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ABSTRACT: Itisshown that minimizing the ¢; match-
ing error is equivalent to maximizing a nonlinear signal cor-
relation (a sum of minima), which is related to morpholog-
ical filtering. This approach is optimum in many formula-
tions of the image matching and object detection problem.
Further, a closely related approach is outlined for object
detection using rank order filters.

1 Introduction

Image matching is a fundamental issue that arises in many
problems of computer vision including stereomapping, mo-
tion detection, template matching, and object detection. A
coarse classification of image matching problems involves
two cases: 1) The two images (or image parts) to be matched
have similar sizes; a characteristic example is the corre-
spondence problem in binocular stereopsis, photogramme-
try, and motion detection. 2) The two images have different
sizes, where the small image is a pattern (feature, object) to
be matched against or detected in the larger image; exam-
ples include template matching and object detection in the
presence of noise. We refer to the first class of problems as
image matching whereas we view the second class as object
detection. So far the vast majority of efforts to solve these
problems has been based on minimizing the mean squared
error, which leads to maximizing an image correlation [1,2].
The popularity of this approach is due to the mathemat-
ical tractability of the squared error metric and the easy
implementations of the correlators. It was motivated by
the success of the equivalent theory of matched filtering in
communications. Some researchers, e.g., [3], have used the
£; matching metric. Despite the attractive mathematical
tractability of the £; norm, the £ norm has some impor-
tant practical advantages.

In this paper we link the ¢; matching metric with a non-
linear image correlation, which consists of a sum of minima.
We formally define this min-correlation and relate it to mor-
phological filtering [4]-[7] as well as to linear correlation and
Fourier analysis. Then we develop some approaches for im-
age matching and object detection using maximization of
this min-correlation, morphological and rank order opera-
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tions.

2 Image Matching via the /; Norm

Let f() and g¢() be the two real-valued image signals
to be matched. Both f and g are defined on the discrete
Cartesian grid of integer coordinate pairs 7 = (ny,ng) € yAS
The general restrictions on f and g are

Al.  Summability: ||f|1,]lglli < oo, where ||R]|; =
Y acze |h(7)] is the £ norm of the 2-D sequence h.

A2. Nonnegativity: f(7),g(%) >0 Vi € Z*.

The signals f and g represent either two images of sim-
ilar size to be matched or an image f and a smaller tem-
plate/object ¢ whose presence in f is to be detected. In
general, we expect that f(%) must be shifted by a pixel
vector k = (ky, k2) to bring it to registration with g or to
detect the presence of g in f at a certain image location.
(We also assume that rotational or scaling distortions of f
or g either do not occur or have already been undone.) As
a matching measure then between g and the shifted f we
consider the sum of absolute differences

E(k)= Y |f(7t+ k) — o(7)] (1)

Rew

where W is a subset of Z? related to the domains of f
and ¢g. An obvious choice for W is to be equal to the
whole plane Z? in which case E becomes the ¢ norm of
the difference signal between g and f (shifted). To mini-
mize the £; error norm ||f — g||; rather than the popular
£y error norm ||f — g||2, where |[|f||z = \/Zreze F3(7), has
the following three advantages: First, the £; norm is easier
to compute than the £;, because the former involves only
additions and sign changes whereas the latter involves ad-
ditions and multiplications. Second, data approximation
based on the £; norm is more robust in the presence of out-
liers or non-Gaussian noise distributions. Third, since the
£, is a larger norm than ¢;, minimizing the ¢;-based error
If — gl > 1| — g]|z may result in a better match between
f and ¢ than minimizing ||J — g||;-
Since |a — b| = a + b — 2min(a, b) for any reals e, b,

Ek)=Y fA+E)+ 3 o(@)—2 3 min[f (7 + k), ¢(7))]

new new Rew
(2)

Obviously, a “good” matching between f and g will mani-

-,

fest itself via a minimum matching error E(k). There are



many ways to make the sum ¥ f(% + k) + ¢(7i) not af-
fect the minimization of (k). In such cases minimizing
E(k) is equivalent to maximizing the nonlinear correlation
>, min|f (7 + k), g(%)], which we call morphological corre-
lation for reasons explained in Section 3.

