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Abstract 

This paper addresses the control problem of master- 
slave systems which involve severe modeling errors and 
other high - level uncertainties, using Neural Networks. 
The solution approach is based on a recent teleoperator 
control scheme (S. Lee and H. S. Lee), which is suitably 
enhanced such that to become capable of compensating 
the uncertainties. The class of radial-basis functions 
(RBF) neural networks are employed in a 
multipartitioned neural network architecture, and a 
special learning scheme is adopted which distributes the 
learning error to each subnetwork and allows on-line 
learning. The effectiveness of the present RBF 
neurocontroller was investigated through extensive 
simulation and compared to that of MLP (multi-layer 
perceptron) neurocontroller and a robust sliding-mode 
controller representative. 

1. Introduction 

Neural networks (NNs) possess a remarkable ability to 
identify and control strongly nonlinear multivariable 
plants, with minimum need for a priori knowledge, 
through an adaptive, compact and fast system, and 
therefore can provide valuable solutions in the field of 
nonlinear control systems. In Robotics they are exploited 
in a great variety of tasks, including path planning, 
control, visual image and sensor data recognition. Being 
among the most complex robotic systems, 
telemanipulators can take advantage of NNs research in 
many ways. The methods developed for single 
manipulators can be applied locally to the master and 
slave. In addition, they can assist in the coordination 
between the human operator and the machine (e.g. visual 
representation, force feedback redefinition, incorporation 
of human and environmental dynamics in the control 

loop). Certain autonomous functions can also be assigned 
to NNs. However, up to date the literature on 
teleoperators focuses on conventional techniques. Current 
research topics include the incorporation of autonomous 
functions and the design of schemes robust to time delay 
in the communication channel between the master and 
slave robots. Applications of NNs on this field are rare, 
andinclude [l],[11]. 

In this paper, NNs are exploited at the control level. 
Our work is based on the teleoperator architecture 
previously proposed by S. Lee and H. S. Lee [5]. In this, 
the traditional concept of telepresence, according to 
which the exact position and force sensed at the slave 
side is fed back to the operator, so that he feels as if he is 
“physically present” at the slave workspace, is 
abandoned. In our contribution, their scheme is enhanced 
in order to be able to compensate modeling errors. These 
can be caused by driving the slave to pick up an object of 
unknown mass and shape (e.g. tool or sample) in order to 
perform a task with it, or due to accidental deformation 
of the last link(s), unidentified nonlinear terms or terms 
deliberately omitted in the model used in the controller to 
simplify the design. On the master side modeling errors 
are not likely to be large, since the master operates in a 
safe and well known environment. However, in certain 
advanced applications (e.g. telesurgery) uncertainty may 
arise by providing the possibility to change the master’s 
end effector’s shape and feel, so as to best suit the task 
and the operator. 

In the initial work of [5] the role of modeling errors 
was not considered. In [6] the same authors proposed an 
improved control scheme for applications with significant 
time delay. The new controller was reported to perform 
well also under 5% - 10% errors in the slaw model. 
However, this is obtained as a side effect, without being 
an explicit specification of the design from the start. At 
short time delays the new version coincides with the 
previous one. The teleoperator design presented in the 
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following: a) ensures proper functioning under 
disturbances, computational delay and significant 
modeling errors, b) enhances the original scheme so that 
it can be used in more complex tasks, c) improves the 
ability of the system to compensate control errors and the 
fatigue of the operator, d) is an essential step towards the 
practical implementation of the original scheme. 

In our previous cor,tributions sliding mode robust 
controllers [Sj, [lOj, as a representative of classical 
control schemes, and Multi Layer Perceptron (MLP) NNs 
[ l l ]  were used for the same purpose. Here results 
obtained with Radial Basis Function (RBF) NNs are 
reported. Moreover, a novel heuristic learning algorithm 
(HERD) is designed, suitable for use with a partitioned 
NN, which identifies the inverse robot dynamics. This 
algorithm tries to distribute the total error to each subnet 
so that the subnets preserve their original role, even 
though measurable data is very poor in useful 
quantitative information. The subnets are trained with 
conventional algorithms. 

