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ABSTRACT 

In this paper, the AM-FM modulation model and a multi­
band analysis/demodulation scheme is appl ied to speech 
formant frequency and bandwidth tracking. Filtering is 
performed by a bank of Gabor bandpass filters. Each band 
is demodulated to amplitude envelope and instantaneous 
frequency signals using the energy separation algorithm. 
Short-time formant frequency and bandwidth estimates are 
obtained from the instantaneous amplitude and frequency 
signals and their merits are presented. The estimates are 
used to determine the formant locations and bandwidths. 
Performance and computational issues (frequency domain 
implementation) are discussed. Overall, the multiband de­
modulation approach to formant tracking is easy to im­
plement , provides accurate formant frequency and realistic 
bandwidth estimates, and performs well in the presence of 
nasalization. 

1. INTRODUCTION 

Furmant tracking is an old problem that has received much 
attention lately, mainly because of the deficiencies of the 
well established algorithms. Most formant tracking algo­
rithms are based on linear prediction (LP) analy sis and en­
counter problems with nasal formants, spectral zeros and 
bandwidth estimation. T hese deficiencies stem from the 
fact that LP is a parametric method that does not model 
spectral valleys; in addition , LP is a linear model unable to 
adequately model speech acoustics. Alternatively, we pro­
pose a multi band demodulation approach to speech analy­
sis in the framework of the AM-FM modlliation model that 
overcomes these problems. 

Motivated by several nonlinear and time-varying phe­
nomena during speech production Maragos, Quatieri and 
Kaiser [4] proposed an AM-FM modulation model that rep­
resents a sjngle speech resonance R(t) as an AM-PM signal 

R(t) = aCt) COS(2'1l-[Jet + l' q( r)drJ + 8) (1 ) 

where fe is the center value of the formant frequency, q(t) 
is the frequency modulating signal, and a( t) is the time­
varying amplitude. The instantaneous formant frequency 
signal is defined as fi(t) = fe + q(t). Finally, the speech 
signal Set) is modeled as the sum Set) = EN_ Rk(t) of N 
such AM-FM signals, one for each formant. 
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To obtain the amplitude envelope la(t)1 and the insta.n­
taneous frequency fi(t) signals from a speech resonance 
R(t), a demodulation algorithm must be used. In addi­
tion, a filtering scheme is needed to isolate a single reso­
nance signal R( t) from the spectrum before demodulation 
can be performed. 'T'hese two steps of speech analysis will 
be referred to as multiband demodulation [1]. Multiband 
demodulation yields rich time-frequency information. 

In section 3, we propose and compare two short-time 
estimates of the average frequency of a speech (frequency) 
band R(t): the mean instantaneous frequency, which has 
been used for formant tracking in [3J and the mean ampli­
tude weighted instantaneous frequency, a time-domain equiv­
alent of the first central spectral moment [2]. Next , based 
on the weighted frequency estimate, the modulation model 
and a multiband filtering/demodulation scheme, we pro .. 
pose the multiband demodulation formant tracker. The al­
gorithm produces accurate formant tracks and realistic for­
mant bandwidth estimates, is easy to implement bot.h in 
the time and frequency domain, and avoids most of the 
drawbacks of LP-based formant trackers. 

2. DEMODULATION ALGORITHMS 

A speech resonance R(t) is extracted from the speech spec­
trum by a Gabor bandpass filter with im pulse response 
h{t) = exp{-a2t2)cos(27rfet), where Ie is the center fre­

quency of the Gabor filter (chosen equal to the formant 
frequency) and a is the bandwidth parameter. 

. 
The energy separation algorithm (ESA) wa.s developed 

111 [4J to demodulate a speech resonance R(t) into amplitude 
envelope 1�(t)1 and instantaneous frequency fi(t) signals. 
The ESA IS based on the Teager-Kaiser energy tracking 
operator W[s(t)] = [5(t)J2 - S(t)8(t), where .� = ds/dt. The 
ESA frequency and amplitude estimates are 

1 
f;(t) "" -21t' la(t) I '" 

W[s(t)] 
y'W[s(t)] 

Similar algorithms exist in discrete time [4, 5]. 