Case 1: Let f and g be images of similar size which is
much larger than the possible shifts k. Since f and g are
zero outside their domains, the matching window W can be
set equal to Z2. In this case the factor Y pepw f(7+k) +g(7)
equals the sum of the areas under f and g¢; hence it is
constant and does not affect the minimization of E‘(E) with
respect to k. Then

(3)

min E(k) <= max $_ min[f(7+ k),¢(7)] .
k E o onew
Thus the shift of f with respect to g that minimizes their
£; matching error norm is the shift that maximizes their
global morphological correlation.

Case 2: Assume (e.g., as in solving correspondence prob-
lems in stereo or motion) that f and ¢ are two small im-
age segments whose size is similar but comparable to the
shifts k. Now we set W equal to the finite domain of g(7);
hence the factor 3°; g(#) remains constant. (a) If the factor
Y3 F (7 + k) does not vary much, we can consider the min-
imization of E(K) equivalent to maximizing the local (i.e.,
over W) morphological correlation of the segments g(7) and
f(7+ E) {b) A more robust approach is to minimize a
normalized error Enopm(k) = E(E)/[Eﬁew F(7+k) + g(R)].
Then from (2)

it By (F) <= max 220 TS T2 L o(T)]
k

ko Yaew f(i+ k) + g(7)

Thus to minimize the normalized mean absolute error (lo-
cally over W) is equivalent to maximize the morphological
correlation between f and ¢g normalized by the sum of the
areas under the two image segments over the moving match-
ing window W. Note that this normalized morphological
correlation has always values in the interval {0,0.5]. (¢) Al-
ternatively, by subtracting from f and g their local averages
over W and thus creating new image segments f' and ¢',
the factor X aew f/'(7 + E) + ¢'(7) becomes zero. Then (3)
applies again if we replace f, g, E with f',¢', E' = ||f'-¢'||1.

We conducted some preliminary experiments to com-
pute disparities from stereoscopic image pairs by using the
approaches (a),(b),(c) and to compare the latter with the
corresponding approaches that use linear correlation. These
experiments indicate that in approach (a) morphological
correlation usually gives sharper match peaks than the lin-
ear. In (b},(c) the two correlations perform similarly, but
the morphological is always computationally faster because
it does not use multiplications.

3 Morphological Correlation

We define the morphological cross-correlation of f(7) and
g(7) as the 2-D sequence
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Myy(k) = 3 min[f(7 + k), g(7)]
ncZ2

(5)

Replacing g with f in (5) gives us the morphological auto-
correlation, M;;(k), of f. Note that My, (k) < My;(0) =
334 f(7). We use the term “morphological correlation”, be-
cause My (E) is equal to the area under the morphologigal
erosion [4] of f by the 2-point structuring element {0,k}.
Recently, areas of erosions have been used in texture de-
scription [8]. .

The classical linear cross-correlation of f and gis Ly, (k)
Tacze f(R+ E) g(7). To relate the morphological with the
linear correlation and Fourier analysis we decompose the
images f and g into their threshold binary tmages

{

where the amplitude gray level a = 0,1,2,... spans all the
bounded range of f. Then from all its threshold binary
images fs, @ > 1, we can exactly reconstruct f since

F(@) = fa(R), Vi

a2l

il

1, f(A)>a
0, f(A)<a

fa(7) (6)

Y
Now for any m, 7

min(f (), ¢(7)] = D_ min{fa(17), 9a(7)] = 3_ fa()ga(70)

a>1 a>1
(8)

The second equality results because the minimum of two
binary numbers is equal to their product; hence, the mor-
phological and linear correlation of any two binary signals
concide. (The relation between linear autocorrelation of bi-
nary images and erosion was used in [4] for structural image

analysis via geometric probabilities.) Thus from (5) and (8)
we obtain

Myy(k) =3 Ly () = 5 3 ful @i+ B)ga(R) .

a1 e>1 AeZ2

(9)

Let now & = (wy, ws) be a frequency vector and <%, denote

a Fourier transform pair. Then, given the pairs f(#) FEAN
F(@), (1) <2 G(@), [u() T Fol@), 0a() o Ga(@)

—,

and Ly, (k) < F(&)G(—), the result (9) leads to

b

7 — —
Myy(k) < 3 Fa(®)Go(~a) . (10)
a>1
Due to the Hermitian symmetry of F,(&), we get
Mys(k) T 37 My (R)e %% = 3 [Fu(@)? (11)
k2’ azl

Hence, the morphological correlation between f and
g is equal to the sum (over all gray levels a) of the lin-
ear (or morphological) correlations between the threshold
binary images f, and g,. The sum of products of the
Fourier transforms of f, and g, is the Fourier transform
of the morphological correlation between f and g. Thus,



the Fourier transform of the morphological autocorrelation
of f, is equal to the sum of the power spectra of the thresh-
olded versions of f.

