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Abstract— This paper presents results achieved in the frames
of a national research project (titled “DIANOEMA”), where
visual analysis and sign recognition techniques have been
explored on Greek Sign Language (GSL) data. Besides GSL
modelling, the aim was to develop a pilot application for
teleoperating a mobile robot using natural hand signs. A small
vocabulary of hand signs has been designed to enable desktop-
based teleoperation at a high-level of supervisory telerobotic
control. Real-time visual recognition of the hand images is
performed by training a multi-layer perceptron (MLP) neural
network. Various shape descriptors of the segmented hand
posture images have been explored as inputs to the MLP net-
work. These include Fourier shape descriptors on the contour
of the segmented hand sign images, moments, compactness,
eccentricity, and histogram of the curvature. We have examined
which of these shape descriptors are best suited for real-time
recognition of hand signs, in relation to the number and choice
of hand postures, in order to achieve maximum recognition
performance. The hand-sign recognizer has been integrated in
a graphical user interface, and has been implemented with
success on a pilot application for real-time desktop-based
gestural teleoperation of a mobile robot vehicle.

I. INTRODUCTION

In the frames of a national research project (Acronym:
“DIANOEMA”, Full Title: “Visual Analysis and Sign Recog-
nition for Sign Language Modelling and its Application
in Robot Teleoperation”), and beyond, we are considering
applications of multi-modal human-machine interfaces, in-
corporating vision-based human interaction modalities by
means of natural and intuitive (hand, body or facial) gestures.
In this context, a pilot application has been developed that
concerns hand-gestural teleoperation of a mobile robotic
vehicle. The first step was to design an appropriate “vocabu-
lary”, which consists of a small set of hand signs (for the time
being, static hand postures) that constitute a robot command
language. A “desktop” teleoperation scenario was selected,
as illustrated in Fig. 1, where the gestural commands of
the human operator are issued remotely, from a master
control station that supports all the necessary computer vision
gesture recognition operations.

For the purposes of our first gestural teleoperation pilot ap-
plication, this “desktop-type” typical arrangement of remote

human-robot control was preferred to a “robot-centered”
scenario, where human-operator and robot platform interact
in a more direct way, in a co-located space and time.
Scenarios of the latter type have recently been reported in the
literature, with on-board visual systems of robot platforms
tracking “whole-body postures” and interpreting them as
desired actions (commands) of the human operator. Such
work has for instance been carried out in the Virtual Reality
and Active Interfaces Laboratory of EPFL, where a prototype
stereo visual recognition system has been developed for a
small set of basic motion commands inferred in the form
of static body postures [20]. Related work has also been
reported in [6], where the development of an interface
recognizing seven basic static gestures, appropriately chosen
for teleoperation. Similar systems have also been presented
in [5], [19], [2].

The work presented in this paper focuses on recognizing
hand-postures as a natural interaction modality for conveying
human intention to robot commands. This is in line with the
objectives of the DIANOEMA research project focusing on
developing computer-vision methods and algorithm towards
analyzing, modelling, and recognizing natural sign language
utterances. A desktop-type teleoperation has been considered
more appropriate for this type of human-robot interaction. A
multi-level teleoperation architecture has been considered,
inspired by related work in the field of telerobotics [15],
[10], [18]. The system supports: (a) low-level, direct teleoper-
ation commands, (b) mid-level shared-autonomy commands
(based on autonomous, sensor-based robot behaviors, and (c)
high-level operations (e.g: <go-to-room><#value>), which
are implemented and included in the command set. For
the first pilot application scenario, a high-level teleoperation
sequence was implemented, which consists of issuing a
command of the above third type (autonomous mode of
operation). Autonomous mobile-robot navigation algorithms
have been implemented and tested experimentally, including:
(a) path-planning, (b) collision avoidance, and (c) contin-
uous localization and motion correction (based on static
geometric landmarks). Experiments have been conducted at
the premises of the Robotics Laboratory of our Department,
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Fig. 1. Gestural, sign teleoperation application scenario

using a Pioneer P3-DX indoor mobile robot platform.
The paper is organized as follows. Section II describes

the specification of the sign robot commands vocabulary,
and Section III presents the image analysis methodology
followed to extract pertinent handshape features. The MLP
neural-network (NN) classifier, implemented to recognize
hand postures as intended teleoperation commands, is de-
scribed in Section IV, where experimental results are also
presented. The graphical user interface integrating all these
modules in the considered gestural teleoperation scenario is
presented in Section V, and the paper concludes with Section
VI, where future work directions are also highlighted.