(2) 

An alternative way to obtain la(t)1 and fi(t) estimates 
is through the Hilbert transform demodulation (HTD), as 
t�e modulus and phase derivative of the Gabor ana.lytic 
SIgnaL The HTD can be implemented in the frequency 
domain (as an 900 phase splitter). In general, the ESA has 
the advantages over HTD of being simple, computationally 
efficient, and of having excellent time resolution [7J. 
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3. FORMANT FREQUENCY AND 
BANDWIDTH SHORT-TIME ESTIMATES 

Simple short-time estimates FI and BI for the frequency 
and bandwidth of a formant candidate, respectively, are 
the mean and standard deviation of the instantaneous fre­
quency signal fi(t), i.e., 

Fl = :¥:- It:o+T fi(t) dt 

(BI]2 = :¥:- J;:o+T (fi(t) - Ft}2 dt 
(3) 
(4) 

where to and T are the start and duration of the analy­
sis frame respectively. Alternative estimates can be found 
from the 1st and 2nd moments of fi(t) using the square 
amplitude (a(tW as weight 

_ f.:oF fi(t) [a(t)]2 dt 
F2 - ('O+T {a(t)]2 dt 

(5) 
),0 

B 2 _ It�o+T [(ti(t)/21tl + (fi(t) - F2)2[a(t)]2]dt 
[ 2] - ('oF [a(t)f dt (6) 

J , o 
where the additional term (ti(t)/27r:)2 in B2 accounts for the 
amplitude modulation contribution to the bandwidth [2]. 

Consider the sum x(t) of two sinusoids with constant 
frequencies ft, h and time-varying amplitudes al(t), az(t) 

x(t) = al(t) cos[21rftt] +a2(t)cos[21r/2t] (7) 

The amplitude envelope la(t)1 and instantaneous frequency 
f; (t) signals (obtained from HTD) are 

la(t)1 � (ai + a� + 2al a2 cos['::'wt])! (8) 
fi(t) � (aUI + a�h + Gla2(ft + h) cos['::'wt])/az (9) 

where '::'w = 21r(ft - Jz). The short time frequency esti­
mates Fl and Fz are (depending on the frame boundaries) 

(10) 

i.e., Fl locks on the harmonic with the larger amplitude, 
while Fz provides a (square amplitude) weighted mean fre­
quency. These results hold also when la(t)l, fi(t) are com­
puted via ESA (with slight modifications when a l � a2). 

In Fig. 1 (a),(b) we display the short-time frequency 
estimates Fl and F2 computed via the ESA (x) and the 
HTD (0) for the signal in (7) with ft = 1.5 kHz, h = 1.7 
kHz, al(t) = lOt, az(t) = I-lOt and t E [0,0.1] sec. The 
amplitudes of the two sinusoids are antagonizing so that 
for the first 50 msec the sinusoid h is dominant while for 
the remaining 50 msec ft dominates. We can see that Fl 
locks on the sinusoid with the greater amplitUde (greater 
amplitude frequency product for the ESA), while F2 being 
the mean (square amplitude) weighted frequency, provides 
a more 'intuitive' short-time frequency estimate. 

For a sum of more than t.wo (AM-FM) sinusoids: F2 � 

(2::" a� In) / (2::" a�), i.e., each frequency is weighted with 
the square amplitude. In general, the behavior of PI is 
complicated. If there are only one or two prominent sinu­
soids/harmonics in the spectrum though, FI will lock on 
the frequency of the sinusoid wit.h the greatest amplitude. 

785 

'800 

�1700 

�:::: ...... 1660 i'600 ' .... 0 

o..,HTD 
x=ESA !III 

II! 
1

40:�----�2�O------4�O�--��SO�-- --�8�O -----='oo (a) TIME (fTt_.c) 

'Ieoo ;(1'750 
I:::: 1600 �1ei60 
�'S00 

:t 1450 
!:II! 1400 

o_HTD 
X_ESA 

�----�2�0�---- ·�
�
�
' M
-
E
--

(
�-.-.�

:f
�----�----�'oo (b) 

Figure 1: Short-time frequency and bandwidth (error bars) 
estimates for a sum of antagonizing AM sinusoids: (a) Fl, 
BI, (b) F2, B2 (window 10 msec, updated every 5 msec). 

A speech resonance can be thought of as the sum of a 
few slowly time-varying (AM-FM) sinusoids, one for each 
harmonic. Thus, FI has the tendency to lock on the har­
monic with the greatest amplitude in the formant band, 
while F2 weights the frequency of each harmonic with its 
square amplitude. In general, Fz provides a more accurate 
formant frequency estimate; FI can be superior, however, 
when the bandpass filter used to extract the formant is not 
placed exactly on the spectral resonance (e.g. off by 100-200 
Hz). Finally, there are cases where no major formant har­
monics are 'inside' the bandpass filter; there the behavior Fl 
is unpredictable (and thus unstable). Overall, the Fl esti­
mate is computationally simple, and converges faster to the 
formant frequency when the bandpass filter is 'misplaced'. 
The weighted frequency estimate F2 is more robust for low 
energy bands (i.e., spectral valleys) and provides more ac­
curate formant frequencies. 