The paper is organized as follows. Some basic 
elements of the architecture of S .  Lee and H. S .  Lee are 
outlined in Section 2. The neural controller and the error 
distributing algorithm are introduced in Section 3, and 
incorporated in the teleoperator in Section 4. The 
resulting system is tested through simulations and 
compared with a sliding mode robust controller in 
Section 5.  Section 6 contains the conclusions. 

riginal control scheme 

Rigid-link manipulators of n degrees of freedom are 
considered. Their dynamics are described by (see 
e.g.[8]): 

where q is the vector of joint angles, D(q)  the inertia 
matrix, C(q,q)q the vector of Coriolis and centrifugal 
forces, g(q )  is related to gravity, z, are the driving 
forces, fe the forces acting at the end effector from the 

environment, and J T ( q )  the Jacobian matrix. 
The whole control architecture of S. Lee and H. S. Lee 

is designed in the Cafiecian space. Aiming to provide 
compliant force control, a previous extension of 
Impedance Control proposed by the authors is utilized. 
The desired manipulator impedance is defined through a 
set o f  differential equations, termed the Generalized 
Impedance (GI). For the master and slave respectively it 
is specified as: 

D(q>ii+C(q,q>O+g(q)=z,-JT(q)fe (1) 

. 

fref + f e m  =Mdm x m + Bdm X m  (2) 

M ~ ~ x ~ f B d s ( x s - X d s ) ) + K d s ( X s - X d s  )= Bfife.y + K f i f e s  ( 3 )  
In the above and in the following, subscripts m, s, h, and 
e will denote the master, slave, human and environment 
respectively. fern is the interaction force between the 
operator's arm and the master, fief is the reflected force, 

Xds'KscXm > matrices Ksc 2 Mds ,Bds ,Kds ,Bfs 3Kfs > 

Mdm ,Bdm are parameters of the GI and f ,  =Z, (x, -xs 1 
represents the contact force at the slave side, where Z,  is 
the environmental impedance and x, its location. In 
order to impose the GI, a control law following the 
computed torque method was proposed. 

Assuming ideal performance, the master and human 
arm form a dual system described by: 

where f h  is the intentional force of the operator, i.e. the 
force applied by his brain to his muscle. Note that f h  is 
the response of his nervous system to the stimuli of 
vision and force (generated through a screen and the 
master arm). Eq. (4) reveals that fief is the reaction 

force actually felt by the operator. In a conventional 
scheme it would be equal to (a scaled) f, . S. Lee and H. 
S. Lee define it as a combination of the force and position 
tracking error and thus actually redefine force feedback. 

f h + f r e f = ( M h + M d m  ) X m n B d m X m  (4) 

3. Neural controller and error distribution 
algorithms 

An effective way to incorporate NNs in a robot 
controller, is to use them for the identification of the 
robot's dynamics. In this context some researchers 
proposed the partition of the NN to subnets, each one 
identifying a part of the dynamics (e.g. the terms of eq. 
(1)) [2],[4],[7]. According to F. Lewis et a1 [7] this: "1) 
simplifies the design, 2) gives added controller structure, 
and 3) makes for faster weight tuning algorithms". 
However, partition methods proposed up to date either 
require a lot of subnets (e.g. [2]) or specific knowledge of 
the dynamics (e.g. [7]). Our method preserves simplicity 
by dividing the NN to only three subnets (Fig. 1) 
corresponding to matrices D,C and g of eq. (1). Their 
outputs were added at a final layer. The only a priori 
information used was the subnet inputs. In order to 
achieve on line adaptation, the subnets were chosen to 
have no fixed part (in contrast to [2], [7]). 

In this work RBF Networks are applied. Each subnet 
was first trained offline with the standard Least Mean 
Square [3] method, to learn the corresponding term of a 
nominal model. In this way the required basic functions 
were formed. The subnets were trained online using a 
gradient descent procedure outlined in [3] .  Neither the 
position nor the spreads of centers (i.e. the input norm) 
were trained, since the initial simulations indicated 
satisfactory performance without such a computation- 
costly training. Those parameters were selected before 
learning. 

The online training of NNs is a well studied topic. The 
main problem in our case is how to distribute the training 
error to each subnet. Note that only the overall NN error 
(i.e. the difference between desired and produced torque) 
is at hand: the desired subnet output is not known from 
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the moment that the dynamics changed. Thus our guess is 
almost a "blind" one. Some information is however 
known. We tried to exploit it  as much as possible. 

Fom different ways to distribute the error were 
examined (Table 1): an equal distribution of 1/3 of the 
total error to each subnet (simplutic solution), b) a 
distribution relative to the mtribution of the subnet to 
the total output of the net, ("coarse" solution), c) a 
dwxibubon exploiting the infamation about the 
"measurable part" (Measurable Information (MI) 
solution), and d) a combination of the two previous 
methods, named HERD Method (=Hemistic ERror 
Distribution Method). 