II. DESIGN OF HAND-SIGN TELEOPERATION

VOCABULARY

Our first objective was to analyze the specifications with
respect to the considered robot teleoperation pilot appli-
cation, and to define a set of robot commands that will
constitute the gestural telerobot control vocabulary. Consider-
ations regarding architectures of telerobotic control and robot
teleoperation control modes were taken into account and
motivated the design. Natural sign language data were also
analyzed, and a set of signs (static hand postures) was finally
selected to constitute this small vocabulary for gestural robot
teleoperation control.

A. Teleoperation Commands - Telerobotic Control Modes

Analyzing the control modes that can be supported by a
telerobotic system, in relation to properties involving a more
or less direct human-robot interaction, or ease of control and
the degree of tele-cooperation between the human operator
and the telerobot, we have defined a language for mobile
robot teleoperation control with the robot motion commands
structured in three levels of control. This structure fits into
a general multi-level telerobotic architecture, in accordance
with concepts related to supervisory and shared-autonomy
telerobot control.

Level-1: “Low-Level” - Direct Teleoperation.

Level-1 refers to commands addressing low-level robot con-
trol, directly affecting the driving mechanisms of the mobile
robot vehicle. These commands are:

1-0: <initialize sequence> (i.e.: GET READY!)
1-1: <move-forward> #meters [OR <until condition>]
1-2: <rotate> (<right> [OR <left>]) #value (e.g. angle)
1-3: <start-motion> (GO!)
1-4: <pause-motion> (PAUSE!)
1-5: <abort-motion> (STOP!)

These commands thus give the human operator the ability
to obtain direct control of the motion performed by the
teleoperated mobile robot. Although this control level offers
the advantage of a direct interaction between human and
robot, it has major disadvantages (particularly in the presence
of large time delays in the bilateral communication and
control loop) related to the mental workload required by
the human operator, which may lead to a deterioration of
the system’s performance. Furthermore, this control level
is not suitable for exploiting at a full extent the capacities
of the robot to perform some (local or global) navigation
functions in an autonomous (sensor-driven) way, and may
potentially even lead to posing safety issues (e.g. with respect
to collisions with static or dynamic obstacles).

Level-2: “Mid-Level” motion commands - Teleoperation
based on sensor-driven autonomous robot behaviors.

Robot commands at this level refer to a set of autonomous
robot control functions (sensor-driven behaviors). These be-
haviors require some form of “local intelligence” embedded
on the robotic vehicle, reasoning on data captured from
on-board sensors. The human-operator is then in charge of
commands based on and exploiting the presence of these au-
tonomous robot behaviors, while keeping high-level decision
making responsibilities. For instance, the human operator
conducts the global path planning operations, while the on-
board robot controller performs tasks like local path planning
and collision avoidance and tracking of environmental geo-
metric features (like walls, in indoor environments, etc.) for
localization purposes.

The commands that are implemented in the current proto-
type version of the system are basically the following:

2-1: <follow-wall> <left> [OR <right>]
2.2: <pass-through-doorway> <left> [OR <right> OR

<front>]

Level-3: “High-Level” commands, fully-autonomous ro-
bot navigation.

This level incorporates commands that require increased
degree of robot autonomy and intelligence embedded on
the mobile robot vehicle, based on perception and reason-
ing functions like global path planning and route finding,
besides local obstacle avoidance. These commands relieve
the human operator from tasks associated to motion control
of the robot platform. The role of the operator is now
to “indicate global intentions” (like the target-position of
the mobile robot’s motion), and to perform some form of
high level supervisory control (by means of visual, real-
streaming and/or simulated/graphical, feedback, and high-
level commands intervention).

The robot commands considered at this level of control
are of the following basic types:

3-1: <go-to-room> #value (e.g. room number)
3-2: <follow-me> (in the case of a “robot-centered”

application scenario).

All the above control operations form a list of available
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TABLE I

LIST OF ROBOT COMMANDS - ROBOT TELEOPERATION VOCABULARY

Basic Commands GET READY; GO; PAUSE; STOP (ABORT);
#numerical values

Low-Level MOVE FORWARD; ROTATE; LEFT; RIGHT;

Mid-Level FOLLOW WALL; UNTIL CONDITION;
PASS THROUGH; DOORWAY; HALLWAY;

High-Level GO TO ROOM;
FOLLOW; FOLLOW ME;

robot commands, constituting the robot vocabulary that is
to be considered for association with gestural (hand-signs)
commands. This “Vocabulary of Robot Commands” is sum-
marized in Table I.