Similarly, B2 bandwidth estimates are more robust than 
BI estimates. For example, in Fig. l(a), (b) we display B1 
and B2 (computed via HTD) for the sum of two sinusoids 
in Eq. (7). The bandwidths are shown as error bars around 
their respective frequency estimates. Note that for al � a2 

(i.e., when there is not a single prominent harmonic in the 
spectrum) Bl takes unnaturally large values. 

In [2], the (square amplitude) weighted estimates F2 and 
B2 are shown to be time domain equivalents of the first and 
second central spectral moments of the signal; this offers an 
alternative way of computing F2 and B2 in the frequency 
domain (see also section 5). 

Overall, the HTD and the ESA provide similar esti­
mates F, B, because of the smoothing effects of bandpass 
filtering. The ESA, however, has lower computational com­
plexity [7]. When the center frequency of the bandpa�� 
filter approaches the pitch frequency, though, the HTD pro­
duces smoother B2 estimates than the ESA. Thus, if for­
mant bandwidth estimates are needed in the 0-500 Hz fre­
quency range (first formant), the HTD should be preferred; 
otherwise, for higher formants, the ESA should be used for 
computational efficiency. 
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Figure 2: (a) Speech signal: 'Show me non-stop from Dallas 
to Atlanta' and (b) short-time frequency estimate F2(t, f) 
for the output of 80 Gabor filters (f spanning 200 to 4200 
Hz) v. time (pyknogram). 

4. MULTIBAND DEMODULATION FORMAN T  
TRACKING ALGORITHM 

Next, we introduce the parallel multiband filtering and de­
modulation algorithm for formant tracking. The speech sig­
nal is filtered through a bank of Gabor bandpass filters, uni­
formly spaced in frequency. The amplitude envelope la(t)1 
and instantaneous frequency fi(t) signals are estimated for 
rach Gabor filter output. Short-time frequency F2(t, J) and 
bandwidth Bz (t, 1) estimates are obtained from the instan­
taneous amplitude and frequency signals (Eqs. (5), (6», for 
each speech frame located around time t and for each Gabor 
filter of center frequency f. The time-frequency distribu­
tions thus obtained have time resolution equal to the step 
of the short-time window (typically 10 msec) and frequency 
resolution equal to the center frequency difference of two 
".dja.cent filters (typically 50 Hz). 

Tn Fig. 2(h), we plot the value of the short-time fre­
quency estimates F2(t, J) for each and every frequency band 
(centered at frequency J) vs. time t for the sentence in (a), 
i.e., unlike a typical time-frequency plot, here, the y-axis 
represents the range rather than the domaiu of F2. Note the 
deuse concentration of points (frequency estimates) around 
the formants tracks. The plot density plays the role that 
the Fourier magnitude plays in a speech spectrogram, so 

we refer to this time-frequency representation as the speech 
pvknogram. The pyknogram displays both the formant po­
sitions (and bandwidths) and the location of the spectral 
zeros (low density areas). 

In Fig. 3, we show the frequency F�(f) and bandwidth 
B2 (f) estimates for a single analysis frame, vs. the center 
frequency of the Gabor filters f. We have observed that 
ba.ndwidth R2 minima consistent.ly indicate the presence of 
formants. 

In order to determine robust raw formant estimates for 
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Figure 3: The short-time Fourier transform, the frequency 
F2 (f) and bandwidth B� (I) estimates vs. the cent.er fre­
quencies f of the Gabor filters (25 msec frame). 

a frame of speech we search for points where F2(J) and the 
Gabor filter center frequency f are equal (i.e., F2(f) = /, 
or in Fig. 3 the points where the solid line meets the dotted 
one) and dFAf)/df < 1. In addition, there are cases where 
a weak formant is 'shadowed' by a st.rong neighboring one; 
then F2(J) approaches the line f without reaching it. Thus, 
we also search for points where F2(J) - f has local maxima 
and F2(f) < f· These points are also considered formant 
estimates if the difference f - F2(J) is less than a threshold 
(typically 50 Hz). Finally, we improve the accuracy of the 
formant estimates by linear interpolation. 