These frmctions were inspired by an analysis of eq. 
(1): each of the robot torque's element is detamimd by a 
complicated matrix (D,C or g) reiaEd to the structure of 
the robot, which is d Q l i e d  by a k e d  meiwmbk 
vector (Q ,qor 1). TfLe MI method exploits the 
"measurable part" 's infinmation, whereas the coarse 
method the "stpuclwal part$ Is informalion. 

coarse i s b a e e r l e a * w &  that the 
general form &&e ctynarmc model will not change for 
realistic p a r . i . i c  m o d 5 " S s ,  i.e. changes in the 
mass 

Method 
Simplistic 

Figure 1. Partition to subnets. 

Er. Distr. Coefficient 
1 I3 

fmi.G 

Coarse 

HERD 
Measurable Info (MI) 

Figure 2. Error distribution functions fmi. 
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fmi 

and length of the last hk. Th~s  is indeed true, as an 
inspection of the robot dynamic equations can prove and 
is in detail analyzed in 1121. Thus, based on the old 
model, we can guess when the subnet output (and 
hopefully its error also) will be 'big', 'small','mcreasing' or 
'decreasing'. 

The form o f f ,  was inspired by observing in what way 
each term of the robot dynarmcs depends on q ,4 and q . 
They are plotted in Fig2 and described by: 

f7-,~~~IW~dldl' f,c(rMlWm,cIl~12 
f?-G(H.H4H2~%,d@ (5) 

The specification of the coefficients Ckl is not an easy 
task. No fixed coefficients, globally optimal for any robot 
and working parameters, can be found. A procedure to 
specify them, on the basis of the maxi" realistic q , q 
is recommended in [12]. Note that each subnet output is 
asslgned a Merent  $, i.e. with different coefficients. 
The type of the norms in Q, can also be adjusted 
according to the task I mbot. A reasonable choice is to 
make them dependent only on the subnet inputs (e.g. €or 
the ZDOF robot of Section 5 the norm of subnet C's 
second output should be independent of Q J. 

n e  HERD method is clearly a concatenation of the 
"coarse" and "MI" methods. An extra heuristic added was 
that the subnet C (or D) training error was set equal to the 
mbnet output if ( 1  q [/<E (small constant) (or 1 1  q (small 
c0ns"mt)). Thus a possible inadequate offline learning of 
the measurable part was healed. 

In essence, the various training sections of Guez and 
Selinsky [2] are here overlapped and take simultaneously 
place, in a fuzzy logic like way. 

Among the problems that could not be solved, two are 
most important. First, although a guess on the magnitude 
of the error is made, its sign remains unknown. Second, 
the mal error is minimized very soon (less than 0.3% in 
less than 20 sampling periods). After h s  period the 
learning is very slow, since the error to be distributed is 
small. If in the first few sampling periods the networks 
confuse their roles, then t h s  confusion will not heal 
much in the sequence. This was unfortunately the case in 
all simulations done. 

As a consequence of the efforts up to now we 
conclude that an onlme-trained multipmtioned network 
under the presence of severe uncertainties can 
successfully act as a controller, since the total error is 
kept very small (0.1%-0.5%) but signzjkantly confuses 
the role of its subnets (up to 30% 111 the worst case, for 
RBF networks). 

In order to choose a neurocontrol architecture in 
conjunction to which the proposed partitioned controller 
would be used, several schemes were extensively tested 
as part of our previous work [I I]. The best results were 
obtained by a variation of the Model Reference Adaptive 
Control scheme, reported in [4]. Impressive results were 
also obtained by a v of htemal Model Control, 
but the previous s was judged to be mole 
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appropriate to use within the teleoperator 

4. Incorporation of the neural controller in 
the teleoperator 

The most straightforward way to incorporate the 
neurocontroller in the teleoperatoT is to first calculate an 
ideal trajectory according to the Generalized Impedance 
(GI), since this determines the desired performance in the 
original architecture, and then use the NNs to force the 
robots to track it. The original controller functions in a 
similar way, but there the GI is explicitly incorporated in 
the control torque generation formulas, whereas now a 
two-level approach is followed (Fig. 3): at the higher 
level, the operator and GI blocks determine the desired 
trajectories "thinking" m Cartesian coordinates. At the 
lower level, the controllers try to impose the ideal 
performance through suitable control inputs. 

