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Abstract 

A method for detecting potentzal collaszons between 
three-damenszonal movang objects as descrzbed tn this 
paper. An object-centered, spheracal octree represen- 
tataon is defined and amplemented for the localasataon 
of potentaally collidang features between polyhedral ob- 
jects. These features are subsequently tested for inter- 
sectaon an order to calculate precasely the actual colli- 
saon poants. Applacataon of the algorathm for the darect 
manapralataon of objects an a vartual scene is consid- 
ered, to anvestigate ats real-tame behavaour. The per- 
formance of the algorathm as found to remaan lanear 
with respect to the complexaty of the collzding objects. 

I Introduction 

The detection of collision between two arbitrar- 
ily moving objects in a three-dimensional computer- 
simulated environment plays an important role in var- 
ious research fields: 

In the context of d y n a m i c  c o m p u t e r  ani- 
m a t i o n ,  where the sequence of object’s position has 
to be dynamically produced by a physical simula- 
tion, as the effect of internal, model-derived forces and 
torques([l4]). ‘The problem is usually solved by con- 
sidering all possible combinations of points and faces 
for a pair of objects and extensively checking them for 
interaction. Basic algorithms of this type have a com- 
plexity of O(n2m2), for n polyhedra and m vertices. 
Bounding shape techniques are usually employed to 
ameliorate the computation times by quickly deciding 
for the non-intersection of two completely separating 
objects. 

A related issue is contact force computation and 
response once collisions have been detected. Two 
classes of methods have been mainly used, namely 
penalty methods, allowing interpenatration of objects 
and introducing virtual springs and elastica1 deforma- 
tion models [15], and analytzcal methods treating the 
case of non-penetrating rigid bodies, and making use 
of numerical optimisation techniques [2]. 

b. In the context of robot p a t h  p lann ing ,  where 
an automatic generation of collision-free robot trajec- 
tories has to be based on algorithms performing dis- 
tance calculation between a moving robot and the ob- 
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stacles present in its workspace, and determining po- 
tential collisions between them. Growth techniques 
and approximating shapes representation have often 
been used to assure collision detection and avoidance 

c. In the context of V i r t u a l  Rea l i t y  Appl ica-  
tions [5], where the developpement of interactive, re- 
alistic, computer-simulated environments is based on 
algorithms performing fast collision detection between 
multiple, moving virtual objects. Calculation of vir- 
tual contact forces permits the implementation of force 
daspla y techniques using specially designed or general- 
purpose haptic interfaces [3],[10]. The main difficulty 
of such applications is the real-time constraints that 
are imposed. The human operator must interact with 
a virtual scene in a natural way, moving objects and 
generating collisions between them. These collisions 
must be detected and interaction forces computed fast 
enough (response time less than looms), otherwise a 
sense of incompatibility will be created and the envi- 
ronment will seem unrealistic. 

in accordance with the models used to represent the 
shape of the objects surface. Three major classes of 
object representations exist: 

1. Boundary representations. The object is mod- 
elled as a general (convex or concave) polyhedron con- 
sisting of a set of vertices, edges and faces. The major 
drawback of the polyhadral representation is that the 
resulting precision highly depends on the number of 
faces used to approximate the object. To determine 
whether a collision has occured, computation of dis- 
tance between two convex polytopes can be used. This 
is usually formulated as a constrained minimisation 
problem, and numerical optimisation techniques are 
used to provide measures of the minimum distance. 
Bobrow [4] used a direct approach which generates 
a sequence of sedrch direclions along the surfaces o€ 
the objects in order to obtain the global minimum. 
The Kuhn-Tucker conditions were used to ascertain 
whether the global minimum has been reached or not. 
Gilbert et al. in [SI presented an iterative, descent 
procedure for computing the distance and finding the 
nearest points between a pair of convex polytopes. Lin 
and Canny [ll], finally, developped a fast, incremen- 
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All the collision detection methods can 
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tal, distance calculation algorithm which works, al- 
most always, in constant time. As two objects move 
in space, this algorithm keeps track of the closest pair 
of features by performing simple tests, and checking 
locally the coboundary (neighborhood) of the closest 
features provided by the previous step. 

All these methods need, however,-extra computa- 
tion time to precisely calculate the collision points, 
when intersection between two obiects exists. 