B. Hand Signs as Telerobot Commands

In the frames of the DIANOEMA project, a video-corpus
of an indicative subset of the Greek Sign Language (GSL)
was created and annotated, comprising: (a) a list of lem-
mata that are representative of the use of hand-shapes as a
primary sign formation component (developed on the basis
of measurements of hand-shape frequency of use in sign
morpheme formation); (b) a set of controlled utterances,
which form paradigms capable to expose the mechanisms
GSL uses to express specific core grammar phenomena;
and (c) free narration sequences, which are intended to
provide data of spontaneous language production that may
support theoretical linguistic analysis of the language and can
also be used for machine learning purposes regarding sign
recognition. In this context, a set of video sequences was
recorded and analyzed, concerning a number of lemmata that
refer to pre-defined robot teleoperation commands. Our goal
here was to study the morphology of such hand sign com-
mands issued by natural signers, and derive useful guidelines
regarding the hand-shapes that can be selected for the defined
small vocabulary of telerobot commands. Fig. 2 illustrates a
sequence of instances showing utterance of a complete robot
command of the high-level type (Frames t1-t3: <GO-TO>,
Frames t4-t5: <ROOM>, Frame t6: [#NUMBER 2]).

Let us point out here that the set of suggested signs
used by different natural signers participating in the project,
for the predefined robot teleoperation command utterances,
presented very little variations, meaning that in general,
different signers were congruent as to the handshapes to be
employed for the specified robotic vocabulary. The video
corpus that was created was then analyzed to identify the
type of signs employed regarding robot command utterances.
Our goals in the design of this sign vocabulary were twofold:
(a) to encode the robot commands using a set of static signs
(handshapes) that can be reliably recognized in real-time by
available visual processing and image analysis methods, and
(b) to approach as much as possible the characteristics of
the natural sign utterances, as recorded and analyzed in the

Frame t1 Frame t2 Frame t3

Frame t4 Frame t5 Frame t6

Fig. 2. An example of a complete sign robot-command utterance: Command
of the high-level type <GO-TO> <ROOM> [#number].

video corpus.
Based on the above requirements and analysis results, we

have designed a small set of robot teleoperation commands.
For the first pilot application scenario presented in this paper,
high level supervisory telerobot control is performed, with
commands of the type <GO-TO> [#region-ID-number];
that is, commands instructing the robot to move into one
of a set of predefined target-locations. Autonomous robot
navigation functions, like path planning, collision avoidance,
and localization have been employed, but are beyond the
scope of this paper and are not further analyzed here.

Fig. 3 shows the set of hand postures selected for the first
pilot application. In the considered application scenario, the
human operator (in a desktop-like teleoperation environment)
issues a sequence of commands, that can take the following
form:

1) <GET READY> command, that is, initialization of
the telerobotic system to receive motion commands;

2) <MOVE TO> command;
3) #Numerical command, indicating the number (id) of

the predefined target-location where the robot is in-
structed to transit.

In each step of this procedure, after each hand-posture sign
command is issued by the human operator and properly
recognized by the system, the system (by means of a graph-
ical user interface) must respond indicating the current state
of the system together with the sign command that is being
recognized. When the utterance of a teleoperation command,
consisting of the above three steps, is completed, the system
awaits for user confirmation, before the actual robot motion
command is finally sent to the mobile robot platform for
execution. User “validation” thus constitutes the final (fourth)
step in this gestural teleoperation procedure:

4) <VALIDATION> command: confirmation of recog-
nized motion command (GO!).

Robot motion can then be interrupted by the human operator
at any time, by issuing a <STOP> command (handshape
(c) in Fig. 3). In the prototype system developed for the first
pilot application described in this paper, the same handshape
is used both for the <GET READY> and <VALIDATION>
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(a) GO-TO command (b) VALIDATION command (c) STOP command (d) Numerical #1 command

(e) Numerical #2 command (f) Numerical #3 command (g) Numerical #4 command (h) (unassigned command)

Fig. 3. The list of static handshapes used as robot commands in the first pilot application.

command (handshape (b) -fist- in Fig. 3). A finite state ma-
chine implements this procedure, where various parameters
can be tuned, like the number of instances needed for the
system to consider a handshape properly recognized (for
safety and robustness purposes).