Similarly, the mean absolute difference between f and g
equals the sum (over all gray levels a) of the mean squared
(or absolute) differences between the threshold binary im-
ages f, and g,:

f—glh= Zl 1fa — gally = D2(I1fa — gall2)® -

a>1

(12)

The proof of (12) proceeds as follows:

E(k) = g:IZfa(ﬁ+%)—Zga(ﬁ)l (13)
cW a2l a>l
= ; ;Ifa(ﬁ'*—’?)-ya(ﬁ)l (14)
= 33 Ifalfi+ k) — ga(i)] . (15)
a>1 AcW

Summation and absolute value can be interchanged in (13),
(14) because all the numbers f, — g, are of the same sign
[9]. Further, since z = |f, (7 + Iz) - ga(IZ)| € {0,1}, z = 2
and hence the proof of (12) is complete.

4 Template Matching

Here g has a domain G much smaller than f and is viewed
as a template (e.g., an image feature) whose presence is
to be detected at various locations & in the larger image
f. A flexible and robust approach is to set the matching
window W equal to a finite set that contains G (see Fig. 1
for an example). This corresponds to requiring not only
that ¢ matches f over G but also that the surroundings of
g match the surroundings of f over the window W \ G =
{7 e W : 7 ¢ G}. This causes no loss of generality since we
can always set W = G. Next we present various approaches
to solve this template matching problem. Some of the ideas
discussed in the section on image matching apply here too.

Dual Template Approach

Since for a fixed template ¢ 2w ¢(%) is a constant fac-
tor equal to the area under g, to minimize E(k) of (2) is
equivalent to minimize

Figure 1. G is the domain of a template g. W is a window set
containing G. W \ G is the local background of G.
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E,(k) = Y f(f+k)~2 Y min[f(7+ k), g(7)].

new REW

(16)

Now threshold f and g, consider their threshold binary sig-
nals, and define a dual template g* implicitly via its thresh-
old binary versions

0:(7) =1—gu(), e W; gi(@) =0,A¢gW, (17)

for all a > 1; see Figs. 2a,b. Then from (8) we get

E,(k) = SaZalfo( + F) — 2£a(ii + F)ga(R)]

= EﬁEa[fa(ﬁ + )E)[g(,(ﬁ) + g:(ﬁ)} - 2fa(ﬁ + k)ga(ﬁ)]
=2a Ea[_]fa(ﬁ+ k)g:(ﬁ) ~ fu(R + k)ga(ﬁ)]

= —Mj, (k) + Zaew h(f)

where h(7) = ¥ u; fa(fi+k)gi(7). Again minimizing E,(k)
is equivalent to maximizing the difference My, (k)—X 5 h(7),
but the signal A(#) cannot in general be expressed in terms
of f and g except for the special case below:

Two-level template: Let g(7) = T > 1 for i € G and
0 elsewhere. Then all the threshold binary versions of g
become identical, and likewise for its dual template; see
Figs.2¢,d. This leads to the dual template having a simple
expression in terms of g, i.e., g*(7) = T—g(7) for & € W\ G
and O elsewhere. Then the signal h takes the simple form
h(7) = min[f(% + k), g*(%)]. From all the above we get

(18)

Hence, minimizing E,(E]\ is equivalent to maximizing the
difference between the morphological correlations of f with
the original template from that with the dual template g*.

Binary Template/Binary Image: Assume now that ¢ is
binary, i.e., two-level as in (18) but with T' = 1; further f

-

- Ea(]z) = Mfa(];) = My (k)

(b)

a L?“ o*X /\\?&
e o
o oL
T e-e
__r\
% § %
! — " n
(¢) (d)

Figure 2. (a) A 1-D multilevel template ¢ and its binary
threshold versions g4. (b) The dual binary threshold versions
95 (c)-(d) Same as in {a)-(b) but for a two-level template g.



is binary. Then, (18) becomes

~ By (k) = Y f(R+k)g(R) - g*(n)] .