2. Analytical surface remesentation. such as su- 
perellipsoids [1] . These modelling techniques provide 
an analvtic insideloutside function that exdicitlv de- 
termines whether ‘a point in space is insidLor oitside 
the closed-form surface. Collision detection between 
two objects has to proceed by testing a large number 
of representative points for each object. Therefore, 
a tradeoff between precision and computational effi- 
ciency has to be achieved. 

3. Constructive solid geometry representations I - - -  
using volumetric primitives such as cylinders [16] or 
spheres r171. In the first case line equations are used 
g‘ving a‘v&y rough approximation of the robot solid 
geometric model. In the second one, a large number 
of spheres (over 200) has to be used to achieve a rea- 
sonable precision of the representation. Furthermore, 
collision detection still needs testing all the possible 
combinations of intersecting spheres which may not 
always be efficient if we want to increase the precision 
of contact points computation. 

The volumetric primitives (spheres, cubes etc.), 
used to represent a solid object, can also be organised 
in haemrchical tree-structures. The hierarchy in such 
a model implies that only intersection testing between 
nodes that are close to each other is performed, which 
may accelerate significantly the detection of a poten- 
tial collision. Liu [12] presents a solid model called 
hierarchical sphere model which represents a three- 
dimensional space including an object by a tree struc- 
ture of spherical cells, using a decomposition of each 
spherical region into 13 subspheres. Hubbard [8] also 
presented a form of approximate geometric modelling 
called ‘sphere-trees’. Methods for automatically build- 
ing these structures were also investigated. The accu- 
racy of collision detection using this approach depends 
on the number of levels of the tree, which may influ- 
ence the computation time strongly. 

Another hierarchical, tree-structure model that is 
often used to represent three-dimensional, solid ob- 
jects is the octree [18]. Octrees represent the space 
occupied by an object using a cubic decomposition 
of the universe space. The space is recursively par- 
titionned into octants until each octant is completely 
inside or outside an object, or until the limit of the 
resolution is reached. The volumetric primitives used 
in this case are cubes of fixed location and orienta- 
tion in space. Octree models have already been used 
for collision detection in a robot programming [7] or 
virtual workspace [9] systems. In both cases, a special 
algorithm is needed to update the octree, for arbitrary 
translation and rotation of the represented objects, 
which requires modelling the intersection of arbitrary 
oriented cubes ([lS]). This does not seem to be a triv- 
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ial task, and approximating methods need to be used 
to achieve the desired computational efficiency. 

In this paper we propose a spherical, object-centered 
octree decomposition for the representation of three 
dimensional, moving objects. This representation has 
the following characteristics: 

a. Each of the oct-nodes corresponds to a spherical 
region, surrounding a part of the object’s surface. In- 
tersection detection between two spheres is trivial, as 
only positions of their centers and corresponding radii 
need to be known. 

b. The tree structure is fixed with respect to the 
object’s reference frame and moves along with it. This 
facilitates considerably the computation load needed 
to represent moving (translating and rotating) objects. 
The octree can be constructed off-line and easily up- 
dated using only simple coordinate transformations. 

This spherical octree representation is used to de- 
velop a real-time collision detection algorithm. In- 
terfering oct-nodes determine features, of the objects’ 
polyhedral model, that are likely to enter in collision. 
These features are subsequently tested for intersection 
to find out which of them are actually colliding and 
calculate with precision the contact points as well as 
the corresponding interaction forces. A virtual scene 
consisting of various objects has been constructed to 
test the efficiency of the algorithm in real-time appli- 
cations. Experimental results are presented and anal- 
ysed in section 4, and concluding remarks given in 
section 5. 

2 General Description of the Method 

2.1 Object-Centered, Spherical Octree 
Represent at ion 

Consider an object in 3-dimensional space. Its poly- 
hedral representation consists of a grid of n x m points 
in space and is primarily defined by a matrix of ver- 
tices. The octree representation of such an object is 
generally obtained using a cubic, recursive decomposi- 
tion of the whole space. In the universe-centered def- 
inition the volumetric primitives (cubes) of the tree 
structure are of fixed sizes, locations and orientations. 
In an object centered representation, on the contrary, 
the placement of the primitives is determined with re- 
spect to the object reference frame. A ‘minimal’ cube 
CO surrounding the object is first defined and is recur- 
sively decomposed into 8 subcubes C;. Each node Ti 
of the octree structure corresponds to a cubic region 
C;. The whole structure can be created off-line and is 
considered to move along with the object. 