Conclusively, for the first pilot study we have opted for
a supervisory, “teleprogramming” type of high-level tele-
robotic control, assuming sufficient intelligence (planning
and navigation capabilities) embedded on-board the mobile
robot platform. This forms an adequate application scenario
for this proof-of-concept pilot experiment, where our initial
objectives were to illustrate the basic principles of employing
sign language commands in remote mobile robot control.
The small vocabulary of robot commands will be enriched
in the near future to incorporate (a) a larger set of commands
following the design principles outlines above, and (b) dy-
namic gestures, where time characteristics of sign utterances
are also going to be taken into account in the recognition
process.

III. VISUAL HANDSHAPE FEATURES EXTRACTION

A. Hand Posture Image Segmentation

The first stage for the processing of a sign video stream
concerns the segmentation of each image frame, for the
detection and tracking of the hand postures. For segmentation
purposes, we first apply a skin color segmentation procedure,
based on a prior statistical model of human skin color. Fur-
ther processing employing geodesic active contour models
gives excellent segmentation results. However, to comply
with the real-time constraints, such PDE-based models are
not used in the pilot application presented in this paper.

The skin color segmentation procedure finally integrated
in the pilot system is similar to the one presented in [1]. More
specifically, using the probabilistic skin color image derived
based on the prior skin color model, an iterative double-
thresholding process is applied to identify skin color pixels,
satisfying either one of the two following conditions:
(a) The skin color probability in a specific pixel is greater

than a threshold T1.
(b) The skin color probability in a specific pixel is greater

than a threshold T2 < T1, AND there exists at least one
neighboring pixel that is assigned as skin color.

Indicative values for the two thresholds are: T1 = 0.5 and
T2 = 0.1. Results of applying this technique are shown in
the second column of Fig. 4.

At a next stage, the resulting skin segmentation images
undergo a set of filtering processes, to eliminate any existing
erroneous pixels and to produce segmented areas that have a
smooth contour, so that reliable extraction of shape features
can be subsequently enabled. More specifically, the images
are firstly processed by an area opening filter to reject any
small segmented regions that may have been erroneously
identified as skin. Then, a series of morphological opening /
closing filters is applied to smooth out the segmented regions
further. An area opening is then applied to keep the largest
connected component in the image as the final segmented
binary hand image. The contour curves of the resulting
segmented hand image may be further processed through
Gaussian filtering to produce a more natural segmentation
result. Indicative results are illustrated in the third column
of Fig. 4.

The statistical color model used is created from a large
set of skin images that have been manually extracted a-
priori. Nevertheless, for robustness purposes, this model
can be dynamically adapted by updating the statistical skin
color model on-line, exploiting the new information avail-
able after each frame segmentation. More specifically, the
segmented hand-posture area in each image frame is used
to update the color model values. The procedure involves
color transformation into the Lab space, isolation of a, b
coefficients, and incrementing of the respective entries in the
color model table. By applying this dynamic updating, the
results are improved, particularly enhancing the robustness
of the procedure for different signers in varying lighting
conditions.

B. Shape Descriptors Computation

Various shape descriptors can be considered as inputs in a
handshape recognizer system. These include Fourier descrip-
tors (e.g. [21], or [7] for a gesture recognition application),
histograms [14], nth-order moments (e.g. like performed in
[16]), curvature scale space (e.g. [12] or [4] for gesture
recognition application), etc. In the work reported in this
paper, we have explored two different types of handshape

1076



Fig. 4. Indicative results of skin color modelling and handshape segmenta-
tion. First column shows original image, second column depicts skin color
probabilities, and third columns final segmented binary images.

descriptors: (a) boundary-based descriptors, extracting fea-
tures related to the form of the curve defining the contour of
the segmented handshape, and (b) region-based descriptors,
related to properties of the enclosed segmented region.

1) Region-based features: The region-based features we
have explored are based on the computation of the basic
moments of the segmented handshape area. These features
are used quite often in shape recognition problems, because
they achieve very big information compression rates (since
the use of only a small number of these moments may be
adequate to describe a shape). Based on the computation
of such moments, various combinations of shape descriptors
can be defined that are inherently invariant to affine trans-
formations.

In this work, we have implemented and experimented with
the following descriptors:

• the zeroth-order moment, that is, the total handshape
area a;

• the two first-order moments, yielding the coordinates of
the center of mass (x, y);

• the eccentricity e, which can be formally defined as:
e =

[
(µ20 − µ02)2 + 4µ11

]
/a, and gives a measure of

how “elongated” is the shape, where µij (i, j = 1, 2)
define the centered second-order moments;

• the degree of compactness c, defined approximately as
the ratio of the area of the segmented handshape to the
area of a circle having the same perimeter:
c = (4πa)/(perimeter)2 (giving a measure of how
“circular” is the shape).

