 
and f0nB = (f@nB)enB are the multi-scale opening and 
closing of f by B at scale n = 0 , 1 , 2 , .  . .. The nonlinear 
smoothing effects of the multi-scale opening/closing by B 
are comparable to the smoothing by g. At large scales n the 
opening (closing) by nB creates large flat plateaus (sinks) 
shaped like nB. By contrast, the multi-scale opening (clos- 
ing) by g will give these summits (sinks) a form of peaks 
(valleys) shaped like ng; thus, it proceeds much slower than 
by B, because of the smooth 3-D shaping (e.g., spherical) 
of g. However, f OnB has many computational advantages 
over fong;  see [14]. Further, a nonlinear partial differential 
equation has been found [21] that models the multi-scale 
f OrB as a dynamic system. 

Skeletons and Openings 
BINARY IMAGES: Among the various approaches [22] 

to obtain the medial (symmetric) axis transform, the latter 
can also be obtained via erosions and openings [11],[16]. 
Let X s  Z2 represent a finite discrete binary image and let 
Bc Z2 be a binary pattern with (0,O) E B .  The skeleton 
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components of X’with respect to B are the sets 

S, = ( X B n B )  \ [ ( X e n B ) O B ]  , n = 0 ,1 , .  . . , N ,  (8) 
where N = max{n : X e n B  # 0) and \ denotes set dif- 
ference. The S, are disjoint subsets of X ,  whose union is 
the morphological skeleton of X and from which we can 
reconstruct (161 X ;  i.e., 

X o k B  = U S,@nB , 0 5 k 5 N .  (9) 
kSn<N 

Thus, if k = 0 (i.e., if we use all the skeleton subsets), 
X o k B  = X and we have ezact reconstruction. If 1 5 
k 5 N ,  we obtain a partial reconstruction, i.e., the open- 
ing (smoothed version) of X by kB. The larger the k,  the 
larger the degree of smoothing. 

GRAYTONE IMAGES: Let f(z), z E Z2, be a finite- 
support discrete graytone image function and let g be a 
discrete graytone pattern with g(0) 2 0. As the skeleton 
components of f  with respect to g we define the nonnegative 
functions 

{ fen&), if f eng(z )  > ( f e n g ) O g ( z )  
-00, if f en&)  = ( feng)og(z)  sn(z) = 

where 0 5 n 5 N = max{n : f e n g  $ -CO}. (For functions 
h(z) ,  h -00 means h ( z )  = -CO Vz U Spt(h) = 0.) 
From the functions s, we can reconstruct f .  Namely, ob- 
serve that S N  = f e N g  and f e n g  = s,,V[(feng)Og], where 
(a V b ) ( z )  = max[a(z),b(z)]. Then, f o k g  = [ ( ( S N e g )  V 
S N - l ) @ g . .  . v sk ]@kg .  Since function commutes with V, 

fokg = V sn@ng , (11) 
k s n < N  

for 0 5 k 5 N .  Thus, if k = 0, f o k g  = f and we have 
exact reconstruction. If 1 5 k 5 N ,  we obtain the opening 
(smoothed version) of f by kg. 

3 Pattern Spectrum 

Consider a compact set X C R 2  and a disk D .  If A ( . )  de- 
notes area, the decreasing function A ( X O r D ) / A ( X ) ,  r > 0 ,  
was related in [10,11] to probabilistic measures of the size 
distribution in X .  Here we relate these size distributions to 
a concept of a pattern spectrum for continuous binary im- 
ages. Then we introduce a pattern spectrum for continuous 
graytone images and discrete images. 

CONTINUOUS IMAGES: We define the pattern spec- 
trum of a compact binary image X C  R2 relative to a convez 
binary pattern BG R2 as the nonnegative function 

(12) 
dA( XOr B) 

PSx(r,B) = - dr , r ? O ,  

and PSx(-r,B) = d A ( X . r B ) / d r ,  r > 0.  The rationale 
behind our term “pattern spectrum” is the fact that the 
opening X O r B  is the union of all rB + z with r B  + zC X ,  
that is, of all the patterns shaped like B of size r (located at  
points z )  that can fit inside X .  Thus A ( X 0 r B )  is a measure 
of the pattern content of X relative to the pattern rB; then 
(12) measures the differential such pattern content. The 
boundary roughness of X relative to B manifests itself as 

contributions in the lower-size part of the pattern spectrum; 
see Fig. 2. Long capes or bulky protruding parts in X 
that consist of patterns sB show up as isolated impulses 
(or jumps) in the pattern spectrum around positive r = s. 
Finally, big jumps at  negative sizes illustrate the existence 
of prominent intruding gulfs or holes in X .  