In this paper we propose a spherical, object- 
centered octree representation, where each node Ti of 
the tree structure corresponds to a spherical region 
S; surrounding part of the object’s surface. This is 
done by inscribing each cube Ci of the original object- 
centered octree into a sphere s,. In this way, each node 
T and its corresponding sphere S can be recursively 
subdivided into subspheres Si, the union of which 
completely surrounds the surface of the object, with 
an increasing precision as the level of the octree be- 
comes greater. This procedure for a two-dimensional 



Figure 1: Spherzcal, Object-Centered Octree Decompo- 
sztzon 

object is schematically represented in figure 1, until a 
level 3 for the octree representation is reached. At this 
point we must note that, as we will see in section 3.1, 
only nodes intersecting the surface of the object need 
to be taken into account during the collision detection 
algorithm, thus reducing the computation load of per- 
forming redundant (not necessary) tests. 

2.2 Localisation of Colliding Features 
Interference between two objects is detected by 

traversing the octrees surrounding their surfaces. The 
father-node of the first tree is tested for intersection 
with the nodes of the second one, starting from the 
father-node and descending to the children only when 
interaction is found. Then, in a similar way, each of 
the second object’s leaf nodes that are found to inter- 
sect with the father node of the first one, is tested for 
intersection with all the nodes of the first tree. Each 
time, the algorithm descends to the children of a node 
only if interaction of their father is found. 

Intersection detection between two nodes is trivial 
since each node of the octree corresponds to a spheri- 
cal region. The sphere corresponding to each oct-node 
surrounds a region of the object’s surface, possibly 
containing or intersecting some of the object’s features 
such as vertices, edges or faces. Two interfering nodes 
can therefore determine pairs of features that may pos- 

have to be tested afterwards, thus eliminating many 
possible combinations of contacting features. 

The pairs of nodes that are found to intersect form 
the lzst-of-intersecting-oct-nodes. This list is then pro- 
cessed to identify the features of the objects that are 
actually colliding, the elemental contacts they form as 
well as their mutual interpenetra . Using this data 
we can compute the actual force applied between two 
objects in each one of their contact points. 

sibly be in contact. Only potential contact formations 

The method on its whole can be therefore seen as 
consisting of two stages: 

e 1st stage : Detection of potentially colliding fea- 
tures between two objects from the interfering nodes 
of their octree representations. 

e 2nd stage : Identification of the actual contact 
formations and computation of the total force and mo- 
ment applied on the centroid of each object. 

More details on the algorithm and its implementa- 
tion are given in the following section. 

3 The  Algorithm and its Implementa- 
tion 

3.1 Polyhedral and Spherical Octree Rep- 
resentation : Global Data Structures 

Every object in the VE is geometrically modelled 
as a convex polyhedron (or a union of convex polyhe- 
dra). Its state in 3D space is described by a vector 
containing the position of the centroid Pp’ in world 
coordinates, a 3x3 rotation matrix RT designating its 
orientation in space, as well as vectors for its linear 
and angular velocity v o ,  W O  . 

Each object in the VE contains also the following 
data structures which define its geometrical form: 

e a list of vertices (v-list). 
Each vertex is characterised by its position (x,y,z 

in the objects local reference frame, and its 
coboundary, that is a list of edges intersecting on 
the vertex. 

coordinates relative to the centroid, expresse d 

0 a list of edges (e-last). 
Each edge is described by the two vertices head 
and tad and also by the two faces Left-Face and 
Rzght-Face. The intersection of those faces is the 
edge itself. 

a list of faces (f-list). 
Each face is parameterised by the position of a 
point on this face (called center of the face) rel- 
ative to the object’s centroid and expressed in 
the object’s local reference frame Ro, and by its 
outward normal, also expressed in Ro. It also in- 
cludes a list of vectors defining the coboundary 
of the face, that is, vectors originating from the 
center of the face and being perpendicular to its 
bounding edges. 