On the master side the collaboration of the operator 
and the controller induces a complicated situation. The 
most important questions arising are: a) how should the 
desired trajectory be generaied? b) how can good 
controller performance be guaranteed, since it acts in 
parallel with the non-passive human intentional force fh , 
c) How can we ensure that the operator will feel fief as 

reaction force? 
Regarding the pomt (a), the control scheme of S. Lee 

and H. S. Lee offers two possibilities: equations (2) and 
(4). Ideally, the use of either would give the same results, 
since they both represent the GI. Their advantages are 
that the second is applied on the dual dynamic system 
operator's arm + master, whereas the f i s t  takes in 
account only sensed variables. In our opinion eq. (4) is 
the best choice, since it allows to control all the passive 
parts at the master side and uses fh as input, rather than 
its filtered version fe, . To provide fh, an estimator of 
the human arm dynamics was incorporated in the control 
scheme. In [5] a simplified model for the human arm is 
derived, whose estimation is trivial. Even a more detailed 
one can be identified, e.g. by using an online-adapting 
NN, to tune to parameters' variation, according to the 
operator's intention or his fatigue. This way the results of 
fatigue and control errors of the operator towards his 
muscle can be compensated. Difficulties (b) and (c) 
above, are closely related to each other and can both be 
solved if the controller's performance is satisfactory right 
from the start. This is actually the case with RBF 
neurocontrollers as well as sliding mode controllers 
[9],[10]. On the contrary, with MLP NNs, the NN 
achieved satisfactory performance after a short (1 sec), 
automatically performed training phase, during which 
their is no interaction with the operator [ l l] .  With the 
exception of the points discussed above, the design 
concept [5] was preserved without changes (e.g. 
monitoring forces). 

Fh Estimator 

Brain 

F h  

Trajectory 
I I I 

Coupled 
Master dynamic system 

work place 

Slave 
work place 

Desired 

Figure 3. Teleoperator with neural controllers. * denotes 
variables corrupted by noise. 

5. Simulations and comparison with sliding 
mode and MLP - based neural control 

Simulations were performed with two identical rigid- 
revolute-link manipulators of 2 DOFs acting as the 
master and slave arm (Table 2) [ 8 ] .  All simulations were 
carried out with sampling period of 1 msec at a PC with a 
90 MHz Intel Pentium processor. Simulations checking 
the response of the original algorithm of [SI were 
reported in [l 13. It was shown that modeling errors, and 
even a simple computation delay of a full sampling 
period, can seriously degrade the performance of the 
system. These results justified the need for a new 
controller. 

A first set of simulations were carried out on a 
single robot, in order to check the efficiency of the 
proposed error Qstributing methods. The partitioned NN 
did not serve as a controller, but simply tried to identify 
online the moQfied robot dynamics. The NN was initially 
trained at an erroneous nominal model, with errors as 

Three of the methods presented in Section 3 were 
compared (Table 3). Note that the trial trajectory is a hard 
one. To validate the methods, a special index, named the 
Confusion Index CIl was used, in an effort to isolate the 
error due to the error distribution algorithm from the 
normally appearing error, which is due to the leaming 
algorithm / chosen parameters' values: 

shown in Table 2 for the slave, 
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TABLE 2: Parameters and Modeling Errors 
Operator 

As in [5], expanded in the 2-DOF case. 
Master and slave dynamics 

link 1: m =  10,l-  1, IC= 0.5 I=O.8 
lznk 2: m = 5 ,  1 = 1, lc= 0.5, I= 0.45 

SI units (m, kgr, kgPm2) 
Symbols: m: mass. 1: length, IC: center of mass 

position from previous joint. I: moment of inertia 
Generalized Impedance: 

T total 

ZG,1 

'T G,2 

L L J  L 

Communication channel and Grp 

0.42% 0.45% 0.49% 
14.38 7.48 5.01 
15.85 11.78 11.14 

Modeling Errors 
10% and 50% for the master and slave respectively on 
he mass and moment of inertia of the last link. 

RBF Networks 

Z C , I  

Subnet G: 2-49-2 neurons, inputs: q, 11'0.1 
Subnet C: 3-81-2 neurons, inputs: q2, dyldt, q=O.Ol 
Subnet D: 3-81-2 neurons, inputs: 92, d q/dt2, q=O.Ol 

45.67 16.87 I 15.83 

TD,I 17.45 19.54 I 13.56 
'C D,2 32.20 1 24.46 I 16.98 

CI = 
I(subnet error)-(subnet error by training with real error)i I 

/ max(idea1 subnet output, subnet error) * 100 % 
The coefficients of the HERD method were chosen to 
allow maximum ( q , q )=(5m/sec, Smlsec'), which result 
in quite high velocities for industrial robots. The final 
values used were: Cfmi,GI = 0.27, Cf,,,i,G, = 0.22, Cfnli,c, = 

The superiority of the HERD algorithm over the other 
methods is evident. Although the error per subnet is 
significant, it is acceptable since a poor qualitative 
information is only used. Regardless of this "confusion" 
error, the overall error is very small and thus the RBF - 
based scheme can be used as a controller. 

