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Abstract 

In this paper the control problem of telemanipulators 
is considered under the condition that they are subject to 
modeling and other uncertainties of considerable levels. 
The design is based on the S. Lee and H. S. Lee 
teleoperator control scheme, which is modiJied so as to 
be able to compensnte the uncertainties,and is 
implemented using a partitioned multilayer perceptron 
neural network. Several subnetworks are used each one 
identiaing a term ofthe manipulator’s dynamic model. A 
new learning algorithm is proposed which distributes the 
learning error to each subnetwork and enables online 
training. Several simulation results are provided, which 
show the robustness ability by the partitioned 
neurocontroller, and compare it with the results obtained 
through sliding mode control. 

1. Introduction 

Although research on autonomous robots is expected 
to reduce the need for humans working in hostile or 
unpredictable environments, our supreme recognition, 
analysis, decision making and manipulation abilities, are 
not easy to be matched. Teleoperators will still be 
valuable in the future for space, underwater, 
underground, hazardous or medical applications. Current 
research topics include the incorporation of autonomous 
functions and designing of schemes robust to time delay 
in the communication channel between the master and 
slave robots. 

Neural networks (NNs hereailer). possessing a 
remarkable ability to identify and control strongly 

nonlinear, multivariable plants, with minimum need for 
prior knowledge, through an adaptive, compact and fast 
system, can provide valuable solutions in various levels of 
a telemanipulator. The methods developed for single 
manipulators can be applied locally to the master and 
slave. In addition, they can assist in the co-ordination 
between the human operaior and the machine (e.g. visual 
representation, force feedback redefinition, incorporation 
of human and environmlental dynamics in the control 
loop). Certain autonomous functions can also be assigned 
to NNs. Several applications of NNs on single 
manipulators have been reported (e.g. [l]. [2], [5]. [SI), 
but no reference was found concerning an application to 
telerobotics. 

In this paper, NNs are exploited at the control level. 
Our work is based on the teleoperator architecture 
previously proposed by S. Lee and H. S. Lee [3]. In this, 
the traditional concept of telepresence, according to 
which the exact position and force sensed at the slave side 
is fed back to the operator, so that he feels as if he is 
“physically present” at the slave workspace [6], is aban- 
doned. S. Lee and H. S. Lee argue that in the context of 
semiautonomous control, this concept might mislead the 
operator, since he is not xware of the automatic functions 
but “feels” their results. Doubts about the necessity of 
telepresence have been also previously expressed [6]. In 
this paper, their scheme is enhanced in order to be able to 
compensate modeling uncertainties. Moreover, a novel 
heuristic learning algorithm is designed, suitable for use 
with a partitioned NN, which identifies the inverse robot 
dynamics. In [9] a sliding mode robust controller is 
designed for the same purpose 

Modeling errors can be caused by several factors. In 
the slave side. they could be due to picking up an object of 
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unknown mass and shape (e.g. tool or sample) in order to 
perform an assembling or some other task with it. On the 
master side modeling errors are not likely to be large, 
since the master operates in a safe and well known 
environment. However, in certain advanced applications 
(e.g. telesurgery) significant uncertainty may arise by 
providing the possibility to change the master's end 
effector's shape and feel, so as to best suit the task and the 
operator. Other causes of errors, appearing on both 
robots, are accidental deformation of the last link(s), 
unidentified nonlinear terms or terms deliberately omitted 
in the model used in the controller to simplify the design 

The paper is organized as follows. Some basic 
elements of the architecture of S .  Lee and H. S .  Lee are 
outlined in Section 11. The neural controller is introduced 
in Section 111, and incorporated in the teleoperator in 
Section IV. The resulting system is tested through 
simulations in Section V, and compared with a sliding 
mode robust controller in Section VI. Section VI1 
contains the conclusions. 

