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This paper is concerned with the use of 2-0

linear prediction for image segmentation. It
begins with a brief summary of the mathematics
involved in 2-0 linear predictive analysis of

arbitrarily—shaped regions. Then, it introduces
a 2—D LPC distance measure based on the error
residual of 2-0 linear prediction. Finally, it
describes how the above results can be applied to

image segmentation using a simple cluster seeking
algorithm. The results indicate that
arbitrarily-shaped image regions can be well
identified and clustered using as features their
2—0 LPC parameters.

INTRODUCTION

One—dimensional linear prediction has been
successfully used by Itakura [1] and others for

extracting speech parameters and for deriving a
LPC distance measure in speech classification and

recognition. However, it appears that there has
been no similar approach in pictorial feature
extraction and in image segmentation by cluster-

ing [2,3]. Hence, it is the purpose of this
paper to introduce the use of 2-0 linear predic-
tion and the resulting LPC distance for image

segmentation. Because features in images typi-
cally are irregularly shaped, we begin by first
formulating the problem of estimating the optimal
LPC parameters for an arbitrarily—shaped image
segment. Such a segment may be simply- or multi-

ply—connected.

LINEAR PREDICTION

Let x(m,n) represent a 2-0

spatially—discrete array of intensity image
samples. According to the autoregressive image
model introduced in [4] for use in predictive
image coding,

x(m,n) a(k,a)x(m-k,n—24+a0+e(m,n) (1)
ka
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We can view the 2-0 prediction error sequence
e(m,n) together with the coefficients

{a(k, a), a } as an alternative exact
characterizaQion of the image signal x(m,n). The
bias coefficient a0 accounts for the fact that
the intensity image samples are explicitly biased
since they are always nonnegative. The
set {a(k,a),a} can be seen as a set of features
containing in'formation about the specific image
segment.

Suppose that x(m,n) has support on the re-
gion Q in the (m,n)—plane. Inside we identify
several homogeneous regions D,v=l,.. .,L as illu-
strated in Fig. 1. The general linear prediction

problem is to find a set of optimal
coefficients {a(k,2), a0} which minimize a

mean-squared error

E= e2(m,n)
mn

(2)

where e(m,n) is defined by Eq. (1). The array
a(k,a) is shown in Fig. 2 to possess a rectangu-
lar region of support which in the general case
may include any other desired shape. The total
number of prediction coefficients is P=(Q2-
Q1+1)x(R2—R1+l)-l, and the number of our unknowns
is P+l, We can distinguish two cases depending
on whether the region is simply (L=l) or
multiply-connected (L > 1):

a) One simply-connected region 0

We overcome the fact that 0 has an irregu-

lar shape by considering a
ordering of the greater rectangular region of
the (m,n)-plane; i.e., if is an N xN region,
then a rowwise ordering would be

O(m,n)=mN+n+l=,j. This ordering maps every pair
(m,n), such as 0 m, n N-l, onto an integer j
belonging to the ordered set
Z = {l,2,3,...,N}. If the information about
te rowwise scanning of is available, then O(.)
is a reversible mapping of the region onto the

set Z , and we can recover (m,n) from j. Now
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1, (m,n)0(j) c DV

0, otherwise
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the regions 0 are defined2by the sets of inte-

gers L={Z(Jr, jl,2,...,N }, v=l,2,...,L where

z(J)={ (3)

If we think of Z and Z, as N2-dimensional
vectors, the r-th nnzero element (ar) of their
component—wise multiplication will give us the
r—th pair (m,n) from the M., pairs which make up
the region D . Thus, we can consider a

one-dimensional indexing for the region D

r=lSv(m,n)ISv[0'(jr)], r=l,2,...,M (4)

The initials IS mean "indexing" for the "signal"
x(m,n). Now, the restriction of x(m,n) or its
translate x(m—k,n— 24 to D can be thought of as
a Mu_dimensional vector:

sq=[sq(r): sq(r)x(m-kn-24i r=IS(m,n)]T(5)

where qIP(k,z), and IP(0,0)=0 is understood.
The indexings IS(.), IP(.) need not be the
same. At this point we can express the 2-0 cor-
relation lags [4] as inner-products of known
vectors:

