
eal-Time Collision Detection using Spherical
eality Application

Costas TZAFESTAS and Philippe COIFFET
Laboratoire de Robotique de Paris

10-12 Avenue de l’Europe, 78140 V&lizy, France.
E-mail: tzafQrobot .uvsq.fr

CNRS-UPMC-‘IJVSQ

Abstract

A method for detecting potentzal collaszons between
three-damenszonal movang objects as descrzbed tn this
paper. An object-centered, spheracal octree represen-
tataon is defined and amplemented for the localasataon
of potentaally collidang features between polyhedral ob-
jects. These features are subsequently tested for inter-
sectaon an order to calculate precasely the actual colli-
saon poants. Applacataon of the algorathm for the darect
manapralataon of objects an a vartual scene is consid-
ered, to anvestigate ats real-tame behavaour. The per-
formance of the algorathm as found to remaan lanear
with respect to the complexaty of the collzding objects.

I Introduction

The detection of collision between two arbitrar-
ily moving objects in a three-dimensional computer-
simulated environment plays an important role in var-
ious research fields:

In the context of d y n a m i c c o m p u t e r ani-
m a t i o n , where the sequence of object’s position has
to be dynamically produced by a physical simula-
tion, as the effect of internal, model-derived forces and
torques([l4]). ‘The problem is usually solved by con-
sidering all possible combinations of points and faces
for a pair of objects and extensively checking them for
interaction. Basic algorithms of this type have a com-
plexity of O(n2m2), for n polyhedra and m vertices.
Bounding shape techniques are usually employed to
ameliorate the computation times by quickly deciding
for the non-intersection of two completely separating
objects.

A related issue is contact force computation and
response once collisions have been detected. Two
classes of methods have been mainly used, namely
penalty methods, allowing interpenatration of objects
and introducing virtual springs and elastica1 deforma-
tion models [15], and analytzcal methods treating the
case of non-penetrating rigid bodies, and making use
of numerical optimisation techniques [2].

b. In the context of robot p a t h p lann ing , where
an automatic generation of collision-free robot trajec-
tories has to be based on algorithms performing dis-
tance calculation between a moving robot and the ob-

lEEE Internat ional Workshor, o n

a.

stacles present in its workspace, and determining po-
tential collisions between them. Growth techniques
and approximating shapes representation have often
been used to assure collision detection and avoidance

c. In the context of V i r t u a l Rea l i t y Appl ica-
tions [5], where the developpement of interactive, re-
alistic, computer-simulated environments is based on
algorithms performing fast collision detection between
multiple, moving virtual objects. Calculation of vir-
tual contact forces permits the implementation of force
daspla y techniques using specially designed or general-
purpose haptic interfaces [3],[10]. The main difficulty
of such applications is the real-time constraints that
are imposed. The human operator must interact with
a virtual scene in a natural way, moving objects and
generating collisions between them. These collisions
must be detected and interaction forces computed fast
enough (response time less than looms), otherwise a
sense of incompatibility will be created and the envi-
ronment will seem unrealistic.

in accordance with the models used to represent the
shape of the objects surface. Three major classes of
object representations exist:

1. Boundary representations. The object is mod-
elled as a general (convex or concave) polyhedron con-
sisting of a set of vertices, edges and faces. The major
drawback of the polyhadral representation is that the
resulting precision highly depends on the number of
faces used to approximate the object. To determine
whether a collision has occured, computation of dis-
tance between two convex polytopes can be used. This
is usually formulated as a constrained minimisation
problem, and numerical optimisation techniques are
used to provide measures of the minimum distance.
Bobrow [4] used a direct approach which generates
a sequence of sedrch direclions along the surfaces o€
the objects in order to obtain the global minimum.
The Kuhn-Tucker conditions were used to ascertain
whether the global minimum has been reached or not.
Gilbert et al. in [SI presented an iterative, descent
procedure for computing the distance and finding the
nearest points between a pair of convex polytopes. Lin
and Canny [ll], finally, developped a fast, incremen-

~ 3 1 .