2. Original control scheme 

Rigid-link manipulators of n degrees of freedom are 
considered. Their dynamics are described in [7]: 

where q is the vector of joint angles, D(4)  the inertia 
matrix, c(q,f#9 the vector of Coriolis and centrifugal 
forces, g(4)  is related to gravity, T~ are the driving 
forces, f ,  the forces acting at the end effector from the 

environment, and J ( 4 )  the Jacobian matrix. 
The whole architecture is designed in the Cartecian 

space. Aiming to provide compliant force control, a 
previous extension of Impedance Control proposed by the 
authors is utilized. The desired manipulator impedance is 
defined through a set of differential equations, termed the 
Generalized Impedance (GI). For the master and slave 
respectively it is specified as: 

WqM + C(q,4)4 + g(q )  = 'a - J T  ( 4 ) f e  (1) 

L e f  + f c m  = M d m x m  + B d m x m  (2a) 

B , L  + K , f ,  (2b) 
In the above and in the following, subscripts m, s, h, and 
e will denote the master, slave, human and environment 
respectively. f,, is the interaction force between the 
operator's arm and the master, fief is the reflected force, 

MdsXs + Bds(is  - -ids) + KdS(xs - x,) = 

X& = K,,x, 3 matrices Mds, Bds, K ,  , Bfi , K ,  > K,, 
Mdm,Bdm, are parameters of the GI and 

fe ,  = 2, (x, - x,) represents the contact force at the 
slave side, where 2, is the environmental impedance 
and xe its location. In order to impose the GI, a control 
law following the computed torque method was proposed. 

Assuming ideal performance, the master and human 
arm form a dual system described by: 

where f h  is the intentional force of the operator, i.e. the 
force applied by his brain to his muscle. Note that f h  is 
the response of his nervous system to the stimuli of vision 
and force (generated through a screen and the master 
arm). Eq. (3) reveals that f r y  is the reaction force 

actually felt by the operator. In a conventional scheme it 
would be equal to (a scaled) fcs.S.Lee and H.S.Lee 
define it as a combination of the force and position 
tracking error [3]. 

In the initial work [3] the role of modeling errors was 
not considered. In [4] S .  Lee and H. S .  Lee proposed an 
improved control scheme for applications with significant 
time delay. The new controller was reported to perform 
well also under 5% - 10% errors in the slave model. 
However, this is obtained as a side effect, without being 
an explicit specification of the design from the start. At 
short time delays the new version coincides with the 
previous one. The teleoperator design presented in the 
following: a) ensures proper functioning under 
disturbances, computational delay and significant 
modeling errors, b) enhances the original scheme so that 
it can be used in more complex tasks, c) improves the 
ability of the system to compensate control errors and the 
fatigue of the operator, d) is an essential step towards the 
practical implementation of the original scheme. In order 
to fulfil the above requirements we considered a robust 
control solution ( [ 9 ]  and Section VI) and an adaptive one 
(this paper). 

f h  + f r e f  = ( M h  + Mdm I'm + B d m x m  ( 3 )  

3. Neural controller 

An effective way to incorporate NNs in a robot 
controller. is to use them for the identification of the 
robot's dynamics. In this context some researchers 
proposed the partition of the NN to subnets, each one 
identifying a part of the dynamics (e.g. the terms of eq. 
(1)) [1],[2],[5]. According to F. Lewis et a1 [5] this: ''1) 
simplifies the design, 2) gives added controller structure, 
and 3 )  makes for faster weight tuning algorithms". 
However, partition methods proposed up to date either 
require a lot of subnets (e.g. [ 11) or specific knowledge of 
the dynamics (e.g. [5]). We searched for a method which 
would: a) enable on-field adaptation to sudden 
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parameters' change, b) enable fast output calculation 
and weight tuning (for this, small NNs are necessary), c) 
preserve the basic nonlinear functions learned offline. An 
inappropriate online training method could e.g. allow the 
gravitational subnet learn some parts of the D matrix, d) 
enable the learning of new nonlinear terms, induced due to 
contact with the environment, actuator saturation, or 
hardware damage and e) encompass minimum a priori 
information in the subnet structure, so that the net self- 
optimization and a compact representation are possible. In 
order to meet requirements (b) and (e) the NN was divided 
to only three subnets (Fig. 1) corresponding to matrices D, 
h and g of eq. (1). Their outputs were added at a final 
layer. The only a priori information used was the subnet 
inputs. In order to achieve on line adaptation, the subnets 
were chosen to have no fixed part (in contrast to [l], [5]). 
To fulfill point (c) above, a novel, heuristic way to train 
the subnets was developed. 