R(k,R.:i,j)= < s , S >
q1 q2

method the matrix C is a syrnnetric block-Toeplitz
matrix and is always positive-definite, because
then R(k, 2,:i,j) equals R(Ik—iI, l—jJ) or
R((k—iI, —I—iI).

b) Multiple disjoint regions D , v=l,2,..,L
The problem here is to obtain a set of

common coefficients {a(k,a), a} which minimize
the error E over all the regioPcs D , v=l,2,..,L
simultaneously. It can be easily hown that the
optimal coefficients are the solution to the
following system

L L

{ a
rv (10)

v1 vl

where C , r are the correlation matrix and cor-
relation vetor of the region D . The approach
to obtain the correlation and shift lags is al-
most the same as in part (a). The only
difference is that in order to find the indexing
IS(rn,n) for the ensemble of all the regions, one
has to multiply the vector L by the sum of all
the vectors Z defined in (35. However, if one

has already pIecomputed C and r, , it is easier
simply to add them component—wise.

2-D LPC DISTANCE

Let us consfder the augmented coefficient
vector b'[l, — a] and the augmented correlation

(6) matrix

where q1=IP(k,), q2=IP(i,j). Similarly, the 2D R(0,0:0,0) I rT
shift lags S(k,st) [4] are equal to the sum of the A — (11)
components of the vector Sq q=IP(k,24. r

I
C

The optimal coefficients which minimize the
squared error E over the region D are the solu— where R(0,0:0,0) is obviously the energy of
tion to a system of normal equations: x(m,n) over the analysis region. The matrix A

may refer to a simply—connected region or to
C . a r (7) disjoint regions. It can be proven that the

squared error E can be expressed as the
where C is a (P+l)x(P+l) matrix whose entries are positive-(semi) definite quadratic form
equal either to R(k, 2,:i,j) or to S(k, 24.

E=bAb (12)

(8) Having reduced the problem to our one-dimensional
one by using the one-dimensional indexing for the

arrays a(k, 2.) and x(m,n) over the regions of
(9) interest, we could use a 2-0 LPC distance similar

to the one used by Itakura [1] in the 1-0 case.

Thus, over an analysis region possessing augment-
ed correlation matrix A, we define the distance
between two sets C a, a2) of coefficients as

u[a(IP(l)),...,aIP(P)), a0]T

r=[<s0,s1>,..., <s0,s>,S(O,O)]T

All the above analysis refers to the
covariance method [4] which minimizes E only over

the region D . Alternatively, we could modify
our approach to include also the autocorrelation
method, which assumes that x(m,n) is zero out-
side D and minimizes E over the entire
(m,n)-lane. In the covariance method the matrix
C is sytmuetric and positive-definite, except for

degenerative cases where it is

positive-semidefinite. In the autocorrelation

dA(al, a2)Ilog (TM/TM)j (13)

From (13) it is inferred that the above distance
is a semi-metric, in the sense that it satisfies
all the properties of a metric except one; i.e.,
dA(a1, o4=0 does not imply that a1u2 . Also,
it i clear that thi distance
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relates a1 and a2 only indirectly through the
matrix P1.

CLUSTERING ALGORITHM

Let us suppose now that we are given a 2-U
image tiata array x(m,n) defined over a greater
region c . The starting point of our algorithm
for image segmentation by clustering is to divide
the entire image into N smaller disjoint regions
which consist of mope or less homogeneous
pictorial texture. This homogeneity will be
hopefully reflected in a stationarity of the
prediction coefficients over one region and a
similarity between coefficients of disjoint re-
gions with similar texture. Then, we obtain the
augmented correlation matrices A for each image
subregion. This way, each analysis region can be
thought of as a pattern whose features are the
entries of the matrix A. From Eqs. (7) and (11)
it is clear that the optimal LPC coefficients can
be obtained from the matrix A. Having obtained
the LPC characterization of each region (pattern)
one could use any clustering algorithm which
employs a distance measure. We have used a vari-
ation of the so-called K-means L5] clustering
algorithm modified to use the LPC distance mea-
sure. Our approach is summarized below:

Step—i: Select K initial cluster centers (re-

gions) c, j=l,2,.. .,K. The selection may be
either arbitrary, or automatic using a max-mm
algorithm [5] which finds the K LPC patterns
which are farthest apart.

