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ABSTRACT

This paper reports on a preliminary study of
applying single—channel (scalar) and multichannel
(vector) 2—D linear prediction to color image
modeling and coding. Also, the novel idea of a
multi—input single—output 2—D ADPCM coder is
introduced. The results of this study indicate
that texture information in multispectral images
can be represented by linear prediction coeffi-
cients or matrices, whereas the prediction error
conveys edge—information. Moreover, by using a
single—channel edge—information we obtained, from
original color images of 24 bits/pixel, recon-
structed images of good quality at information
rates of 1 bit/pixel or less.

INTRODUCTION

Two—dimensional linear prediction was suc-
cessfully applied to coding monochrome images at
rates below 1 bit/pixel [1,21 and to clustering
homogeneous image textures by using 2—D LPC dis-
tances [3]. Motivated by the above success of
2—B linear prediction, we tried to extend its use
to multispectral images either by autoregressive-
ly modeling each channel separately or by using a
vector 2—0 linear predictor which exploits cross—
correlation between channels. These two
approaches ressemble the notions of component and
composite encoding methods for color video sig-
nals 141. A major contribution of this paper is
the introduction of a multi—input single—output
ADPM coder whose output will be a single—channel
edge—information signal; this reflects the idea
that for most natural color images the edges
occur at approximately the same location in every
channel. Although our results refer only to
3—channel color images (red, green, blue), our
theoretical formulation addresses the general
case of an N—channel multispectral image.

MULTICHANNEL 2—D LINEAR PREDICTION

Let x(m,n) = [xl(m,n),...,xN(m,n)]T repre-
sent an N—channel 2—B image vector signal, where

denotes the transpose of a vector and
x1(m,n) represents a single—channel scalar 2—D
sequence of image intensity in a certain spectral

band. By exploiting the autocorrelation of every
channel and the cross—correlation between
channels, we formulate the following 2—B vector
autoregressive model for x(m,n):

x(m,n) = A(k,.Q)x(m—k,n—Z) + b + e(m,n) (1)k
where we predict the vector x(m,n) from its
neighbor vector values weighted by "prediction
matrices" A(k,9.) of order NN. In (1), (k,t)
range over all integer pairs in a set II, called
the region of support of the prediction mask, and
this set determines whether the mask is causal,
quarter—plane, etc. The causality of the pre-
diction mask is necessary for the recursive
computability of (1). The bias vector b =

[bl,...,bN]T accounts for the fact that the in-

tensity image samples are explicitly biased by a
dc—level vector d = [dl,...,dN]T since they are
always nonnegative. The 2—B vector prediction
error signal e(m,n) is the output of a NxN matrix
prediction error filter

—k —&
F(z1,z2) I —

A(k,Z)z1 z2ki
(2)

when the input is x(m,n) and where I denotes the
NXN identity matrix. The relation between b and
d is

b = [i —
A(k,&) ]d (3)

Consider the NxN average prediction error matrix

E = e(m,n)eT(m,n)
mn

(4)

In (4), (m,n) range over all integer pairs corre-
sponding to pixel locations inside some region of
support of x(m,n) which we call the analysis
frame. The i—th diagonal entry of the matrix E
represents the mean—squared prediction error in
the i—th channel. The criterion to find the
optimal parameters {A(k,9.), b} of the model is to
minimize the trace of E. The inclusion of b in
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the unknown parameters guarantees that the pre-
diction error e(m,n) will be a 2—D zero—mean
vector sequence. The normal equations are:

(i,j :k,2.)AT(k,2.)+S(i,j) bT=(i,j :0,0)
ki

+ N .bT = sT(o,o)S

(5a)

(5b)

where we observe the matrix correlation and vec-
tor shift lags respectively:

4'(k,i:i,j) x(m—k,n—L)xT(m—i,n—j) (6a)

the following way: From (2) and (3) we infer
that b = (1,1)d. Therefore, if the image signal
has a nonzero dc—level and we arbitrarily
require b=O in (5), then we force the determinant
of F(1,1) to become zero, which forces the model
to be marginally unstable since det[F(1,1)]0
corresponds to a pole on the unit—surface.
Moreover, as we proved in [2), if the prediction
mask has a quarter—plane region of support, then
a necessary condition for stability is

det[F(1,1)] > 0 (8)

Finally, if we use the autocorrelation
method with a 2—D Separable prediction mask, then
the stability of the inverse prediction error
filter is guaranteed in both the scalar and the
vector cases.

s(k,2.) = x(m—k,n—i)
mn

(6b)

In (5), (k,2.) and (i,j) range over the set II. In

(6), (m,n) range over the analysis frame, and N5
in (5b) denotes the number of samples inside the
analysis frame.