2) Boundary-based features: Computation of such fea-
tures is performed on the contour of the segmented image.
We used two classes of features:

• The first class was based on the computation of the
curvature of the contour; a typical representation uses
the histogram of the curvature.

• The second class was based on the computation of
Fourier coefficients on a coordinates of the contour.

Fourier descriptors proved experimentally to be particularly
important, for handshape recognition in our application set-
ting. The procedure implemented to compute these shape
descriptors is as follows: First, the segmented handshape
contour is extracted (after applying an automatic “wrist-
cropping” procedure). A maximum of N = 256 points are
taken on the contour (depending on how long is the perimeter
of the shape). DFT descriptors can then be defined on these
N points using the formula:

Zk =
N−1∑

n=0

zne−2πjkn/N

The first coefficient Z0 is ignored, to make the shape
descriptors translation invariant. The magnitudes of the rest
of the coefficients are taken, normalized by Z1, making the
descriptors invariant to rotation and scaling.

IV. SIGN ROBOT COMMAND RECOGNITION WITH A

MULTI-LAYER PERCEPTRON CLASSIFIER

The set of features described in the previous section is
used as input to a neural-network (NN) classifier, aimed to
recognize the segmented image from the set of available
handshapes, constituting the robot sign command vocabulary
described in Section II.

Several hand-gesture recognition methods are reported
in the literature. Chang et al. [3] used a nearest-neighbor
technique, together with the definition of a distance measure
for a template matching based classification. Isaacs and
Foo [8] used a two-layer NN to recognize signs from the
American Sign Language (ASL). Juang et al. [9] used a
fuzzy recursive Takagi-Sugeno-Kang NN (FTRFN) for a
gesture recognition problem. In [17], orientation histograms
on grey-level images define the features used as inputs to
an MLP NN gesture recognizer. In [13], the use of an
RBF NN is proposed in combination with a Hidden Markov
Model (HMM) for a gesture recognition application. A
robot teleoperation application is reported in [11], where a
simple heuristic was applied limited to the recognition of 5
handshapes, interpreted as basic robot motion commands (of
the form: forward, backwards, right, left, and stop).

The NN classifier that has been implemented in the work
reported in this paper consists of an MLP with one or more
hidden layers and 8 nodes in the output layer (each node in
the output layer corresponds to a handshape). A small set of
60 images were used as the training set (7 to 8 examples for
each one of the 8 robot command handshapes, captured from
5 different signers). Learning rate for the back-propagation
algorithm was experimentally chosen equal to 0.3, with 2000
epochs as maximum learning period. The hyperbolic tangent
sigmoid activation function was used, while the Nguyen-
Widrow layer initialization function was employed regarding
weights and biases.

Various conditions were tested experimentally, including
different sets of input feature vectors, as well as different
number of hidden layers and nodes. A set of 20 successive
experiments were performed with random initial weights
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TABLE II

HANDSHAPE NN RECOGNITION RESULTS FOR DIFFERENT INPUT

CONFIGURATIONS

13 Fourier additional 13
e c

wrist Recognition
descriptors Fourier cropping Rate√ − − − auto 83%√ √ − − auto 88%√ √ √ √

auto 91%√ √ √ √
manual 98.5%

TABLE III

COMPUTATION TIMES FOR DIFFERENT SHAPE FEATURES

Image Features Computation Time

Fourier 40 msec
Eccentricity + compactness 35msec

Curvature Histogram 510 msec
Auto wrist cropping 130 msec

for each one of the conditions tested. Test data consisted
of 24 images (3 examples for each handshape). The shape
features were normalized so that the inputs supplying the NN
classifier take values ranging from −1 to +1, with standard
deviation 1 and mean value equal to zero. The experimental
analysis conducted led to the following conclusions:

• The use of only one hidden layer is adequate in our ap-
plication context, for classifying the given 8 handshapes.
Differences in performance achieved with the addition
of extra hidden layers are not statistically significant.

• The optimal number of nodes in the hidden layer is
approximately double the number of the inputs nodes.

• For real-time applications, as the gestural robot tele-
operation context considered in this paper, the Fourier
descriptors seem to be of particular importance, provid-
ing a good trade-off between computation speed and
recognition rate.