We define the pattern spectrum of a compact-support 
graytone image f relative to graytone patterns g with con- 
vex umbra by the nonnegative function 

and PSf(-r ,g) = d A ( f . r g ) / d r ,  r > 0 ,  where A ( f )  is the 
finite area under the graph of f(z, y )  > 0. 

DISCRETE IMAGES: The analog pattern spectrum, 
except for very simple input signals and very simple probing 
patterns B or g, is very difficult to compute analytically. To 
efficiently use arbitrary B or g we extend here the pattern 
spectrum ideas to discrete binary and graytone images by 
using definitions (3) and (4) of discrete size. Let X C  Z2 be 
a finite binary image and B C Z 2  a binary pattern. Since 
X O ( n  + 1 ) B c  X O n B  V n  2 0 ,  A ( X 0 n B )  can only decrease 
as n increases. Further, A ( X 0 n B )  - A [ X O ( n  + 1)B] = 
A ( X 0 n B  \ X O ( n  + 1)Bl. We define the pattern spectrum 
of X as the nonnegative function 

P S x ( n ,  B) = A [ X O n B  \ X O ( n  + 1)B] . (14) 

Similarly, let f(z, y )  2 0 be a finite-support graytone image 
function on Zz. We define the pattern spectrum off  relative 
to a discrete graytone pattern g as the nonnegative function 

PSf(T 9) = A [ f O n 9  - f O ( n  + 1)gl , n 2 0, (15) 

where in (15) A ( f )  = J&)f(z,y), and - denotes point- 
wise function difference. The nonnegativity of (15) follows 
from f o ( n  + l ) g  5 fong Vn 2 0. (The function ordering 
a 5 b means that a(.) 5 b ( z )  Vz.) In both (14) and (15) we 
can extend the pattern spectrum to negative sizes via clos- 
ings; e.g., PSf( -n ,g)  = A[f.ng-f.(n-l)g], n 2 1. Note 
that P S f ( n , g )  = 0 for all n > N = max{k : f e k g  + -CO} 

and for all n < -K, where K is the minimum size k such 
that f.ng = f.kg Vn > k. Fig. 3 shows a 1-D function f 
and its pattern spectrum with respect t o  a binary g whose 
umbra is a semi-infinite rectangle; i.e., the top 1-D segment 
of the rectangle is B = Spt(g). This pattern spectrum of f 
has impulses at  sizes (with respect to B) n = 1, 3, and 5, 
because f contains protruding peaks at  these sizes, whereas 
peaks of size 2 or 4 are not observed. Similarly, f contains 
many intruding valleys a t  size 2 which show up as a large 
impulse in the pattern spectrum at  size n = -2. 

Observe from (9) that S,, = 0 implies that X O n B  = 
X O ( n  + l)B (e PSx(n, B) = 0). For 1 5 k 5 N ,  

X = X O k B  * PSx(n, B) = 0 0 5 n < k . (16) 

Thus X is smooth to a degree k relative to E (i.e., X = 
X o k B )  if and only if its first k pattern spectrum samples 
are zero, or if its first k skeleton components are empty. 
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Likewise, from (10) it follows that s, 3 -XI ==+ PS,(n, g) = 
0; further, for 1 5 k 5 N ,  

f = f O k g  * PSt(n,g)  = 0 0 5 n < k . (17) 

Thus f is smooth with respect to (i.e., does not contain) 
peaks of size k relative to g if and only if its first k pattern 
spectrum samples are zero, or if its first k skeleton com- 
ponents vanish. Likewise for the relationships among the 
valleys of f, its pattern spectrum values a t  negative sizes, 
and the skeleton components of -f. Hence, the functions 
s, behave as multi-scale shapesize components of f .  

Shape-Size Complezity: In the theory [10,11] of random 
stationary sets XC Z2, the size function Xx(z) = max{n : 
z E XonB}, z E X, can be viewed as a random variable. 
Its probability function pk = Prob{X(z) = k} is equal to 
PSx(k, B)/A(X). As explained in [9], 

N 

H(X/B) = - C Pn log Pn (18) 
n= 0 

is the average uncertainty (entropy) of A. We call it the av- 
erage roughness of X relative to B;  it quantifies the shape- 
size complexity of X by measuring its boundary roughness 
averaged over all depths that B reaches. Thus H(X/B) 
is maximum (log(N + 1)) iff X contains maximal patterns 
nB at  equal area portions in all sizes n, and minimum (0) 
iff X is the union of maximal patterns of only one size. 
H(X/B) monotonically decreases as a function of the size 
k in multi-scale openings of X by kB; i.e., for 0 5 k 5 N ,  

(19) 
H(XOkB/B) = logA(X0kB)- 

~ ( x t ) k ~ )  Ck<n5NPSX(ntB) log[PSX(n, B)] . 