All this data is expressed in the object’s local refer- 
ence frame and is therefore computed off-line during 
the construction of the object’s geometrical (polyhe- 
dral) model. In our system, this is automatically per- 
formed by a procedure which takes as input a nxm 
matrix of the vertices coordinates and constructs all 
the necessary data structures (v-last, e-Zzst and f-lzst) 
for the correct execution of the collision detection al- 
gorithm. The world coordinates of all the necessary 
vectors are computed on-line using simple coordinate 
transformations. 
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We will now describe the data structures defining 
the object-centered, spherical octree representation of 
a polyhedral object. This representation consists of a 
hierarchical structure of nodes. The data structure of 
each node T contains: 

the relative position (pz,py,p,) of the 
sphere S with respect to the object’s 

centroid Po and expressed in the object’s local refer- 
ence frame Ro 

presenting the level of the 
which must never overpass 

to its children oct-nodes childi. 
ntains a field type which takes as 

0 VERTEX, if the sphere S is found to contain at 
least one of the object’s vertices (from the object’s 

e EDGE, if the above condition does not hold 
the node’s corresponding sphere S intersects one of the 
objects’s edges (from e-list). 

0 FACE, if the above does not hold S intersects 
one of the objects’s faces (from f-list). 

NONE, if none of the above conditions hold, 
which means that the node’s corresponding sphere S 
does not intersect the object’s surface. Therefore, this 
node will not be furthemore decomposed and will not 
be visited by the collision detection procedure. 

The oct-node data mentionned above is computed 
off-line, once and for all, during the construction phase 
of each object’s spherical octree representation. In 
our system it is automatically generated by a proce- 
dure called create-octo which makes use of the object’s 
polyhedral representation (list of vertices etc. gener- 
ated beforehand) and gives at its output a pointer to 
the father-node of the object’s octree structure. 

Depending on the type of the node a new vertex, 
edge or face list is created belonging to the node’s 
structure itself and containing pointers to the object’s 
features intersected by the corresponding sphere. This 
means that the data structure of each node also con- 
tains its own v-list, e-list and f-list, thus defining a link 
from the spherical octree surface representation to the 
polyhedral one. For instance, if the type of a node 
has the atribute EDGE as its value, then the node’s 
e-list will contain pointers to all edges intersected by 
its corresponding sphere. We must, however, remark 
that only the features lists of the octree leaf-nodes 
will be used for actual intersection detection between 
polyhedral objects. 

For the description of all the possible ways by which 
two polyhedral objects can enter in contact, we have 
chosen to use the two basic contact types presented in 
[lo] (ie: Vertex-Face (VF) and EdgeEdge (EE) con- 
tact types). Every contact that may occur between 
two polyhedral objects can be described by a set of 
such basic, elemental contacts. 

For contact force computation we use a model of 
stiffness Kc,  damping Bc and friction (viscosity co- 
efficient yc) associated with every elemental contact 
point. Interpenetration Ap and relative velocity AV 
of the two objects on their contact point are used to 

the maximum depth of the octree 

llowing possible attributes: 

w-list). 

compute the force mutually applied on this point: 

where 

For each object the contact forces zi from the ex- 
isting n, elemental contact points can be summed up 
to provide the total force and moment applied on the 
centroid of the object. 
3.2 1st stage : Finding intersecting oct- 

nodes for the localisation of poten- 
tially colliding features 

The first stage of the collision detection algorithm 
consists of the following phases: 

Phase 1-1: Detection of interfering oct-nodes by 
traversing the octrees of the objects (procedure inte- 
roct() ) and creation of the List-of-Intersecting-Oct- 
nodes (called Oct-Contacts). It is based on the dis- 
tance computation between the centers of the corre- 
sponding spheres and, in case intersection is found, 
recursive calls of the interact() procedure, till reach- 
ing the leaf nodes. 

To avoid overcharging this stage of the algorithm we 
have also considered non-homogeneous octrees, which 
means that only some oct-nodes in one level are fur- 
ther decomposed depending on whether 
not more precision in a particular region of an object, 
for the localisation of intersecting features. 

Phase 1-2: Processing of the list Oct-Contacts 
and identification of potentially colliding primitive 
features. Creation of the List-of-potential-elemental- 
contacts (called Checks containing two types of basic 
features intersection, J F or EE, as described in the 
previous section. 