1 _ - - - -  
I .  

I L  I 
I I 

I 
Neural N 5  , - _ - -  I 

Figure 1. Partition to subnets, q: joint angle, v: velocity, a: 
acceleration. 

- > 
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03 ' \  
I 

0 '  2 2 > 
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Figure 2. Error distribution functions. The subscript in f(.) 
stands for the corresponding subnet. 

In this work Multilayer Perceptron Networks (MLPs) 

were used. Each subnet was first trained offline to learn 
the corresponding term of i3 nominal model. In this way the 
required basic functions were formed. The subnets were 
trained online with a variation of the Back Propagation 
(BP) algorithm, although any other algorithm can also be 
used. The main problem with the online training is how to 
distribute the training error to each subnet. A 
straightforward way is to include the output neuron 
weights to the BP process, i.e. first propagate the error 
through them. However, simulations revealed that this 
violates requirement (c) above. Much better results were 
obtained by employing some heuristic functions. Their 
form was inspired by observing in what way each term of 
the robot dynamics depends on joint position, velocity and 
acceleration. They are plotted in Fig.2 and described by: 

(4) 

The error per subnet is ohtained by multiplying the total 
error with these functions. In essence, the various training 
sections of Guez and Selinisky [ 11 are here overlapped and 
take simultaneously place, in a fuzzy logic like way. The 
constants and the type of norm in eq. (4) can be optimized 
for a specific robot and task. 

In order to choose a neurocontrol architecture in 
conjunction to which the ]proposed partitioned controller 
would be used, several sclhemes were extensively tested. 
The best results were obtained by a variation of the Model 
Reference Adaptive Control scheme, reported in [2]. 
Impressive results were also obtained by a variation of 
Internal Model Control, but the previous scheme was 
judged to be more appropriate to use within the 
teleoperator. 

4. Incorporation of the neural controller in 
the teleoperator 

The most straightforward way to incorporate the 
neurocontroller in the teleoperator is to first calculate an 
ideal trajectory according to the Generalized Impedance 
(GI), since this determines the desired performance in the 
original architecture, and then use the NNs to force the 
robots to track it. The original controller functions in a 
similar way, but there the GI is explicitly incorporated in 
the control torque generation formulas, whereas now a 
two-level approach is followed (Fig. 3): at the higher level, 
the operator and GI bllocks determine the desired 
trajectories "thinking" in Cartesian coordinates. At the 
lower level, the controllers try to impose the ideal 
performance through suitable control inputs. 
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Figure 3. Teleoperator with neural controllers. A 

denotes variables corrupted by noise. Note that 
fes,Xs are fed back to the master side. 

On the master side the collaboration of the operator 
and the controller induces a complicated situation. The 
most important questions arising are: a) how should the 
desired trajectory be generated? b) how can good 
controller performance be guaranteed, since it acts in 
parallel with the non-passive human intentional force 
f ,  , c) How can we ensure that the operator will feel f ief  
as reaction force? 

Regarding the point (a), the control scheme of S. Lee 
and H. S. Lee offers two possibilities: equations (2a) and 
(3). Ideally, the use of either would give the same results, 
since they both represent the GI. Their advantages are 
that the second is applied on the dual dynamic system 
operator’s arm + master, whereas the first takes in 
account only sensed variables. In our opinion eq. (2a) is 
the best choice, since it allows to control all the passive 
parts at the master side and uses f, as input, rather than 
its filtered version f,, . To provide f,, an estimator of 
the human arm dynamics was incorporated in the control 
scheme. S. Lee and H. S. Lee [3] derive a simplified 
model for the human arm, whose estimation is trivial. 

