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ABSTRACT 

Nonlinear systems based on chaos theory can model various as· 
pects of the nonlinear dynamic phenomena occuring during speech 
production. In this paper, we explore modem methods and algo
rithms from chaotic systems theory for modeling speech signals in 
a multidimensional phase space and for extracting nonlinear acous
tic features. Further, we integrate these chaotic·type features with 
the standard linear ones (based on cepstrum) to develop a gener· 
alized hybrid set of short·time acoustic features for speech signals 
and demonstrate its efficacy by showing significant improvements 
in HMM-based word recognition. 

1. INTRODUCTION 

For several decades the traditional approach to speech modeling 
has been the linear (source-filter) model where the true nonlinear 
physics of speech production are approximated via the standard 
assumptions of linear acoustics and lD plane wave propagation of 
the sound in the vocal tract. This approximation leads to the wen· 
known Jinearprediction model for the vocal tract where the speech 
formant resonances arc: identified with the poJes of the vocal tract 
transfer function. The linear model has been applied to speech cod· 
ing, synthesis and recognition with limited success [12, 13]; to build 
successful applications deviations from the linear model arc: often 
modeled as second·order effects or error terms. There is indeed 
strong theoretical and experimental evidence [IS, 5, 19, 17] for the 
existence of important nonlinear aerodynamic phenomena during 
the speech production that cannot be accounted for by the linear 
model. The investigation of speech nonlinearities can proceed in 
at least two directions: (i) numerical simulations of the nonlinear 
differential (Navier-Stokes) equations governing the 3D dynamics 
of the speech airflow in the vocal tract, and (ii) development of 
nonlinear signal processing systems suitable to detect such phe
nomena and extract related information. In our research we focus 
on the second approach, which is computationally much simpler, 
i.e., to develop models and extract related acoustic signal features 
describing nonlinear phenomena in speech like turbulence. 

To be physically meaningful mathematical representations and 
derived features of speech signals should be derived based on im
portant aspects of the physics of speech production, such as the 
acoustic dynamics of 3D sp«eh airflow, geometry of vocal tract, 
and nonstationarity of speech. The nowadays "standard" speech 
features used in automatic speech recognition (ASK) are based on 
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short-time smoothed cepstra stemming from the linear model. This 
representation ignores the nonlinear aspects of speech. Adding new 
robust nonlinear information is quite promising to lead to improved 
performances and robustness. In this paper, we also develop robust 
nonlinear features based on chaotic models for speech production 
and apply these features to increase the recognition performance 
of ASK systems whose pattern classification part is based on Hid· 
den Markov Models (HMM). Our motivation for this part of our 
research work includes the fonowing : (1) By using concepts from 
fractals [7] to quantify the geometrical roughness of speech wave
forms, one of the authors was able to extract fractal features from 
speech signals and use them to improve phonemic recognition [9]. 
(2) Fractals can quantify the geometry of speech turbulence. A 
fuller account of the nonlinear dynamics can be obtained by using 
chaotic models for general time-series as in [I]. 

Section 2 of this paper summarizes the basic concepts and al
gorithms for analyzing speech signals with chaotic models. In 
Section 3 we describe how to extract short-time feature vectors 
from speech signals that contain chaotic dynamics information, in
tegrate these nonlinear speech features with the standard linear ones 
(cepstrum), and develop a generalized set of acoustic features for 
improving HMM-based phonemic recognition. 