The list Oct-Contacts is traversed one or more times 
and, depending on the type of the nodes intersection, 
one or more potential, basic contacts are added into 
Checks. In this phase we make use of the lists v-list, 
e-list or f-list of each oct-node, that are created be- 
forehand (off-line) by the procedure create-oct(), as 
discussed in section 3.1. These lists create a link be- 
tween the octree and the polyhedral representation of 
each object and are the ones that determine which 
pairs of primitive features will be added into Checks, 
and tested for intersection in the following, 2nd stage 
of the algorithm. 

3.3 2nd stage : Determining actually in- 
tersecting features 

In this stage, the list Checks, previously created by 
phase 1-2 of the algorithm, is traversed twice to de- 
termine the pairs of features of the polyhedral objects 
that are actually colliding. 

We start by testing for possible VF contacts (pro- 
cedure check-vfs()), among those included in Checks. 
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shot of the Virtual Scene. 

Proposition 1 Each vertex of a polyhedral object can 
be consadered, a t  each step, to be an contact with no 
more than one face for every other convex polyhedral 
object. This proposhon cannot hold for non-convex 
polyhedra, whzch can however be modelled as unaons 
of convex ones. 

To make use of this proposition, the ‘history’ of 
previously detected contact configurations has to be 
maintained at every computation step, and stored in 
a list called List-of-Contacts. At each step, before 
performing the detection of new a 
features (procedure detect-contact 
the validity of the previously dete 

ts)  . This is performed 
ntacts(). In a similar 

heck-ees() detects for new cur- 
rently intersecting pairs of edges (EE basic contacts) 
from all the possible combinations contained in Checks 
list. 

4 Numerical Experiments 

To investigate the properties and demonstrate the 
efficiency of the developped algorithm we have con- 
structed a virtual scene consisting of several three- 
dimensional objects. One of these objects, called 
‘FOLLOWER’, is manipulated directly by the human 
operator with the use of a 3D magnetic sensor (Pol- 
hemus IsotrackTM), capturing in real-time informa- 
tion about the human hand movements in space. The 
‘FOLLOWER’ is moved arround entering in collision 
with various objects present in the scene. These col- 
lisions have to  be detected in real-time in order to 
respect the motion constraints that are imposed due 
to the presence of other objects in the virtual scene. 

Fig.2 presents an example of a virtual scene con- 
structed to  test, in real-time, the efficiency of the algo- 
rithm. The small arrows represent contact constraints 
(unitary forces along normal directions) imposed on 
the moving object (wireframe polyhedron due to the 
presence of collisions with existing obstac 1 es. 

The objects used in the experiments with their 
polyhedral as well as their spherical, octree represen- 
tations are shown in fig.3. 

Polyhedral O b j e c t  , 
number of vertices 

Spherical OcCree 
Represent at i on 

<a) Cube , 8 

1 
I b )  Rectangle , 8 

EZE3 
(c) Cylinder , 2E3 

le) Sphere 

I Level = 2 1 

I Level = 2 1 

< Level = 3 > 

C Level = 3 5 

< Level = Ec 1 

Figure 3:  Polyhedral objects used in the experiments 
loath thew spheracal octree representations 

A large set of numerical experiments have been per- 
formed with these objects entering in various types of 
collision. Two parameters influencing the efficiency of 
the algorithm have been mainly studied. The first one 
is the number of levels in the octrees and the influence 
its increase may have on the total mean computation 
time of the algorithm. The second one concerns the 
complexity of the scene. We investigate the variations 
of the total execution time for our collision detection 
and contact force computation algorithm versus the 
total number of vertices present in the virtual scene. 
For a virtual scene cosisting of 6 polyhedral objects, 
as shown in fig.:! we obtain computation times of the 
order of 20 msecs, which is acceptable for real-time 
applications. 

The algorithm has been implemented in C language 
and runs on a HP715, 50MHz workstation, equipped 
with math.coprocessor and graphics accelerator. HP 
Starbase graphical library provides the necessary pro- 
cedures for color, 3D image rendering. 