Table II summarizes the experimental results A sufficiently
good result, in terms of recognition rate and real-time per-
formance for our application context, has been obtained with
only 13 inputs (Fourier shape descriptors), 30 neurons in the
hidden layer and 8 nodes in the output layer (83% recog-
nition rate). Applying a two-scale morphological filtering in
the images and extracting 13 additional Fourier descriptors
(giving us a total of 13+13 = 26 inputs for the NN classifier)
leads to an increase in the performance (recognition rate
of 88%). Adding another two inputs (being the eccentricity
e and compactness c features, defined above) leads to an
additional slight performance improvement (recognition rate
of 91%).

It must be pointed out here that despite the small number
of images (7 to 8 images per hand posture) used each
time at the training set, the system performance was quite
satisfactory. Initial experimental analysis has showed us that,
given the complete data set used in our study, any number
above 5 for the size of the training set, was adequate to
train the system satisfactorily. Of course, our goal in the

future is to populate the data set used for training the NN
classifier (also using captures from the GSL video corpus
developed), and then capture live data in different conditions,
in order to validate quantitatively the performance of the
system under real (hard) operating conditions. The effect
of noise in the images has also been explored, both in the
case of natural (due to segmentation errors) and artificially
introduced noise. In both cases, the system performance was
maintained, showing that the method with the considered 26
inputs (2 × 13 Fourier descriptors) is quite robust.

It must be also noted at this point that the above results
are obtained with the application of an automatic wrist
cropping procedure, used after handshape segmentation and
morphological filtering to extract and keep only the hand
area, disregarding any segmented area from the forearm. It
is observed, though, that automatic wrist cropping procedures
may fail in specific handshape configurations. This may
affect recognition results, since part of the handshape may
also be cropped in some cases. If we perform manual wrist
cropping on all segmented images, which is equivalent to
imposing a “long sleeves assumption” (i.e. assuming that
the human signer uses non-skin colored clothes with long
sleeves), often considered as a requirement in automatic
gesture recognition settings, then the results obtained are
considerably improved (recognition rate of 98.5%), as shown
in Table II. The computation time for feature extraction,
using an Intel Celeron 1.46GHz processor with 512MB
RAM, are shown in Table III. The computation of 26 Fourier
descriptors with eccentricity and compactness features leads
to a near real-time system, and forms our choice of prefer-
ence for the considered robot teleoperation pilot application.

V. PILOT IMPLEMENTATION IN MOBILE ROBOT SIGN

TELEOPERATION

The handshape segmentation and recognition modules
described above have been integrated within a graphical user
interface (GUI), designed for our mobile robot teleoperation
pilot application. The GUI incorporates all communication
functions for: (a) submitting teleoperation commands to the
remote mobile robot platform (in our case, a Pioneer P3-
DX robot vehicle), and (b) receiving information feedback
from the onboard robot sensors (camera, ultrasound, odom-
etry). Fig. 5 shows an instance of this GUI, where the
handshape recognition modules are integrated, including a
hand-signer live video window, a handshape segmentation
window, and a command recognizer panel (indicating the
sign robot command currently recognized by the system). A
simple finite-state machine implements the robot command
sequence, as this has been specified in Section II. The system
has been successfully tested in real-time experiments, in the
considered “desktop” gestural teleoperation scenario.

VI. CONCLUSION AND FUTURE WORK

This paper described a gesture-based desktop teleopera-
tion system and its pilot application for the teleoperation
of a mobile robot. The paper focused on image analysis
problems and on visual handshape recognition, which is
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Fig. 5. Graphical User Interface incorporating the handshape recognizer
for the mobile robot teleoperation application scenario.

here performed using a neural-network classifier. A small
vocabulary of telerobot commands has been defined, and
has been associated to a set of static hand-postures, thus
forming the robot teleoperation sign language subset for our
pilot application. A series of experiments has been conducted
and results are presented that identify important image-based
handshape features that can satisfy both real-time constraints
and acceptable recognition rates. A desktop teleoperation
scenario has been implemented, integrating all the telerobot
communication and control modules within a graphical user
interface.

Robot teleoperation, and more generally human-robot
interaction, based on natural gestures like sign language
utterances, constitutes a very interesting and challenging
field in robotics, with important currently on-going research
activities worldwide. Our future research efforts in this
domain will focus on several directions:

• To enrich the vocabulary of robot commands, incorpo-
rating a larger set of signs, that are potentially closer to
natural sign language utterances.

• To implement and integrate dynamic hand gesture
recognition algorithms, incorporating motion tracking
and Hidden Markov Models.

• To explore different human-robot interaction scenarios,
involving multimodal communication that also uses
human gestures (and generally actions) inferred from
motion of both hands and arms.
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