All the above ideas can be extended to graytone im- 
ages f .  Thus, the average roughness of f relative to a 
graytone pattern g is H ( f / g )  = -Cf==oqnlogqn, where 
qn = P S f ( n ,  g)/A(f). 

4 Symbolic Image Modeling 
Henceforth we deal only with discrete images. Let K = 
{Bi : 1 5 a' 5 M }  be a finite collection of M binary pat- 
terns (finite 2-D or 1-D subsets of Z2, preferrably convex), 
which all have size one and contain the origin of 2'. In 
gestalt psychology, the law of simplicity (Pragnanz) states 
that every stimulus pattern is  seen in such a way that the 
resulting structure i s  as simple as possible. Attempting to 
quantify this law, we model a finite binary image XC Z2, 
as a minimal union of mazimal patterns from K ;  i.e., 

I 

X = U (niBw;) + Pi 3 (20) 
i=l 

where 1 5 wi 5 M, and (niB,,) + pi is a pattern of size 
ni 2 0, located at  pi, shaped similarly to some B ,  E K. 
By "minimal union" we mean that the total number, I, of 
patterns required to cover X exactly should be minimum 
over K . By "maximal patterns" we mean that they are not 

included (by set inclusion) in any other pattern of the same 
shape and larger size or of different shape; see Fig. 4. 

To model a discrete graytone image function f(z), z E 
z', assume first a finite collection = {gi : 1 5 i 5 M }  
of M discrete graytone patterns (binary or multilevel, 1- 
D or 2-D). Then we model f as a minimal (with respect 
to the number I required) maz-superposition of mazimal 
(with respect to the function ordering 5)  patterns from 5: 

where 2, y, E Z2 and c, E R. Observe that (21) is equivalent 
to modeling U ( f )  in Z2 x R as a minimal union of maximal 
set patterns U ( g ) ,  g E 5; further, shifting V ( g )  by (y,c) E 
Z2 x R is equivalent to shifting the argument of g(z) by y 
and its amplitude by c. 

We consider models (20) and (21) as symbolic image 
representations, because we view each pattern in $ as a 
separate symbol corresponding to a set of numerical val- 
ues. Since we require maximal patterns, this symbolic 
model represents the image beyond (more coarsely than) 
its numerical values. If the sizes n, are all 0, then all the 
scaled patterns reduce to single points or numbers, and we 
reobtain the original numerical representation of the im- 
age. The modeling problem consists of finding the I triples 
(ui,ni,Pi); in (21) Pi = (yi,ci). 

4.1 Binary Images 
We can rewrite (20) as 

i = l  n=O 

where Ni = max{n : XonBi # e}, and H,,, denotes the 
(perhaps empty) set of locations of maximal patterns nBi. 
Note that I = C,CiA(H,,,). Let S,,i denote henceforth 
the n-th skeleton component (given by (8)) of X with re- 
spect to B,. If p E H,+, then (nBi) + p is maximal in x, 
which implies [16] that p E S,j. Hence, for 0 5 n 5 Ni, 
I S i l M ,  

Thus the solution of the modeling problem is very closely re- 
lated to morphological skeletonization. Let N = max{Ni}. 
Then the problem consists of finding the ( N +  1) x M array 
of set-valued entries H,,, under the two conditions of (23) 
and the minization of I. We solve this problem by break- 
ing it down into two parts (A and B) and by exploiting the 
results (9) and (23): 

Problem A: We decide first which type of patterns a t  
which scales (sizes) are present. That is, we find a shape- 
size containment array C ( n ,  i), which is equal to 1 if H,,, # 
0 and 0 if H,,i = 0. This is done by covering X with a 
collage of the sets 

(24) 

for all patterns Bi and by finding which Dn,i are needed for 
a minimal covering of X. (Obviously, PSx(n,  Bi) = 0 ==+ 

~ , , , ~ c  s,,~G x e n B i  . (23) 

t 

D,,, = (XOnB,) \ [XO(n + 1)B,] , 0 5 n 5 Ni, 
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Dn,i = 0 ==+ C ( n , i )  = 0.) 
Problem B: For each pattern Bi and for each size n 

with C(n, i )  = 1, we search the skeleton component S , i  
for a minimal subset H,,i that (together with the maximal 
patterns already established) guarantees the exact recon- 
struction of the smoothed version XOnBi. 