Even a more detailed one can be identified, e.g. by using 
an online-adapting NN, to tune to parameters’ variation, 
according to the operator’s intention or his fatigue. This 
way the results of fatigue and control errors of the 
operator towards his muscle can be compensated. 
Difficulties (b) and (c) above, are closely related to each 
other and can both be solved if the controller’s 
performance is satisfactory right from the start. This is 
actually the case with sliding controllers [9]. In the 
scheme presented here, the NN achieves satisfactory 
performance after a short (1 sec), automatically 
performed training phase, during which their is no 
interaction with the operator. The robot is commanded to 
move along a sinusoidal course of small amplitude then 
stay there for a while, so that the NN learns coarsely the 
altered dynamics before the main movement begins. In 
this way the training consists of three phases: a) An 
initial offline phase, during which the robot is trained on 
a nominal model and learns the basic nonlinear functions, 
b) a short, on-field but still offline phase whenever serious 
modeling errors (are expected to) arise, and finally c) a 
continuous online phase for perfectly tuning the 
parameters. Using the terminology of classical 
identification, the first phase corresponds to the structure 
identification, the second to a coarse parameter 
estimation, and the last to the final parameters’ tuning. 

With the exception of the points discussed above, the 
design concept of S. Lee and H. S. Lee was preserved 
without changes (e.g. monitoring forces). 

5. Simulations 

Simulations were performed with two identical rigid- 
revolute-link manipulators of 2 DOFs acting as the 
master and slave arin (refer to Table I). In the following, 
all distances are in meters, and forces in Newtons. When 
referring to “ideal” response we mean the response 
computed directly by the GI equations. For the “non- 
ideal” case the control input was first calculated and then 
applied to the robot dynamics after a time delay of one 
sampling period, in order to model the computational 
delay. At all tasks reported here, the two robots were 
initially stationary at position (0.8,O.S) relative to their 
base frame. Then the operator tries to move the slave in 
position x d .  At the contact task he simultaneously 
estimates to feel a reaction force f,. The object in the 
contact tasks is modeled as an elastic, immobile “wall” of 

infinite dimensions with 2, = [ ’0” lo]. A point on the 

border is Xe = (0.8085, 0.8085) and a unity vector 
vertical to it is (0.7071, 0.7071). All simulations were 
carried out with sampling period of 1 msec at a PC with 
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'ABLE I: Parameters and Modelina Errors 
Operator 

As in [5], expanded in the 2-DOF case. 
Master and slave dynamics 

link I :  m = 10,1= 1, IC= 0.5 I = 0.8 
link 2: m = 5,1= 1, IC= 0.5, I= 0.45 

SI units (m, kgr, kgr*m2) 
Symbols: m: mass, 1: length, IC: center of mass 

position from previous joint. I: moment of inertia 
Generalized Impedance: 

0.75 0 0 0  
~ . f i  =[  0 . 7 , 1 - ~ f i  =[o 0] 
Communication channel and Grp 

K,, =[,, '],KCs =[ 0.2 0 ] [" '1 
0 1.0 0 0.2 ' Grp = 0 1.0 

Modeling Errors 
Unless otherwise stated, 20% and 50% for the master 
and slave respectively on the mass and moment of 
inertia of the last link. 

a90 MHz Intel Pentium processor. 
First some simulations were performed to check the 