Aew

(19)

As is well-known [2], the binary g* can be viewed as the
“negative” template of g, and the minimization of EQ(E) is
equivalent to maximizing the linear correlation between f
and the template g— g*; the latter is equal to 1 over G, to -1
over W\ G, and to 0 elsewhere. Thus for binary templates
to be matched against binary images minimizing an ¢; er-
ror (and hence maximizing a morphological correlation) is
identical to minimizing an £; error (and hence maximizing
a linear correlation).

Hit-or-Miss Transforms

Assume a binary image f and a binary template g. Let W
be a finite window set containing the domain G of g and
let g*(®) = 1 — g(7) be the dual template of g with domain
G* = W\ G. The locations of exact occurrences of g inside
f (i.e., pixels i at which f matches exactly g and ¢g* over G
and G*, respectively, shifted at #) are the 1-valued pixels
of the binary image

[/ ®(9,97)](7) = MIN[min f(7i+7) , min(1-f(fi+7))]
MEG MEG*

(20)
This is called a hit-or-miss transform and was introduced in
[4] for general feature detection. It is directly related to the
linear correlation in (19) if the latter is followed by some
thresholding. The hit-or-miss transform is a very general
Boolean matched filter. Some special cases were used in [5]
for object detection.

Noise is unavoidable in images. An exact Boolean matched

filter as in (20) has a poor performance in the presence of
noise, or occlusion, or inexact knowledge of the features to
detect. To compensate for uncertainties, it was suggested
in [5] to use parallel combination of matched filters (20)
each by a slightly different distorted version of the correct
template. However, such an approach would not be able
to accomodate all possible distortions and still maintain a
reasonably small number of matching templates. Hence we
propose here an alternative approach which allows both for
partial and exact occurrence of the templates g, g*. Thus,
we replace the binary value [mingeq f(7+mt)] € {0,1} with
the real value a(7) = [Caec f(7 + M)]/A(g), where A{g)
is the area (number of pixels) of the template g. Hence, a
is the area portion of f (over G shifted at %) that matches
g. Likewise, we replace the second local min in (20) with
B(7) = 1 — [Chee f(7+ m)/A(g*)]. This leads to the
modified hit-or-miss transform

[F ®, (9,97)](7) = ¥a(R), B(7)] ,

where % is a real-valued function such that ¢(a, 8) € [0,1].

(21)

A final decision would require comparing 3 with some thresh-

old. If ¥(,) = min(,), (20) becomes a special case of (21);
another choice for ¥ could be a linear average. Both ra-
tios a and 3 take values in the interval [0,1] and represent
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a “confidence score” (e.g., a probability) that the specific
template-object occurs in f at various locations. Hence (21)
can handle noise and other uncertainties.

5 Object Detection

Next we approach the problem of image object detection
in the presence of noise from the viewpoint of statistical
hypothesis testing and rank order filtering. Some of the
previous ideas in template matching apply here too.

Statistical Approach

Assume that the observed binary image f(#) has been gen-
erated under one of the following two probabilistic hypothe-
ses:

Hy: f(7) = e(R), new.
Hy: f(7) = |g{R— k) — e(R)|, neW.

Hypothesis Hy (Ho) stands for “object present” (“object not
present”) at pixel location k. The “object” g(7) is a deter-
ministic binary template. e() is a stationary binary noise
random field which is a 2-D sequence of independent iden-
tically distributed (i.i.d.) random variables taking value 1
with probability p < 0.5 and 0 with probability 1 — p. W
is a finite set of pixels equal to the domain of ¢ shifted to
location k at which the decision is taken. The absolute-
difference superposition between g and e under H; forces f
to always have values 0,1. Intuitively, such a signal/noise
superposition means that the noise e toggles the value of ¢
from 1 to 0 and from O to 1 with probability p at each pixel.
This noise model can be viewed either as the common bi-
nary symmetric channel noise in signal transmission or as
a binary version of the salt—and:pepper noise. To decide

whether the object g occurs at k& we use a Bayes decision
rule that minimizes the total probability of error and hence

leads to the likelthood ratio test

Pr(f/Hy) >H' Pr(Ho) _
Pr(f/H,)