All the collision detection methods can

Robot and Human Communication
- 500 - 0-7803-3253-9196 $5.00 01 996 IEEE

http://uvsq.fr

tal, distance calculation algorithm which works, al-
most always, in constant time. As two objects move
in space, this algorithm keeps track of the closest pair
of features by performing simple tests, and checking
locally the coboundary (neighborhood) of the closest
features provided by the previous step.

All these methods need, however,-extra computa-
tion time to precisely calculate the collision points,
when intersection between two obiects exists.

2. Analytical surface remesentation. such as su-
perellipsoids [1] . These modelling techniques provide
an analvtic insideloutside function that exdicitlv de-
termines whether ‘a point in space is insidLor oitside
the closed-form surface. Collision detection between
two objects has to proceed by testing a large number
of representative points for each object. Therefore,
a tradeoff between precision and computational effi-
ciency has to be achieved.

3. Constructive solid geometry representations I - - -
using volumetric primitives such as cylinders [16] or
spheres r171. In the first case line equations are used
g‘ving a‘v&y rough approximation of the robot solid
geometric model. In the second one, a large number
of spheres (over 200) has to be used to achieve a rea-
sonable precision of the representation. Furthermore,
collision detection still needs testing all the possible
combinations of intersecting spheres which may not
always be efficient if we want to increase the precision
of contact points computation.

The volumetric primitives (spheres, cubes etc.),
used to represent a solid object, can also be organised
in haemrchical tree-structures. The hierarchy in such
a model implies that only intersection testing between
nodes that are close to each other is performed, which
may accelerate significantly the detection of a poten-
tial collision. Liu [12] presents a solid model called
hierarchical sphere model which represents a three-
dimensional space including an object by a tree struc-
ture of spherical cells, using a decomposition of each
spherical region into 13 subspheres. Hubbard [8] also
presented a form of approximate geometric modelling
called ‘sphere-trees’. Methods for automatically build-
ing these structures were also investigated. The accu-
racy of collision detection using this approach depends
on the number of levels of the tree, which may influ-
ence the computation time strongly.

Another hierarchical, tree-structure model that is
often used to represent three-dimensional, solid ob-
jects is the octree [18]. Octrees represent the space
occupied by an object using a cubic decomposition
of the universe space. The space is recursively par-
titionned into octants until each octant is completely
inside or outside an object, or until the limit of the
resolution is reached. The volumetric primitives used
in this case are cubes of fixed location and orienta-
tion in space. Octree models have already been used
for collision detection in a robot programming [7] or
virtual workspace [9] systems. In both cases, a special
algorithm is needed to update the octree, for arbitrary
translation and rotation of the represented objects,
which requires modelling the intersection of arbitrary
oriented cubes ([lS]). This does not seem to be a triv-

-501-

ial task, and approximating methods need to be used
to achieve the desired computational efficiency.

In this paper we propose a spherical, object-centered
octree decomposition for the representation of three
dimensional, moving objects. This representation has
the following characteristics:

a. Each of the oct-nodes corresponds to a spherical
region, surrounding a part of the object’s surface. In-
tersection detection between two spheres is trivial, as
only positions of their centers and corresponding radii
need to be known.

b. The tree structure is fixed with respect to the
object’s reference frame and moves along with it. This
facilitates considerably the computation load needed
to represent moving (translating and rotating) objects.
The octree can be constructed off-line and easily up-
dated using only simple coordinate transformations.

This spherical octree representation is used to de-
velop a real-time collision detection algorithm. In-
terfering oct-nodes determine features, of the objects’
polyhedral model, that are likely to enter in collision.
These features are subsequently tested for intersection
to find out which of them are actually colliding and
calculate with precision the contact points as well as
the corresponding interaction forces. A virtual scene
consisting of various objects has been constructed to
test the efficiency of the algorithm in real-time appli-
cations. Experimental results are presented and anal-
ysed in section 4, and concluding remarks given in
section 5.