response of the original algorithm. Figs. 4 a,b show that 
even if only computation delay of a full sampling period 
is taken into account the slave follows a sinusoidal course 
instead of the ideal. With modeling errors only at the 
slave side, the slave moves along a curved course and 
stops at a totally wrong position. With modeling errors at 
both robots and upon collision with objects, the system 
becomes unstable. The above results justify the need for a 
new controller. 
Next, simulations were carried out on a single robot, 
identical to the ones of Table I, in order to check the 
efficiency of the proposed error distributing method. The 
partitioned NN did not serve as a controller. Data 
generated from eq. (1) along sinusoidal trajectories with 
varying frequencies and amplitudes was used to check its 
ability to learn the inverse dynamics. The NN was 
initially trained at an erroneous nominal model. with 
errors as for the slave in Table I. Figs. 4c,d,e demonstrate 
the superiority of the proposed algorithm in comparison 
to the BP. In the final set of simulations (Figs. 4f,g.h) the 
complete teleoperator system was considered. Note that if 
relative fast movements are commanded after the 
uncertainty arises (Fig. 4g) the trajectory is not ideal, 
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Figure 4. &&o: Slave trajectory, ideal system (solid) 
(a) system with full period computation delay 
(dashed). Goal point xar =(0.85,0.85) (b) system with 

modeling error at the slave (dashed). Goal point ~d 
=(0.8105,0.8105), 4&.0: Simulations on a singre robot, 
(c) novel error distribution algorithm (solid) and BP 
(dashed). Correct output e114 Nm. (d) Individual 
errors for subnets G (solid), h (dashed), D (dotted), 
compared to each term of eq. ( I ) ,  with novel 
algorithm. (e) as above, with BP. 4fJ-JhJ: Slave 
trajectory. lfLlsl: free space, (f) ideal system(solid), 
system with modeling uncertainties (dashed), 
Xd =(0.85,0.85), (9) system with modeling errors 

Xd =(0.9105, 0.9105) and back to (0.8,0.8), Ih): contact 

task, Xd =(0.8105, 0.8105), f, =(5,5). This force will 
actually be felt if the penetration is 0.1768 m. 
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since the NN cannot learn so fast. However. when the 
robot is commanded to go back (effectively along the 
same trajectory) the tracking error is significantly 
reduced. This leads us to search for faster learning 
algorithms (other than BP). The reader should also keep 
in mind that the initial off line training was not optimal. 
Fig. 4h shows that also under contact with the 
environment the system performs well. Note that upon 
collision, a small deviation from the linear course is 
observed. To minimize it, the scaling constant K c s  was 
reduced by a factor of 10. 

6. Comparison with a sliding mode robust 
controller 

A sliding mode robust controller was also tested as an 
improvement of the computed torque controller of the 
control scheme of S. Lee and H. S. Lee [9]. Sliding 
controllers guarantee trajectory tracking under the 
presence of modeling uncertainties of known bounds and 
disturbances [7]. In this section, this alternative control 
method will be briefly compared with the previously 
outlined neural one. 

The controller was incorporated in the teleoperator 
system following the concept presented in Fig. 3, where 
the controller blocks represent now the new type of 
controllers instead of NNs. A problem faced was how to 
handle force control, since the sliding mode method is 
primarily aimed at trajectory following. The most 
straightforward approach was to apply the two step 
procedure also utilized for the neural controllers. 

The results were very good: perfect trajectory 
following was achieved at all the tasks in free space and 
upon contact with non-rigid objects. Compared with the 
NN controller, the robust one could ensure good 
performance right from the start, and no "collision shock" 
was observable on the trajectory. Furthermore, in contrast 
to NNs, good performance is theoretically guaranteed 
However, the inevitable chattering in the control input 
was at least one order of magnitude bigger than the one 
observed with NNs. In addition, the sliding mode 
technique requires a nominal model of the robot dynamics 
as well as knowledge of the uncertainty bounds. NNs 
adapt quickly to a wide range of situations and 
parameters, and the output is calculated easier and faster. 
Finally, an inverse model of the system is identified. This 
can prove to be very useful to evaluate the situation, and 
the objects encountered, much better than the "blind" 
compensation offered by sliding robust controllers. 
Therefore NNs are, in our opinion, very suitable for 
employment within the teleoperator system. 

7. Conclusion 

In this paper, a previously proposed teleoperator 
architecture was enhanced to function under modeling 
errors reaching up to 50% in certain parameters of the 
robot. Neural network controllers were successfully used. 
The NN was divided into three subnets and trained by a 
novel algorithm. The simulation results were proved very 
encouraging. 
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