2. SPEECH ANALYSIS USING CHAOTIC MODELS 

It has been shown experimentally and predicted theoretically that 
many speech sounds contain various amounts of turbulence [8]. 
Specifically, due to airflow separation [IS, 19], the air jet flowing 
through the vocal tract during speech production is highly unsta
ble and oscillates between its walls, attaching or detaching itself, 
and thereby changing the effective I:tOss-sectional areas and air 
masses. Vo11ices can easily be generated along the vocal tract 
[19, 17] and then propagate while twisting, stretching and diffu· 
sion occurs. Such phenomena are encountered in many speech 
sounds and lead to turbulent flow; especially fricatives, plosives 
and vowels uttered with some speaker.dependent aspiration, con· 
tain various amounts of turbulence. In the linear speech model this 
has been dealt with by having a white noise source exciting the v0-
cal tract filter. It has been conjectured that geometrical structures in 
turbulence can be modeled using fractals [7. 8], while its dynamics 
can be modeled using the theory of chaos. In a previous work [9], 
one of the authors measured the short-time fractal dimsension of 
speech sounds as a feature to approximately quantify the degree of 
turbulence (based on its multisca1e structure) in them and used it 
to improve phoneme recognition. Moving a step further, instead of 
the above quantification in the scalar phase space, we shall use, in 
this paper, concepts from chaos [1] to model the nonlinear dynam
ics in speech of the chaotic type, as an attempt to penetrate into its 
'hidden' aspects. Previous work on using chaotic systems to model 
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speech can be found in [11,18,2,6]. 
We asswne that (in discrete time n) the speech production sys

temcanbe viewed asanonlinearbut finite dimeasional (due to dissi
pativity [16]) dynamical system X(n) -+ F[X(n)] = X(n + 1). 
A speech signal segment sen), n = 1 •...• N, can be OOIIsideml 
as aID projection of a vector function applied to the unknown 
mu/tidlmensiolUJl dynamic variables X(n). It is possible that the 
complexity or randomness observed in the scalar signal could be 
due to loss Df infonnation during the projection. It is questionable 
whether there exists a reverse procedun: by which a phase space 
of Y = Y (n) is reconstructed - using information provided by the 
scalar signal- satisfying the major requirement to be diffeomorphic 
to the original phase space, so that detcnninism and differential in
formation of the dynamical system are preserved (14J. 

According to the embedding theorem [IJ, the vector 

Yen) = [s(n),s(n +TD), . . . ,sen + (DE -l)TD] (1) 
fonned by samples of the original signal delayed by multiples of 
a constant time delay TD defines a motion in a reconstructed D E
dimensiDnal space that has many common aspects with the original 
phase space of X(n). Particularly, many quantities of the origi
nal dynamical system (e.g. generalized fractal dimensions and 
Lyapunov exponents) in the original phase space X(n) are 00II
served in the reconstructed space traced by Yen). The fact that 
the multidimensional phase space can be fully reconstructed is in
tuitively justified as there is no disconnected subset of variables of 
the nonlinear system, nor one can be created by a smooth trans
fonnatioa. Thus, by studying the constructible dynamical system 
Yen) -+ yen + 1) we can uncover useful information about the 
original unknown dynamical system X(n) -+ X(n + 1) provided 
that the unfolding of the dynamics is successful, e.g. the embedding 
dimension DE is large enough. However, the embedding theorem 
does not specify a method to detennine the required parameters 
(To, DE) but only sets constraints on their values For example, 
DE must be greater than twice the box-counting dimension of the 
attractor set and TD may have any value except from pat, where 
p = 1,2 and at corresponds tD periods of possible periodic orbits 
Df the system. Hence, procedures to estimate the values of these 
parameters are essential. 

The time delay corresponds to the constant time difference be
tween the neighboring clements of each reconstructed vector. 11le 
smaller TD gets, the more will the successive clements be cor
related, as not enough time will have elapsed for the system to 
generate sufficient amounts ofinfonnation and all connected vari
ables affect the Dbserved one. As a OOIIsequence the reconstructed 
vectors will populate along the separatrix Df the multidimensional 
phase space. On the contrary, the greater To gets, the more ran
dom will the successive elements be and any preexisting 'order' 
will be lost. Thus it is necessary to compromise between these two 
conflicting arguments. To achieve this, the following measure of 
nonlinear correlation introduced by Fraser & Swinney is used for 
dealing with chaotic data s(n) (I]: 

� [ P(s(n},s{n+T» ] I(T) = L- P(s(n),s(n+ T))·log2 P(s(n».P(s(n+T» ,,"'I 
(2) 

where P(.) denDteS probability. Each log term in the above sum is 
the mutual information for a pair of observed values sen). s(n+ T) 
which are apart from each other by a delay T. If these values 
are independent, their mutual infonnation is zero, as their joint 
probability factorizes to the product of the two probabilities. ThU$, 

I (T) is theGVerDge muhull information between pairs of samples of 
the signal segment that are T positions apart. Then, the 'optimum' 
time delay TD is selected as the smallest T at which the average 
mutual information assumes a minimum value: 