2 General Description of the Method

2.1 Object-Centered, Spherical Octree
Represent at ion

Consider an object in 3-dimensional space. Its poly-
hedral representation consists of a grid of n x m points
in space and is primarily defined by a matrix of ver-
tices. The octree representation of such an object is
generally obtained using a cubic, recursive decomposi-
tion of the whole space. In the universe-centered def-
inition the volumetric primitives (cubes) of the tree
structure are of fixed sizes, locations and orientations.
In an object centered representation, on the contrary,
the placement of the primitives is determined with re-
spect to the object reference frame. A ‘minimal’ cube
CO surrounding the object is first defined and is recur-
sively decomposed into 8 subcubes C;. Each node Ti
of the octree structure corresponds to a cubic region
C;. The whole structure can be created off-line and is
considered to move along with the object.

In this paper we propose a spherical, object-
centered octree representation, where each node Ti of
the tree structure corresponds to a spherical region
S; surrounding part of the object’s surface. This is
done by inscribing each cube Ci of the original object-
centered octree into a sphere s,. In this way, each node
T and its corresponding sphere S can be recursively
subdivided into subspheres Si, the union of which
completely surrounds the surface of the object, with
an increasing precision as the level of the octree be-
comes greater. This procedure for a two-dimensional

Figure 1: Spherzcal, Object-Centered Octree Decompo-
sztzon

object is schematically represented in figure 1, until a
level 3 for the octree representation is reached. At this
point we must note that, as we will see in section 3.1,
only nodes intersecting the surface of the object need
to be taken into account during the collision detection
algorithm, thus reducing the computation load of per-
forming redundant (not necessary) tests.

2.2 Localisation of Colliding Features
Interference between two objects is detected by

traversing the octrees surrounding their surfaces. The
father-node of the first tree is tested for intersection
with the nodes of the second one, starting from the
father-node and descending to the children only when
interaction is found. Then, in a similar way, each of
the second object’s leaf nodes that are found to inter-
sect with the father node of the first one, is tested for
intersection with all the nodes of the first tree. Each
time, the algorithm descends to the children of a node
only if interaction of their father is found.

Intersection detection between two nodes is trivial
since each node of the octree corresponds to a spheri-
cal region. The sphere corresponding to each oct-node
surrounds a region of the object’s surface, possibly
containing or intersecting some of the object’s features
such as vertices, edges or faces. Two interfering nodes
can therefore determine pairs of features that may pos-

have to be tested afterwards, thus eliminating many
possible combinations of contacting features.

The pairs of nodes that are found to intersect form
the lzst-of-intersecting-oct-nodes. This list is then pro-
cessed to identify the features of the objects that are
actually colliding, the elemental contacts they form as
well as their mutual interpenetra . Using this data
we can compute the actual force applied between two
objects in each one of their contact points.

sibly be in contact. Only potential contact formations

The method on its whole can be therefore seen as
consisting of two stages:

e 1st stage : Detection of potentially colliding fea-
tures between two objects from the interfering nodes
of their octree representations.

e 2nd stage : Identification of the actual contact
formations and computation of the total force and mo-
ment applied on the centroid of each object.

More details on the algorithm and its implementa-
tion are given in the following section.

3 The Algorithm and its Implementa-
tion

3.1 Polyhedral and Spherical Octree Rep-
resentation : Global Data Structures

Every object in the VE is geometrically modelled
as a convex polyhedron (or a union of convex polyhe-
dra). Its state in 3D space is described by a vector
containing the position of the centroid Pp’ in world
coordinates, a 3x3 rotation matrix RT designating its
orientation in space, as well as vectors for its linear
and angular velocity v o , W O .

Each object in the VE contains also the following
data structures which define its geometrical form:

e a list of vertices (v-list).
Each vertex is characterised by its position (x,y,z

in the objects local reference frame, and its
coboundary, that is a list of edges intersecting on
the vertex.

coordinates relative to the centroid, expresse d

0 a list of edges (e-last).
Each edge is described by the two vertices head
and tad and also by the two faces Left-Face and
Rzght-Face. The intersection of those faces is the
edge itself.

a list of faces (f-list).
Each face is parameterised by the position of a
point on this face (called center of the face) rel-
ative to the object’s centroid and expressed in
the object’s local reference frame Ro, and by its
outward normal, also expressed in Ro. It also in-
cludes a list of vectors defining the coboundary
of the face, that is, vectors originating from the
center of the face and being perpendicular to its
bounding edges.