PT(HI)

o
where Pr(f/H;) are the likelihoods of H; with respect to
the observed image f, and Pr(H;) are the a priori proba-
bilities. Due to the i.i.d. assumption about e,
Pr(f/Ho) = Maew p/ (1 — p)*~/7).
Under H; and since f, g, € are binary, e(7) = |f(r_i)—g(ﬁ—lz)1
for 7 € W and hence
Pr(f/Hy) = ncw pFF-o5-Bl(1 _ p)1-17R) ol
Substituting these into (22) and taking logarithms of both
sides yields

H,
> 17 = 3 1509 ~ gl - Bl 2
Aew

AcW

(22)

H
where no = logn/log(l — p/p). Expandingothe absolute
difference and cancelling common terms gives H

)
Myy(F) = Lyy(R) = 3 minlf(), (1~ F)] 2 0 (29)
A Ho



where 8 = [no + L5 9(%)]/2. Thus, the selected statistical
criterion and noise model lead to compute the morpholog-
ical (or equivalently linear) binary correlation between a
noisy image and a known image object and compare it to
a threshold for deciding whether the object is present.

Rank Order Filtering

From the previous analysis, to detect in a binary image f
the presence of a binary object ¢ at k we compare the binary
correlation between f and ¢ to a threshold 8. Theoretically
this is equivalent to performing a r*! rank order filter on f
defined by

[RO,(f; Q)(k) = r* largest of f(7), (R —k) € G, (24)

where G is the domain of g containing |G| pixels and 1 <
r < |G|. The filter (24) can be applied to graytone images
too, where for rank r = 1 (r = |G|) we obtain the local
max (min) filter. For (23) and (24) to be equivalent we
must select r proportional to §. Thus the rank r reflects
the area portion of (or a probabilistic confidence score for)
G existing at pixel k.

This link between binary correlation followed by thresh-
olding and binary rank order operations aids us in ap-
proaching the following problem: Detect in a graytone im-
age f corrupted by noise the presence of a graytone im-
age object g of known domain G and unknown but fairly
uniform gray level. Assuming impulse noise models and
statistical criteria as before leads to comparing the mor-
phological correlation of f and g to some threshold. Since,
however, the exact amplitude of ¢ is not accurately known,
the previous approach is not practical to apply. Instead
we apply the rank order operations. Namely, (12) implies
that {|f — g{|1 is the sum of ||f, ~ g4||1 for all gray levels a.
Mininizing ||fs — g.|]1 2t all a leads to comparing the corre-
lation of f, and g, to 8, which can be approached through
the binary rank order filter RO,(f,; G). Further,

[RO(f; G)](k) = D[RO (fa; G)](K).

a2l

(25)

Thus noise affects all levels f,,g,. At each level we apply
statistical decision (23). A decision for ‘object present’ is
equivalent to the binary image RO, (f,; G) having value one
at pixel k. Applying the decision on all levels, due to (12)
and (9), is equivalent to summing the outputs of the binary
rank order filters from all levels; this, in turn, is equivalent
to performing a gray rank order filter on f because of (25).
The larger the value of RO,(f; G) at k, relative to the levels
of the other neighbor pixels in G, the greater the probability
of the object’s presence there.

Further, with rank order filters not only can we detect
the location of such a g, but we can also ‘redraw’ (esti-
mate) g. Specifically, the morphological opening [4,6,7]
fOG = {fOG)®G eliminates from [ all parts inside which
no shifted (in argument and/or in level) version of G can
fit. It consists of an erosion © (detects the locations of G)
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and a dilation @ (redraws G). However, the erosion is a lo-
cal min, i.e., a rank order filter with r = |G|. This imposes
a very strict requirement on the detection algorithm since
it searches for exact shapes like G. Instead we propose a
rank opening consisting of a r** rank order filter followed
by a dilation (a r = 1 rank order filter):

[RO,(f;G)]0G ,

where by varying r (conirolled by 8 in (23)) we can acco-
modate uncertainties, noise, or occlusion.
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