TD = min{argmin I(T)} Tl!;O (3) 

The next step is 10 select the dimension DE ofthc reconstructed 
vectors. As a consequence Dfthe projection, points Dfthe ID signal 
are not necessarily in their relative positions because of the true dy
namics of the multidimensional system (true neighbors); manifolds 
are folded and different distinct orbits of the dynamics are inter
secting. A true vs. false neighbor criterion is fonned by comparing 
the distance between two points S", S; embedded in successive 
increasing dimensions. [ftheir distance dD (S .. , SI) in dimension 
D is significantly different than their distancedD+l (S", Sj) indi
mension D + I, then they are considered to be a pair ofJalse neigh-

bo E "-'entlv ifRO(S S) = olDtJ(Sft,Sj)-olD(Sft,S.l ex-TS. qwYIIl J' n, j dD(Sn,Sj) 
ceeds a threshold (usually in the range [10, 15), then the two points 
are false neighbors, under the assumption that any distance differ
ence is not greater than some second order multiple Df the attractor 
diameter RA = k E!.11l8(n) - sll. The dimensionDatwhicb 
the percentage Df false neighbors goes to zerD (Dr minimized in the 
existence of noise) is chosen as the embedding dimension DE. 

In the unfolded phase space one can measure invariant quanti
ties Df the attractor, wbich if chaotic would be characterized (10] 
by dense periodic points and mixing, such as fractal dimensions 
Df geometrical (e.g. box-counting dimensiDn) and/or probabilistic 
(e.g. information dimension) character. The dimension of the at
tnu;tor except fiom being a measure of complexity, corresponds to 
the number Df active degrees Df freedom of the system. The COI7f!

lotion dimension [4, 10] (belonging to a greater set Df generalized 
dimensions of probabilistic type) is defined as 

D U Ii logO(N.r) 
c = r..ToN�oo logr ' (4) 

where 0 is the correlation sum, i.e. for each scale r the number of 
points with distances less than r nonnalized to the number ofpairs 
of points : 

where (J is the Heavyside unit-step functiDn. For smaIl 'enDugh' 
scales and for N large 'enough' OCr) is proportional to x(r)rOC, 
where x(r) stands for the 1acunarity Dfthe set [7]. 

Figure 1 shows the waveforms of four speech phonemes, their 
attractors and local-scale correlation dimension measurements. The 
shapel dift'crenccs or similarities (complex rough spikes for frica
tives, smooth flow/cycles for vowels) in the attractors are consistent 
with the corresponding physics for each phoneme. 

3. CHAOTIC FEATURES AND SPEECH RECOGNITION 

The analysis described in Section 2 has been applied to a large num
ber of phonemes. Experimental observations of the dynamics in 

11be visuaIizalion of the multidimemicmal attraclDrs has been done by 
ahowingthc 11m tbrecelcmentsofcacb vector in 3D space and the Jastthree 
as ROB color�mpDnenII. 
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Fig. 1. (a) Spe�h Wavefonns. (b) AttracloTll of Embedded Signals, (c) Correlation Sums, (d) Scale-Varying Correlation Dimensions. t st 
TOW (top): vowetliyl, 2nd row: voiced fricative /zI, 3rd row: vowel/a'K.r/, 4th row (bottom): unvoiced fricative lsi • (In (c) and (d) thick 
lines show average curves.) 

the reconstructed phase space have shown the formation of general 
patterns among phonemes of the same type, both from a qualita
tive and a quantitative point of view (i,e., the attractors' topology 
and the scalc-varying correlation dimensions, respectively). Less 
well-formed patterns were observed in the case of phonemes of the 
same class (e.g. fricatives, plosives, vowels). Further, even for the 
same phoneme uttered by the same speaker, there were some cases 
ofvariabilities depending on neighboring phonemes (allophones). 
Motivated by similar classifications of fractal speech characteris
tics in a previous work (9], we attempted to e'K.tractfealures related 
to chaotic dynamics and apply them to an automatic sp�h recog
nition (ASR) system based on hidden Markov models (HMMi . 