All this data is expressed in the object’s local refer-
ence frame and is therefore computed off-line during
the construction of the object’s geometrical (polyhe-
dral) model. In our system, this is automatically per-
formed by a procedure which takes as input a nxm
matrix of the vertices coordinates and constructs all
the necessary data structures (v-last, e-Zzst and f-lzst)
for the correct execution of the collision detection al-
gorithm. The world coordinates of all the necessary
vectors are computed on-line using simple coordinate
transformations.

-502-

We will now describe the data structures defining
the object-centered, spherical octree representation of
a polyhedral object. This representation consists of a
hierarchical structure of nodes. The data structure of
each node T contains:

the relative position (pz,py,p,) of the
sphere S with respect to the object’s

centroid Po and expressed in the object’s local refer-
ence frame Ro

presenting the level of the
which must never overpass

to its children oct-nodes childi.
ntains a field type which takes as

0 VERTEX, if the sphere S is found to contain at
least one of the object’s vertices (from the object’s

e EDGE, if the above condition does not hold
the node’s corresponding sphere S intersects one of the
objects’s edges (from e-list).

0 FACE, if the above does not hold S intersects
one of the objects’s faces (from f-list).

NONE, if none of the above conditions hold,
which means that the node’s corresponding sphere S
does not intersect the object’s surface. Therefore, this
node will not be furthemore decomposed and will not
be visited by the collision detection procedure.

The oct-node data mentionned above is computed
off-line, once and for all, during the construction phase
of each object’s spherical octree representation. In
our system it is automatically generated by a proce-
dure called create-octo which makes use of the object’s
polyhedral representation (list of vertices etc. gener-
ated beforehand) and gives at its output a pointer to
the father-node of the object’s octree structure.

Depending on the type of the node a new vertex,
edge or face list is created belonging to the node’s
structure itself and containing pointers to the object’s
features intersected by the corresponding sphere. This
means that the data structure of each node also con-
tains its own v-list, e-list and f-list, thus defining a link
from the spherical octree surface representation to the
polyhedral one. For instance, if the type of a node
has the atribute EDGE as its value, then the node’s
e-list will contain pointers to all edges intersected by
its corresponding sphere. We must, however, remark
that only the features lists of the octree leaf-nodes
will be used for actual intersection detection between
polyhedral objects.

For the description of all the possible ways by which
two polyhedral objects can enter in contact, we have
chosen to use the two basic contact types presented in
[lo] (ie: Vertex-Face (VF) and EdgeEdge (EE) con-
tact types). Every contact that may occur between
two polyhedral objects can be described by a set of
such basic, elemental contacts.

For contact force computation we use a model of
stiffness Kc, damping Bc and friction (viscosity co-
efficient yc) associated with every elemental contact
point. Interpenetration Ap and relative velocity AV
of the two objects on their contact point are used to

the maximum depth of the octree

llowing possible attributes:

w-list).

compute the force mutually applied on this point:

where

For each object the contact forces zi from the ex-
isting n, elemental contact points can be summed up
to provide the total force and moment applied on the
centroid of the object.
3.2 1st stage : Finding intersecting oct-

nodes for the localisation of poten-
tially colliding features

The first stage of the collision detection algorithm
consists of the following phases:

Phase 1-1: Detection of interfering oct-nodes by
traversing the octrees of the objects (procedure inte-
roct()) and creation of the List-of-Intersecting-Oct-
nodes (called Oct-Contacts). It is based on the dis-
tance computation between the centers of the corre-
sponding spheres and, in case intersection is found,
recursive calls of the interact() procedure, till reach-
ing the leaf nodes.

To avoid overcharging this stage of the algorithm we
have also considered non-homogeneous octrees, which
means that only some oct-nodes in one level are fur-
ther decomposed depending on whether
not more precision in a particular region of an object,
for the localisation of intersecting features.