An alternative way of determining the raw formants is 
by determining the dense regions of Fig. 2(b) , i.e., determin­
ing the minima of dF2(f)/df. This approach may produce 
better formant estimates when two form aut t.racks are close 
together. However, a threshold must be provided for the 
plot density, which makes this approach less reliable. 

In Fig. 4(a), we display the raw formant estimates for 
the sentence of Fig. 2(a). A 3-point binomial smoother is 
applied on F2(i,f) in the time domain before the raw for­
mant estimates aTe computed. In Fig. 4(b) the formant 
tracks (frequency and bandwidth) are shown. The decisioll 
algorithm used is similar to linear prediction (LP) based 
formant tracking algorithms [6J, with special ca.re taken for 
nasals sounds (a 'nasal formant' between the first and sec­
ond formant is allowed to be born and to die). First, we 
search for anchor formant segments (i.e. segments where 
the formants tracks are well separated in frequency and well 
defined). Next, we determine if a 'nasal formant' is present 
between the first and the second formant. Finally, the for­
mant tracks between anchor segments are filled. Formant 
bandwidths are obtained from the B2 estimate. 

Most formant tracking algorithms are based on a short­
time linear prediction analysis. LP-based formant trackers 
encounter problems with nasals and nasalized voweb. In 
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Figure 4: (a) Raw formant estimates and (b) Formant 
tracks: frequency and bandwidth (error bars). 

addition, the formant accuracy is affected by the preempha­
sis and the harmonic structure of the spectrum (LP tends 
to 'ride with the harmonics' as does the Fl frequency esti­
mate). Finally, LP does not provide accurate formant band­
width estimates. By using the multiband demodulation al­
gorithm one avoids these problems. Overall, the multi band 
demodulation formant tracking algorithm has the attractive 
featmes of being conceptually simple and easy to implement 
in parallel. It behaves well in the presence of nasalization 
(it tracks an extra 'nasal formant ') and provides realistic 
formant bandwidth estimates. 

We saw in section 3 that the choice of Fl vs. F2 is the 
choice between fast convergence and robust raw formant es­
timates. Since convergence is not the issue here, we prefer to 
use the more reliable weighted estimate F2• Note, though, 
that when the frequency axis is poorly sampled (i.e., when 
only a few Gabor filters are used), Fl can produce better 
results than F2, since Fl provides good formant estimates 
even when the Gabor filter is not centered exactly on the 
formant frequency. 

5. DISCUSSION 

In [3] an iterative algorithm (iterative ESA) is proposed 
for formant tracking: initial formant estimates are refined 
through an iterative filtering/demodulation scheme. For 
the iterative ESA, the Fl frequency estimate is preferred to 
F2, since FI increases substantially the convergence speed 
to a formant. In general, the iterative ESA and the parallel 
mlllt.iband algorithm (proposed above) yield similar results. 
In the case where two formants tracks merge, though, the 
mult.iband algorithm performs better due to its more flexi­
ble decision about raw formant values. 

In the multiband formant tracking algorithm we use a 
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bank of uniformly spaced (in frequency) Gabor filters. Al­
ternatively, a Gabor wavelet bank with constant logarith­
mic spacing can be used, which gives uniform performance 
(for ESA demodulation) across channels [1] . Logarithmic 
spacing (over 1 kHz) is also compatible with the formant 
frequency perceptual resolution (limens) of the ear. In [3], 
using logarithmic spacing has improved the performance of 
the iterative ESA formant tracker. 

We mentioned in section 3 that the estimates F2 and 
B2 can be computed in the frequency domain as the first 
and second spectral moments (computation via FFT). This 
results in significant computational savings since the Ga­
bor filtering can be implemented by multiplicat.ion in the 
frequency domain and no demodulation is needed. The F2 
and B2 estimates computed in the frequency domain take 
similar values to their time domain equivalents when ad­
equately 'long' FFT implementation is used (512 or 1024 
point FFT gives good results). 

Finally, one may use multiband demodulation for spec­
tral zero tracking. In Fig. 2(b), zeros manifest themselves as 
areas of low plot density (e.g., for nasalized sounds an anti­
formant can be observed between the second and the third 
formant track). More work is on the way for anti-formant 
tracking using the multiband ESA. 

Overall, the multiband demodulation formant tracker 
produced very promising results, which suggest that the 
modulation model and the demodulation algorithms are 
a useful alternative modeling/analysis approach to speech 
processing. 
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