We solve problems A and B as follows. Let x , , ~  denote 
the characteristic junction of the set D , i ;  i.e., x,,i(z) = 1 
if z E D , i  and xn,i(z) = 0 if z @' Dn,i. 

by summing the functions x,,, for all ( n , i ) .  Then initially a 
is equal t o  M times the characteristic function of X. Given 
a certain scanning order among all (n, i) we eliminate (the 
protrusion, and hence the contribution, of) a pattern B ,  
at  size k by subtracting from a the function X k , j ,  provided 
that Dk,, # 0 and the modified a-function is 2 1 at all 
( r , s )  E X .  We repeat the same procedure for all possi- 
ble scanning orders and choose the scanning that yields a 
modified a-function with the minimum area; this is equiv- 
alent to searching for a minimal redundancy in covering X. 
Then we set C ( n , i )  equal to 1 iff Dn,i has not been elimi- 
nated during the optimum scanning, and 0 otherwise. To 
obtain the optimum solution we must examine all possi- 
ble scannings whose total number is T = (CEl N,)! .  This 
makes it computationally formidable since its complexity 
grows as (M . N ) ! ,  where N is proportional to the image 
diameter. Henceforth we adopt a suboptimum solution to 
problem A. First, we find the pattern spectrum of X rela- 
tive to all patterns in K .  We also compute the multi-scale 
average roughness array R ( n , i )  = H(XOnB,/Bi)  given by 
(19); see Fig. 5 for an example. Then in trying to elim- 
inate the function x,,,  from the a-function, we choose a 
single scanning determined as follows. We scan sizes at  as- 
cending order proceeding from n = 0 to n = N, because 
substructures a t  small sizes are more probable to be covered 
by protrusions at  larger sizes. For each size n, we scan the 
pattern indices i in an order that corresponds to decreas- 
ing average roughness R(n, i ) .  Namely, we try to eliminate 
first the pattern nB, if R ( n , j )  = max{R(n,i)}, because 
it is the least likely to contribute to X large protrusions 
at  scale n; then we try the pattern with the next largest 
R ( n , i ) .  Fig. 5 shows the array C(n,i) that resulted from 
applying the above algorithm to the image of Fig. 5a. 

Algorithm B: The solution of problem A yields C(n, i )  
and a modified a-function, call it p. We exploit (23) and 
(9), which impies that to go from X O ( n  + 1)Bi to XOnBi 
we need only the information in S+. Thus, first we skele- 
tonize X with respect to all Bi for which C(n, i) = 1 for a t  
least one n. Second, we adopt a scanning order of C(n,i) 
using R(n,i), as in the solution of problem A. Following 
this scanning, for each (n, i) with C ( n , i )  = 1, we subtract 
from p the characteristic function of D,,, and then add the 
characteristic functions of all (nBi) + p where p spans S+. 
Then, scanning Sn,i in a certain order, we eliminate a point 
p iff subtracting the characteristic function of (nB,) + p 
from p leaves p(r, s) with values 2 1 V(r ,  s) E D,,,. The set 
H , i  consists of the points in Sn,i that were not eliminated 

Algorithm A:  We create a pseudo-graytone function a(r, s) 

t 

during the above procedure. An optimum solution would 
involve trying all [ A ( S , , ) ] !  scannings of Sn,i and choose the 
one that gives the smallest A(H,+). After having used the 
suboptimum algorithm A, we applied algorithm B (with a 
single scanning of each S , i )  to the image X of Fig. 5 and 
found that X can be modeled exactly as a union of five 
maximal patterns: a line at  135" of size 5, a triangle of size 
7, and three squares of size 1, 3, and 5. Their locations 
are shown with in Fig. 5a; note that the locations of the 
135"-line and the size-3 square coincide. 

4.2 Graytone Images 
1-D IMAGES: Let f (z), z E Z, be a finite-support nonneg- 
ative function with discrete amplitude range (e.g., f(z) E 
Z). We can rewrite (21) as 

(25) 

where all the gi E $ are 1-D functions, Ni = max{n : 
f O n g i  $ -CO}, and the functions h,,i(z) contain isolated 
(morphological) impulses. That is, at  each y E Z, h, i (y)  = 
c E Z iff the shifted and scaled pattern [ngi(z - y)] + c is 
maximal in f ;  otherwise, h , ; ( y )  -CO. See Fig. 6 for an 
example. The problem is to find all the hn,i, some of which 
may be empty (be everywhere -CO). 