Step—2: Allocate each of the LPC patterns
(characterized by their correlation matrices A1
and/or by their optimal coefficients a ) to one
of the K cluster centers according to:

belongs to cluster j if

dA(al, CS)dA(a c), m=l,2,...,K

for all i, Ties are solved arbi—
trari ly.

Stp: Update the cluster centers: Having
found from step-2 that each cluster consists of
N• LPC patterns, we find a set of prototype co-
e'ficients for each cluster (its cluster center)
by using linear predictive analysis of multiple
disjoint regions (10); i.e., for each cluster j
we sum up the correlation matrices and vectors
and solve (10).

Step—4: The algorithm terminates whenever the
cluster centers do not change from the previous
iteration. Otherwise, go back to step-2 and
iterate again.

The above clustering algorithm is an un-
supervised pattern recognition scheme. We have
found that it always converges in about 3-10
iterations. A good choice of the initial cluster
centers may affect considerably the speed of
convergence. The performance of this clustering
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algorithm obviously depends upon the method used
to extract the LPC parameters. Thus, if we use
the same number of prediction coefficients and
the same prediction mask (Fig. 2), the covariance
and the autocorrelation method yield similar
results. However, the correlation matrix A in
the autocorrelation method has much fewer
different entries because of its block-Toeplitz
property. For instance, if P8, the matrix A has

only 15 different entries compared to
(P+l)(P+2)/2=55 for the covariance method. The
size of the analysis regions does not play an
important role as long as one stays well inside

homogeneous regions. For regions, however, which
contain boundaries between different textures,
smaller analysis regions are required. The shape
of the prediction mask (Fig. 2) was found to be
of paramount importance. We tried 3 different

shapes: 1) Q1=R1=—1, Q2=R2=l gives an all—plane
symmetric mask, 2) Qi=O, Q2=2, R1=—l, R2=l gives
a half-plane mask and, 3) t1=R1=0, Q2=R2=2 gives
a quarter plane mask. All these different masks
involve the same number of prediction
coefficients P8. In terms of the average nor-
malized mean-squared error E, the first mask is
the best and the third is the worst. However, in
terms of clustering performance the third mask is
the best whereas the first is the worst. The
reason for this might lie in the fact that the
quarter-plane mask is the deepest in both
directions.

EXPERIMENTAL RESULTS

Fig. 3 shows a 192 x 256 pixels black and
white image which consists of 64 x 64 regions
with different texture. We used 32 x 32 and 16 x
16 analysis regions with P=8 in our clustering
algorithm, and the results were similar in both
cases. The 8 prediction coefficients for each
analysis region were obtained by using the auto-
correlation method with the quarter—plane 3 x 3
mask. Fig. 4 shows the resulting clusters where
K=3. The analysis regions were 32 x 32 pixels,
and each region is illustrated by a number j,
j=l,2,.. .,K, corresponding to the number of that
cluster which this region was assigned to. Simi-
larly, Fig. 5 shows results from clustering the
same 32 x 32 regions in K=5 different clusters.
From Fig. 4 and Fig. 5 we see that the clustering

algorithm on this simple image yielded perfect
results which agree with our own perceptual
classification of the different textures in the
image of Fig. 3. The above good results were
obtained by using analysis regions which were
embedded well inside homogeneous textures. If,
however the analysis regions contain more than
one different textures, then one should think of
reducing the size of the analysis regions and/or
employing other techniques to isolate the
boundaries between different textures.
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Fig. 3 — A 192 x 256 pixels texture image
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Fig. 4 — Clustering results with K=3. Each number represents

the cluster containing this 32x32 region.
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Fig. 5 — Clustering results with K=5
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Fig. 1 — Multiple disjoint irregular regions of support
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Fig. 2 — Region of support of the coefficient array a(k,l), a(O,O)=O
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