0.55, Cfn1i,c2 = 0.6, Cf,i,o, = Cfm,,p2 = 0.1. 

in application to 
teleoperator 

P 

0 2 0 0 0 4 1 3 M ) m  
(b) Tim@=) 

Figure 4. Slave trajectory, free space, (a) ideal system 
(black), system with modeling uncertainties @ay), 
xd=(0.85m,0.85m), (b) control torque of joint 1. 

082c + - - - _ -  + -  - - - 

0 m m m  
(a) X (m) (b) 

Figure 5. Slave trajectory, contact task, xd=(0.8105m, 

O.SlOSm), fd =(5N,5N). Th~s  force wi&actualllly be felt if 

the pemtmtion is 0.1768 m. (a) ideal (black), system with 
modelmg uncertainties (gray), (b) ccmtrol torque of Jomt 
1. 

o(0.01) o(1)Nm o(O.1)" 
Nm 

robot trajectory I g ood I excellent I excellent 
control chattering I small I big 1 medium 

In the final set of simulations (Figs. 4,5) the complete 
teleoperator system was considered. In those Figures, 
when referring to "ideal" response we mean the response 
computed directly by the GI equations. For the "non- 
ideal" case the control input was first calculated and then 
applied to the robot dynamics after a time delay of one 
sampling period, in order to model the computational 
delay. At all tasks reported here, the two robots were 
initially stationary at position (0.8m,0.8m) relative to 
their base frame. Then the operator tries to move the 
slave in position x d .  At the contact task he 
simultaneously estimates to feel a reaction force f d  . The 
object in the contact tasks is modeled as an elastic, 
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immobile "wall" of infinite dunensions w t h  Z,= 

' N/m A pomt on the border is Xe = (0 8085m, 

O8085m) and a unity vector vertical to it is (07071, 
0 7071) The trajectory m Figs. 4,5 is almost ideal 
However, when the set goal was further away, instability 
was observed Since, as proved by previously mentioned 
trials on a smgle robot, the overall training error is 
minimal for a much harder task (Table 3), we conclude 
that this is due to the onginal teleoperator control 
architecture and the parameters chosen (Table 2) 

Another NN controller, incorporating MLP NNs, as 
,vel1 as a slidmg mode robust controller, as a 
representative of classical control methods, were 
previously tested as an improvement of the onginal 
computed torque control scheme of S. Lee and H. S. Lee 
[ 91, [ 1 01, [ 1 1 1. The controllers were incurpoTated in the 
teleoperator system fo l lomg  the concept presented m 
Fig 3, where the controller blocks represent now the new 
type of controllers mstead of RBFs. Although a duect 
quantitative companson between the methods is not easy, 
due to the differences in basic concepts and architecme 
parameters, a qualitatwe one is attempted in Table 4. A 
more detailed one is presented m 1121. Among the two 
NN farmlies tested, RI3F controllers performed trajectory 
better, since they exhibited no mitial trajectory overshoot 
and less "subnetwork confusion". However, the control 
chattering was, surpnsingly, worse than even the shdmg 
controllers, and the MLP had less neurons. Generally, all 
three methods produced practxally ideal trajectones 

An engineer decidmg which algonthm to Implement, 
should also consider the fact that the sliding mode 
technique requires a mathemafxal nominal model of the 
robot dynamics as well as knowledge of the uncertamty 
bounds NNs adapt quickly to a wide range of situahons 
and parameters, and the output is calculated easier and 
faster Finally, an inverse model of the system is 
identified This can prove to be very useful to evaluate 
the situation and the objects encountered, much better 
than the "blind" compensatmn offered by slidmg robust 
controllers. Therefore NNs are, m our opinion, more 
suitable for employment within the teleoperator system. 

*() 
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6. Conclusion 

The work described in this paper constitutes a 
continuation of the authors' effort to enhance a recent 
teleoperator control architecture so as to be able to face 
large modeling errors in the robotic parameters. These 
errors are unavoidable in practice, and are caused by 
several reasons. Here the radial basis functions (RBF) 
neural networks were used in a multipartitioned NN 
architecture in conjunction with a new heuristic leaming 
algorithm (called HERD algorithm) for identifying the 
inverse robot dynamics. The results achieved by this 
algorithm are compared with those obtained by the 
"simplistic algorithm" and the "coarse algorithm" defined 

in the text. It was found that the RBF NNs can be 
effectively used to control the teleopertator system, and 
its robustness capabilities were compared to those of an 
MLP neurocontroller and a slidmg mode controller. The 
simulation results of the RBF controller proved very 
encouraging. 
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