Phase 1-2: Processing of the list Oct-Contacts
and identification of potentially colliding primitive
features. Creation of the List-of-potential-elemental-
contacts (called Checks containing two types of basic
features intersection, J F or EE, as described in the
previous section.

The list Oct-Contacts is traversed one or more times
and, depending on the type of the nodes intersection,
one or more potential, basic contacts are added into
Checks. In this phase we make use of the lists v-list,
e-list or f-list of each oct-node, that are created be-
forehand (off-line) by the procedure create-oct(), as
discussed in section 3.1. These lists create a link be-
tween the octree and the polyhedral representation of
each object and are the ones that determine which
pairs of primitive features will be added into Checks,
and tested for intersection in the following, 2nd stage
of the algorithm.

3.3 2nd stage : Determining actually in-
tersecting features

In this stage, the list Checks, previously created by
phase 1-2 of the algorithm, is traversed twice to de-
termine the pairs of features of the polyhedral objects
that are actually colliding.

We start by testing for possible VF contacts (pro-
cedure check-vfs()), among those included in Checks.

- 503 -

shot of the Virtual Scene.

Proposition 1 Each vertex of a polyhedral object can
be consadered, a t each step, to be an contact with no
more than one face for every other convex polyhedral
object. This proposhon cannot hold for non-convex
polyhedra, whzch can however be modelled as unaons
of convex ones.

To make use of this proposition, the ‘history’ of
previously detected contact configurations has to be
maintained at every computation step, and stored in
a list called List-of-Contacts. At each step, before
performing the detection of new a
features (procedure detect-contact
the validity of the previously dete

ts) . This is performed
ntacts(). In a similar

heck-ees() detects for new cur-
rently intersecting pairs of edges (EE basic contacts)
from all the possible combinations contained in Checks
list.

4 Numerical Experiments

To investigate the properties and demonstrate the
efficiency of the developped algorithm we have con-
structed a virtual scene consisting of several three-
dimensional objects. One of these objects, called
‘FOLLOWER’, is manipulated directly by the human
operator with the use of a 3D magnetic sensor (Pol-
hemus IsotrackTM), capturing in real-time informa-
tion about the human hand movements in space. The
‘FOLLOWER’ is moved arround entering in collision
with various objects present in the scene. These col-
lisions have to be detected in real-time in order to
respect the motion constraints that are imposed due
to the presence of other objects in the virtual scene.

Fig.2 presents an example of a virtual scene con-
structed to test, in real-time, the efficiency of the algo-
rithm. The small arrows represent contact constraints
(unitary forces along normal directions) imposed on
the moving object (wireframe polyhedron due to the
presence of collisions with existing obstac 1 es.

The objects used in the experiments with their
polyhedral as well as their spherical, octree represen-
tations are shown in fig.3.

Polyhedral O b j e c t ,
number of vertices

Spherical OcCree
Represent at i on

<a) Cube , 8

1
I b) Rectangle , 8

EZE3
(c) Cylinder , 2E3

le) Sphere

I Level = 2 1

I Level = 2 1

< Level = 3 >

C Level = 3 5

< Level = Ec 1

Figure 3: Polyhedral objects used in the experiments
loath thew spheracal octree representations

A large set of numerical experiments have been per-
formed with these objects entering in various types of
collision. Two parameters influencing the efficiency of
the algorithm have been mainly studied. The first one
is the number of levels in the octrees and the influence
its increase may have on the total mean computation
time of the algorithm. The second one concerns the
complexity of the scene. We investigate the variations
of the total execution time for our collision detection
and contact force computation algorithm versus the
total number of vertices present in the virtual scene.
For a virtual scene cosisting of 6 polyhedral objects,
as shown in fig.:! we obtain computation times of the
order of 20 msecs, which is acceptable for real-time
applications.

The algorithm has been implemented in C language
and runs on a HP715, 50MHz workstation, equipped
with math.coprocessor and graphics accelerator. HP
Starbase graphical library provides the necessary pro-
cedures for color, 3D image rendering.