The feature vectors used in speech recognition are typically 
computed over a 20-30 ms window and are updated every S-I 0 ms. 
The 'standard' feature set consists of the mean square amplitude 
(usually called 'energy') the first twelve mel-frequency cepstrum 
coefficients (MFCC) and their first and second time derivatives. 
We shall augment the 'standard' feature vector and thus create a hy. 

3The HTK [20J HMM-n:cognition system was used. 

brid feature vector by incorporating information from the nonlinear 
structure of speech of the chaotic type as additional features. Thus, 
as short-time acoustic representations of�b we use feature vec
tors that contain information both from the smoothed cepstrum of 
the linear model, which represents a first-order approximation to 
the true speech acoustics, as well as from the chaotic dynamics, 
which contain information from the second-order nonlinear speech 
acoustics. 11Ie input feature vectors are split into two different data 
streams (MFCC and chaotic) belonging to independent probability 
'atreams' with independent probability distributions. The TIMITl 
database was used for the recognition experiments. 

Through an automated procedure, each s�h analysis frante 
(2S-ms frames, updated every 10 ms) has been embedded in a 
multidimensional phase space using the appropriate parameters 
(TD, DB). The physical justification of embedding only a frame 
instead of a whole phoneme is that the reconstructed space in this 

lThc TIMIT dlll8basc consists of 6300 sentences, 10 sentences spoken 
by each of 630 speakers from 8 major dialect regions of Us. All �ch 
signals in �IMIT an: sampled at 16kHz. The training set consists of 3696 
sc:ntencCl and the test set of 1344 sentences, 
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occasion belongs to the short-time phase space of the dynamic sys

tem during the time period it produced the current frame. Nellt, we 
computed a feature vector that was related to the correlation sum 
and the scale-varying correlation dimension and hence carried in
fonnation about the chaotic dynamies of eac:h framc. Specifically, 
we selected a set of four chaotic features: (I) the mean of the cor
relation sum C, (2) the standard deviation of C, (3) the mean of 
the scale-varying correlation dimension Dc, and (4) the standard 
deviation of Dc. This feature set also included the first and second 

time derivatives of these four features. 

The recognition results (see Table I) of the hybrid feature set 
were quite promising, even though ourpreiiminary first application 
of chaotic features used the fewest and simplest possible such fea
tures. The relative word error rate reduction of 18% and 29"04. (with 
8 and 16 mixtures respectively) over using only the standard fea
tures is possibly due to the detection of nonlinear phenomena which 
remain "hidden" in the lD dynamics. Unfolding the signal to the 
original phase space enables the observation of the true dynamics 
of the system; furthermore a broad variety of new measurements 
can be performed on the unfolded attractor that can yield fractal 
and/or chaotic features adding considerable information even in a 
four-component feature vector. 

Word Percent Correct 
# Gaussian Mixtures MFCC MFCC+Chaotic 

8 73.95 78.61 
16 78.76 85.01 

Table I. Recognition Results 

In [3] we have also used this chaotic feature vector in combi
nation with other nonlinear features of the modulation type. This 
yielded a relative error rate reduction by 42%, which outperformed 
experiments in which only one type of feature set was used. 

4. CONCLUSIONS 

In this paper we have described how to apply modem concepts 
and algorithms from chaotic systems to analyzing speech signals 
in order to create a multidimensional model that exploits nonlinear 
dynamic information and extract related novel acoustic features of 
chaotic type. Frier we have developed a hybrid feature set for 
speech recognition that includes both the standard linear features 
as well as the chaotic features and applied this new feature set 
to HMM-based word recognition. Our experimental results, have 
shown a significant improvement in recognition over the TIMIT 
database. Clearly, information provided by the new (nonlinear) 
features deals with different aspectS of the speech dynamics and 
therefore is valuable for the recognition process. 

[n our on-going speech research, we are also working to en
hance the nonlinear speech analysis described herein in various 
directions such as: exploring more sophisticated chaotic features, 
such as generalized dimensions and LyapUllOY exponents which 
also contain dynamical information; extracting chaotic features in 
noisy environments; integration of chaotic features with other non
linear features; application of chaotic features to IlUBe vocabulary 
speech recognition problems. Frier results will be presented in 
a forthcoming paper. 
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