4.1 The number of levels in the octrees 
and its effect on the execution time 
of the algorithm 

The experimental results, obtained for various com- 
binations of colliding objects and different numbers of 
levels in their octrees, are briefly summarised in ta- 
ble l. 
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Average CPU time 1 

Table 1 : Experimental Results. Mean Computation 
time (in msecs) of the algorithm for various types of 

colliding objects (refer to  fig.3) and increasing 
number of levels in  the octrees. 

First of all, we can observe that for each object 
there is an optimal number of levels for its octree r e p  
resentation which depends on the complexity of its 
polyhedral representation. For instance, for a rectan- 
gular object of type (b) (see fig.3) a number of 2 levels 
in the octree seems to be sufficient for detecting col- 
liding features. An increase in the number of levels is 
not counter-balanced by a sufficiently large decrease 
in the second stage of the algorithm (i.e. testing for 
intersection all the potentially colliding features sup- 
plied by the first stage) due to the small number of 
vertices present in the object. A number of 3 levels 
is however needed to sufficiently represent more com- 
plex polyhedral objects such as cylinders ( object c)). 
The mean computation time for all types of colli 6 ing 
objects, versus the number of levels in the octrees is 
graphicaly represented in fig.4. The performance of 
our collision detection algorithm for each object will 
have a form similar to fig.4, presenting an optimality 
for a particular number of levels in the octree rep- 
resentation. This optimal number of levels increases 
as the polyhedral model of the objects becomes more 
complex. 

We must also note that intersections between poly- 
hedral and spherical objects are treated separately by 
a special intersection-testing procedure (znter-ps()). A 
sphere is modelled by an octree of level 0, and its poly- 
hedron (graphical model) is not used for interference 
detection. Intersection between a vertex, an edge or 
a face and a sphere is easily detected by simple, spe- 
cially developped procedures (check-ws(), check-es(), 
check-fs()). 

4.2 Mean Computation Time versus 
Complexity of the Scene 

A classical measure of the efficiency for a colli- 
sion detection algorithm is to monitor its performance 
(mean computation time) with respect to the com- 
plexity (e.g. total number of vertices) of the colliding 
objects. Fig.5 shows the evolution of the algorithm’s 
computation time versus the complexity of the objects 
polyhedral model, for different numbers of levels in the 
otree representations. 

We observe that, as the number of levels in the 
octree increases, the algorithm presents a behaviour 
which is ‘more lznecsr’ with respect to the total num- 
ber of vertices of the colliding objects. We therefore 

~ 
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number of levels 

Figure 4: Mean computation time of the algorithm (in 
msecs) versus the number of levels in the octrees 

verify our expectation that using the optimal number 
of levels in the octree representation of each polyhe- 
dral object, the performance of the algorithm, for in- 
creasing complexity of the virtual scene, remains lin- 
ear. Moreover, as we can see, the coefficient of linear 
growth is quite small. 

5 Conclusion 

An algorithm for the collision detection between 
two three-dimensional, moving objects has been pre- 
sented. The algorithm makes use of a spherical, 
object-centered octree representation to perform lo- 
calisation of potentially colliding features. This octree 
decomposition can be easily updated, facilitating the 
representation of arbitrarily moving objects. The al- 
gorithm, in a first stage, performs localisation of pairs 
of features that are likely to collide. These features 
are subsequently checked to determine which of them 
are actually intersecting, and contact points are cal- 
culated with precision. 

A virtual scene has been constructed to test the effi- 
ciency of the algorithm in a real-time application. The 
human operator directly manipulates a virtual object 
generating collisions with existing obstacles. The sys- 
tem must detect the collisions, compute and display 
the interaction forces fast enough to maintain the re- 
alistic impression given by the environment. These 
forces can be used to perform real-time, dynamic ani- 
mation of virtual objects. Mean computation time has 
been found to be around 20ms for a scene consisting 
of several, simple polyhedral objects. 

A large set of numerical experiments has been per- 
formed with these objects entering in various types 
of collisions. We have shown that using the optimal 
number of levels for the octree representation of each 
object, the performance of the algorithm, with respect 



number of vertices 

Figure 5: Mean computataon tame of the algorzth 
msecs) versus the complexaty of the collzdzng o 
(total number of vertices), for dafferent numbers of oc- 
tree levels 

to the complexity of the colliding objects, remains lin- 
ear. 
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