4.1 The number of levels in the octrees
and its effect on the execution time
of the algorithm

The experimental results, obtained for various com-
binations of colliding objects and different numbers of
levels in their octrees, are briefly summarised in ta-
ble l.

- 504 -

Average CPU time 1

Table 1 : Experimental Results. Mean Computation
time (in msecs) of the algorithm for various types of

colliding objects (refer to fig.3) and increasing
number of levels in the octrees.

First of all, we can observe that for each object
there is an optimal number of levels for its octree r e p
resentation which depends on the complexity of its
polyhedral representation. For instance, for a rectan-
gular object of type (b) (see fig.3) a number of 2 levels
in the octree seems to be sufficient for detecting col-
liding features. An increase in the number of levels is
not counter-balanced by a sufficiently large decrease
in the second stage of the algorithm (i.e. testing for
intersection all the potentially colliding features sup-
plied by the first stage) due to the small number of
vertices present in the object. A number of 3 levels
is however needed to sufficiently represent more com-
plex polyhedral objects such as cylinders (object c)).
The mean computation time for all types of colli 6 ing
objects, versus the number of levels in the octrees is
graphicaly represented in fig.4. The performance of
our collision detection algorithm for each object will
have a form similar to fig.4, presenting an optimality
for a particular number of levels in the octree rep-
resentation. This optimal number of levels increases
as the polyhedral model of the objects becomes more
complex.

We must also note that intersections between poly-
hedral and spherical objects are treated separately by
a special intersection-testing procedure (znter-ps()). A
sphere is modelled by an octree of level 0, and its poly-
hedron (graphical model) is not used for interference
detection. Intersection between a vertex, an edge or
a face and a sphere is easily detected by simple, spe-
cially developped procedures (check-ws(), check-es(),
check-fs()).

4.2 Mean Computation Time versus
Complexity of the Scene

A classical measure of the efficiency for a colli-
sion detection algorithm is to monitor its performance
(mean computation time) with respect to the com-
plexity (e.g. total number of vertices) of the colliding
objects. Fig.5 shows the evolution of the algorithm’s
computation time versus the complexity of the objects
polyhedral model, for different numbers of levels in the
otree representations.

We observe that, as the number of levels in the
octree increases, the algorithm presents a behaviour
which is ‘more lznecsr’ with respect to the total num-
ber of vertices of the colliding objects. We therefore

~

- 505 -

700 t -I

number of levels

Figure 4: Mean computation time of the algorithm (in
msecs) versus the number of levels in the octrees

verify our expectation that using the optimal number
of levels in the octree representation of each polyhe-
dral object, the performance of the algorithm, for in-
creasing complexity of the virtual scene, remains lin-
ear. Moreover, as we can see, the coefficient of linear
growth is quite small.

5 Conclusion

An algorithm for the collision detection between
two three-dimensional, moving objects has been pre-
sented. The algorithm makes use of a spherical,
object-centered octree representation to perform lo-
calisation of potentially colliding features. This octree
decomposition can be easily updated, facilitating the
representation of arbitrarily moving objects. The al-
gorithm, in a first stage, performs localisation of pairs
of features that are likely to collide. These features
are subsequently checked to determine which of them
are actually intersecting, and contact points are cal-
culated with precision.

A virtual scene has been constructed to test the effi-
ciency of the algorithm in a real-time application. The
human operator directly manipulates a virtual object
generating collisions with existing obstacles. The sys-
tem must detect the collisions, compute and display
the interaction forces fast enough to maintain the re-
alistic impression given by the environment. These
forces can be used to perform real-time, dynamic ani-
mation of virtual objects. Mean computation time has
been found to be around 20ms for a scene consisting
of several, simple polyhedral objects.

A large set of numerical experiments has been per-
formed with these objects entering in various types
of collisions. We have shown that using the optimal
number of levels for the octree representation of each
object, the performance of the algorithm, with respect

number of vertices

Figure 5: Mean computataon tame of the algorzth
msecs) versus the complexaty of the collzdzng o
(total number of vertices), for dafferent numbers of oc-
tree levels

to the complexity of the colliding objects, remains lin-
ear.