The key idea in our solution of (25) is that symbolically 
modeling f is equivalent to symbolically modeling its um- 
bra. Namely, we modify the umbra of f as U ( f )  = ((5, z )  : 
0 5 z 5 f(z)}cZz to include only the points above the 
z-axis and we view U ( f )  as a finite discrete binary image. 
Then we solve (25) by following algotithms A and B of sec- 
tion 4.1 after making the following adjustments: For each 
size n and pattern gi ,  let G,,i(z,z) denote the characteris- 
tic function of the set [U(fong,) \ U ( f o ( n  + 1)gi)lC U ( f ) .  
Form the a-function by adding all $J,,~, which take val- 
ues in a y-dimension (see Fig. 6). Form a roughness ar- 
ray R(n,i)  from the pattern spectrum of f relative to all 
9,. Then obtain the shape-size containment array C ( n , i )  
using algorithm A. Next obtain the n-th skeleton compo- 
nents sn,i (given by (10) o f f  with respect to all gi for which 
C ( n ,  i) = 1 for a t  least one n. The p-function of algorithm 
B is formed for each (n, i )  with C(n,  i )  = 1 by adding all 
+ k , j  with C ( k , j )  = 1 and (k,j) # (n,i) ,  as well as adding 
the contributions from all points in s,,,, i.e., the character- 
istic functions of the (modified) umbrae of ngi(z - 20) + CO 

whenever s,,,(z - zo) = eo E Z. Then the algorithm B tries 
to eliminate, if possible, points z o  from the support of sn,i 
and thus yields the functions h,,,. 

2-D IMAGES: For a 2-D image function f(z,y) with 
discrete suppport and range, the solution of the model- 
ing problem (25) is a very straightforward extension of the 
above solution for 1-D image functions. Namely, the gray- 
tone patterns g, can be 2-D or 1-D, and the modified um- 
brae of f and ngi are finite subsets of the 3-D space 2'. 
In addition, the characteristic functions of the differences 
among umbrae of successive openings of f and of the um- 
brae of ngi  will be functions with arguments (z, y, z )  and 
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values in a 4 t h  dimension. The rest of the procedure re- 
mains the same. 

5 Discussion 

Openings and closings are useful nonlinear filters that can 
complement linear filters in multi-scale image analysis. Their 
smoothing is equivalent to eliminating skeleton components 
and reconstructing the image from its pruned skeleton. Fur- 
ther they provide the pattern spectrum, whose locations 
of large jumps indicate the existence of protruding or in- 
truding substructures in the image at  those scales. A so- 
lution to  the symbolic modeling problem was obtained by 
using the pattern spectrum to guide us in scanning the 
shape-size domain, and by restricting (without losing any 
optimality) the searching for the pattern locations only in- 
side the sparce supports of morphological skeletons. We 
have experimentally observed that this (generally subopti- 
mum) solution provides the optimum answer (both math- 
ematically and in good agreement with human intuition) 
for simple small synthetic images and small pattern collec- 
tions. Our solution provides an ezact image representa- 
tion. To cope with noise, certain robustness is inherently 
built in our formulation that searches for minimal subsets 
of skeletons. In addition, the image can be pre-smoothed 
via openings/closings. If the image contains 1-D structures 
that risk being eliminated by smoothing with a 2-D pat- 
tern, a max-superposition of openings by 1-D patterns a t  
various orientations would both provide smoothing and pre- 
serve the 1-D structures. To use rotated patterns in (22), 
we must equip the pattern collection with some rotated ver- 
sions of the same pattern. However, rotation of patterns is 
not needed for modeling 1-D multilevel functions. 
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Figure 2. Pattern spectra of binary images relative to a disk. 
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Figure 3. Pattern spectrum of a 1-D multilevel signal. 

Figure 5. (a) A discrete binary image X. (0 and 0 are 
points of X ;  points with 0 show the locations-origins of 
maximal patterns.) (b) K = {B,  : 1 5 i 5 4). 
(c) PSx(n,B,) .  (d) R(n, i ) .  (e) C(n,i). d .  

C .  
. .  . , . .  . 

b .  

/ 

Figure 6. A function f(z) modeled minimallv as a max- 
~ . I  

superposition of 5 maximal patterns: r g 2 ( x - z 1 ) + c ,  sg2(z- 

ZQ) + b, &(z - ZS), v g l ( z  - z2) + d, wg3(z - zd) + b, where 
r = 21, s = v = 5 3  - 5 2 ,  t = 56 - z g ,  and w = x, - z3 - s. 
(Solid line shows graph of f; dotted line shows occluded 
graphs of maximal patterns.) 

Figure 4. Binary image X modeled as the union of I = 4 
maximal patterns located at  p i .  (Solid line shows boundary 
of X ;  dotted line shows occluded boundaries of maximal 
pat terns.) 