An alternative way of modeling x(m,n) would
be to autoregressively model each channel
separately:

x. (m,n) = a. (k,&)x. (m—k,n—2.)+b.+e. (m,n)
1 k 2.1 1 11

(7)

for i=1,2,.. .,N, where the Optimal scalar linear
prediction coefficients a(k,i) and bias coeffi-
cient b are obtained by minimizing the
mean—squared value of the scalar prediction error
signal e(m,n) over the analysis frame, as ex-
plained in [1,2]. Obviously the scalar models in
(7) are a subcase of the vector model in (1) with

the prediction matrices A(k,P.) being diagonal.

One approach to compute the correlation and
shift lags in (6) is to assume the vector image
signal to be zero outside the analysis frame,
which is similar to the autocorrelation method of

1—D linear prediction. Alternatively, samples on
the borders of the frame could be supplied as
needed in the computation of (6); this latter
approach is called the covariance method. The
covariance method gives better estimates of the
predictor parameters and of the bias, and a
smaller mean—squared prediction error than the
autocorrelation method. However, neither method
can guarantee stability of either the resulting
scalar or matrix autoregressive models.

The stability of the matrix filter
1/F(z1,z2) is necessary for the stable re-
construction of x(m,n) from the prediction
matrices, the bias, and the prediction error sig-
nal e(m,n). This stability is equivalent to the
scalar 2—D polynomial det[F(z1,z2)] being minimum
phase, where 'det[]" denotes determinant of a
matrix. With the covariance method, the estima-
tion of the bias interacts with the stability in
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MULTICUANNEL ADPCM CODiNG

We used the above theoretical formulation of
2—0 linear prediction for the design of the pre-
dictors in the feedback loops of an ADPCM image

coding scheme of the feed—forward type.
Initially, each channel of the multichannel image
was coded separately using a single—input single—
output ADPCM, as described in [1,2]., at an
average information rate of 1 bit/pixel or
less. This resulted in a bit rate of about N
bits/pixel for an N—channel color image.
However, since our interest was in much lower bit
rates and because we wanted to exploit correla-
tion between channels, we used the multi—input
single—output ADPCM scheme shown in Fig. 1.

The philosophy of each feedback loop in Fig.
1 is that for the i—th channel the predictor
forms an estimate from past samples of the recon-
structed image signal xi(m,n) . This estimate is

subtracted from the incoming image signal x(m,n)
to form the difference signal d2.(m,n) which is
quantized and encoded into the 2—D signal c(m,n)
for transmission. At the receiver, the quantized
difference signal d(m,n) excites the i—th in-
verse prediction error filter to produce the
reconstructed image signal x(m,n) for the i—th
channel.

The design of the multi—input single—output
quantizer Q in Fig. 1 is governed by the intui-
tion that for most natural color images the edges
occur at approximately the same location in every
channel. The edge—information in the i—th
channel is conveyed mainly by the prediction
error signal e1(m,n). However, assuming small
quantization errors, the difference signal

d(mn) approximates e1(m,n). Therefore an en-
coded quantized difference signal would contain
mainly information about the edge—location. This
is depicted in Fig. 2 where the binary images
(a), (b), (c) show the encoded quantized
(2—levels/pixel) difference signals of the red,
green, and blue channel separately for a head and
shoulders image with well defined edges. The

binary image of Fig. 2(d), however, shows the
2—levels/pixel common encoded quantized dif-
ference signal which is the output of the



multi—input single—output quantizer of Fig. 1.
By comparing the images of Fig. 2, we realize
that by using a single—channel for information
about edge—location we do not loose many edges.
The encoded signal c(m,n) was formed by first
finding a single—channel difference signal:

N
d(ni,n) = w.•d.(m,n) (9)

i=1

where the wi's are weighting coefficients, and
then quantizing and encoding d(m,n) as follows:

1 , d(m,n) > 0

c(in,n) = 0 , — 0 < d(m,n) < 0 (10)

—1 , d(m,n) — 0

The encoded signal c(m,n) represents the sequence
of codewords. The quantized difference signals
are determined as follows:

d.(m,n) c(m,n) •E. ,i=1,2,. ..,N (11)

The threshhold 0 in (10) and the step sizes L. in
(11) are adapted over each MXM analysis frame of
the image according to the rule:

0 = K•o , . = D•o (12)e 1 e.
1

where o . is the rms value of the i—th prediction

error gnal e(m,n) in the analysis frame,
and 0e is the rms value of a single—channel pre-
diction error signal formed by a linear
combination of all the e(m,n) using the same
weighting coefficients as in (9). The constants
K and B are determined empirically [1,2]. The
3—level quantization logic of (10) allows us to
set 0=0 and thus quantize the difference signal
with 1—bit fixed length codewords. Alterna-
tively, if 0*0, by adjusting K we can produce at
the output of the quantizer a large percentage of
zero levels which will reduce significantly the
entropy of the quantized difference signal and
enable us to use Huffman codewords of variable
length in order to achieve an average bit rate of
much less than 1 bit/pixel.

In addition to the encoded quantized dif-
ference signal, we must transmit to the receiver
"side—information" about the predictor para-
meters, the bias and the step size. The

predictors i in Fig. 1 are designed either as
scaler predictors (with prediction coefficients
operating on the i—th channel) or as vector pre-
diction (with predictor matrices operating on all
the channels simultaneously). Unfortunately, the
issue of stability and the limited available
mathematical tools for 2—D polynomials limit our
choices among various approaches. For scaler
predictors the autocorrelation method with a 2—D
separable prediction mask guarantees stability
and it allows us to quantize the prediction coef-
ficients in the domain of the log—area—ratios,
exactly as done with LPC coding of speech. Al-

ternatively, we can use the "stabilized"
covariance method with a non—separable 2—D mask,

as explained in [1,2], and use a logarithmic
quantizer to quantize the coefficients inside a
fixed range. For vector predictors, we can use
the autocorrelation method with a 2—B separable
mask for guaranteed stability. The quantization
of the entries of the resulting prediction
matrices is still under investigation. The com-
ponents of the bias vector d and the step
sizes d. are quantized by using log—quantizers.

EXPERIMENTAL RESULTS

We successfully applied the multichannel
adaptive prediction ADPCM coding to color aerial
photographs and head and shoulders images. These
color images had only 3 channels (red, green and
blue) with a total resolution of 24 bits/pixel.
The analysis frames consisted of 16x16 or 32x32
pixels. The prediction masks had a quarter—plane
region of support with 2x2 or 3x3 samples in
extent. By coding each channel separately at 1
bit/pixel or less, color reconstructed images of
high quality resulted at a rate of 3 bits/pixel
or less. By using a multi—input single—output
ADPM with adaptive scalar prediction and 3—level
quantization color reconstructed images of good
quality resulted at a total rate of 1 bit/pixel
or less (down to 0.8 bit/pixel). These rates
correspond to compression factors of about 24:1
or more. The mixing of the different channels in
Eq. (9) was done by using as weighting coef-
ficients 0.3, 0.6 and 0.1 for the red, green and
blue channel respectively, since the green color
is the most important and the blue is the least
important for edge—content [4].

By using inultichannel ADPCM with adaptive
matrix (instead of scalar) predictors we obtained
coded images whose quality was similar to the
quality of the images coded by using scalar pre-
dictors. Since matrix linear prediction gives a
smaller prediction error residual than scaler
linear prediction, we are continuing to investi-

gate ways of achieving higher image quality using
matrix predictors.
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(a)

(c)

Figure 1 — Multi-input single-output ADPCM (a) Coder, (b) Decoder

Figure 2 — Binary encoded quantized difference signals, (a) Red channel, (b) Green, (c) Blue, (d) Combined
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