References

[1] E.I.Agba, “Objects Interactions Using Super-
quadratics for Telemanipulation System Simula-
tion”, The Internatzonal Journal of Robotzcs Re-
search, V0l.8, No.3, June 1989.

[2] D.Baraff, “Analytical Methods for Dynamic Sim-
ulation of Non-penetrating Rigid Bodies”, SIG-
GRAPH’89, Computer Graphacs, Vo1.23, Number
3 , July 1989,

[3] P.J.Berkelman, R.L.Hollis a S. E. Salcudean, “In-
teracting with virtual Envi ments using a Mag-
netic Levitation Haptic Interface”, Proceedangs of
the 1995 IEEE Internatzonal Conference on Intel-
ligent Robots and Systems (IRO5”95), Vol.1, 117-
122, Pittsburgh, PA, August 1995.

[4] J.E.Bobrow, “A Direct Minimization Approach for
Obtaining the Distance between Convex Polyhe-
dra”, The Internatzonal Journal of Robotacs Re-
search, Vol 8, No.3, June 1989

[5] G.Burdea and Ph.Coiffet, “Virtual Reality Tech-
nology”, John Wiley & Sons, 1994.

[6] E.G.Gilbert, D.W.Johnson and S.S.Keerthi, “A
Fast Procedure for Computing the Distance Be-
tween Complex Objects in Three-D

[7] V.Hayward, “Fast Collision Detection Scheme
by Recursive Decomposition of a Manipulator
Workspace” , Proceedangs of the 1986 IEEE Inter-
national Conference on Robotics and Automation,

[8] P.M.Hubbard, “Collision Detection for Interactive
Graphics Applications”, Ph.D. Brown University,
CS-95-08, April 1995.

191 Y.Kitamura, H.Takemura and F.Kishino, “Coarse-
to-Fine Collision Detection for Real-Time Ap-
plications in Virtual Workspace”, Proceedzngs of
ICAT’94: Internatzonal Conference on Artzficeal
Reality and Tele-exastence, July 14-15, 1994 Tokyo.

T.Kotoku, K.Tanie and A.Fujikawa, “Envi-
ronment Modelling for the Interactive Display
(EMID) Used in Telerobotic Systems”, Proceed-
ings of the 1991 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS’SI),
Osaka, Japan, November 3-5, 1991.

[11] M.C.Lin and J.F.Canny, “A Fast Algorithm for
Incremental Distance Calculat
of the 1991 IEEE Internation
Robotzcs and Automation, Sacra
April 1991.

Solid Model HSM and Its Ap
ence Detection between Moving Objects”, Journal
of Robotac Systems, 8(1), 39-54 (1991).

[13] T.Lozano-Perez and M.Wesley, “An algorithm for
planning collision-free paths among polyhedral ob-
stacles”, Communications of ACM, v01.22, no.10,
560-570, October 1979.

[14] M.Moore and J.Wilhelms, “Collision Detection
and Response for Computer Animation” , SIG-
GRAPH’88, A C M Computer Graphics, Volume
22, Number 4, 289-298, August 1988.

[15] D .Terzopoulos, “Elastically Deformable Models” ,
SIGGRAPH’87, Computer Graphacs, v01.21, Num-
ber 4, July 1987.

[16] S.L.Wang, “Collision Detection of Multi-Robots
Using Line Geometry”, Mechanical Engineering
Department, North Carolina AT&T State Univer-
sity.

[17] C.Wang, D.J.Cannon and , “A Human-
Machine System Integrating a1 Tools with a

1044- 1049.

[12] Y.-H.Liu, S.Arimoto and H

Robotic Collision Avoidance Concepk using Con-
glomerates of Spheres”, accepted f i r pubhi t ion
in the Journal of Intellzgent and Robotacs Systems,
(JINT 1353).

[18] J.Weng and N.Ahuja, “Octrees of Objects in Ar-
bitrary Motion: Representation and Efficiency”,
Computer Vision, Graphics and Image Processing,
vo1.39, 167-185 (1987).

- 506 -

