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Abstract
In this paper we propose a Leasi Mean Square (LMS) algorithm for the practical training of the

class of mm-max classifiers. These are lattice-theoretic generalization of Boolean functions and are also
related to feed-forward neural networks and morphological signal operators.

We applied the LMS algorithm to the problem of handwritten character recognition. The database
consists of segmented and cleaned digits. Features that were extracted from the digits include Fourier
descriptors and morphological shape-size histograms.

Experimental results using the LMS algorithm for handwritten character recognition are promising.
In our initial experimentation, we applied the mm-max classifier to binary classification of "0" and "1"
digits. By preprocessing the feature vectors, we were able to achieve an error rate of 1 .75% for a training
set of size 1200 (600 of each digit); and an error rate of 4.5% on a test set of size 400 (200 of each). These
figures are comparable to those obtained by 2-layer neural nets trained using back propagation. The
major advantage of mm-max classifiers compared to neural networks is their simplicity and the faster
convergence of their training algorithm.

1 Introduction
Character recognition is a very important task in electronic document image analysis. In a character
recognition system, two distinguished stages are usually recognized. The first one extracts features from
the input character image which are fed into the second classifier stage. In this paper we shall describe the
application of morphological systems to both of these operations.

In [1] we reported theoretical results on the automatic design of several subclasses of mm-max pattern
classifiers. There we provided polynomial time efficient search algorithms under the Probably Approximately
Correct (PAC) model of machine learning [2]. These algorithms work, however, under the provision that a
consistent classifier exists (i.e., there exists a mm-max classifier that can correctly classify all the training
data). Such assumption is rarely fulfilled in practical applications, which led us to investigate the possibility
of obtaining time efficient training algorithms in the absence of the PAC condition. Unfortunately, we found
that by loosening the PAC condition, the problem becomes difficult. More specifically, we found that the
problem of designing a thresholded monotone minimum function which minimizes the error rate for an
arbitrary training data set is NP-complete. Since the thresholded monotone minimum function is the
simplest form of mm-max classifier, we suspect the general question is also hard.

This discovery led us to investigate other approaches for designing the learning algorithm. In this paper,
we report a Least Mean Square (LMS) type algorithm [3] and apply it to the task of handwritten character
recognition. The LMS algorithm is a gradient based method and requires the calculation of derivatives
of the classifier output with respect to some internal parameters. For the mm-max classifiers, it is not
immediately obvious how to define the internal parameters, and to write down the input-output relation in
an easily differentiable form. These two problems are addressed in [4], in which the author dealt with the
problem of designing morphological filters with fiat structuring elements. To calculate the derivatives, he
employed an implicit formulation of the maximum and minimum functions. Due to the close relationship
between mm-max classifiers and morphological filters, in our work we have adapted its formulation to the
design of the mm-max classifiers.

Turning to feature extraction, we note that morphological features have been used in character recog-
nition before [5]. For our work we employed the morphological shape-size histogram (called "Pattern
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Figure 1: Signal flow diagram of the mm-max classifier

Spectrum" in [6]), which is constructed from morphological size distributions (granulometries) [7, 8]. It
provides a quantitative multiscale description of shape based on morphological operations.

This paper is organized as follows: Section 2 is a very brief overview of the definition of mm-max clas-
sifier. The LMS algorithm is described in Section 3. Finally, the LMS algorithm is applied to handwritten
character recognition. The experimental results are presented in Section 4, which also contains a discussion
of the feature extraction procedures.

2 Mm—Max Functions
We shall only provide the basic definitions to facilitate discussion in the following sections. A more detailed
exposition of the properties of the mm-max classifiers can be found in [1]. The mm-max functions are an
extension of Boolean functions to real variables based on the theory of fuzzy sets [9] , where the Boolean
AND/OR corresponds to a MIN/MAX.

The input to the mm-max classifier is a real-valued vector (x1 , x2, ..., xd) in the d-dimensional unit
cube [0, 1jd We define a mm-max function with input as the function

y = f(xl,x2,...,xd) = rnxrnin , £ {x,1 —x} (1)j=1 iI,

where an argument £, is called a literal, equaling either a variable x2 or its complement 1 —x. Each
minimum function h3 = minj€i, L is a called a rain terra. The input mask Ij denotes the set of coordinates
of the input vector that appear in the argument of the j-th mm term. The maximum is calculated over
the output of the minimum functions. In this paper we shall restrict the total number of minima k to be
a prespecified constant.

To use a mm-max function f as a classifier performing binary decisions we need to threshold f at some
arbitrary value 9 E [0, 1]. This creates a rain-max classifier fo : [0, 11d {o, 1) defined by

z = f(x) =
{ (2)

A signal flow representation of this equation is shown in Figure 1.
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3 LMS Algorithm for Training Mm-Max Classifiers
We start by describing the LMS algorithm [3] on a general function. If (t) is the input vector to the
classifier at discrete time t = 1, 2, 3, . . ., then the output is z(t) = F((t); pt)) where plt) is a vector of
parameters that together with F(.) determine the input-output rule of the classifier. One is interested in
minimizing the mean-square error (MSE) of the output z(t) and a desired process d(t),

e(t) = E[(z(t)- d(t))2].

Since we are dealing with binary functions z(t), d(t) {O, 1}, the mean square error is identical to the
probability of error of the classifier. The mean-square error is minimized using a gradient descent approach.
At each iterative step, the internal parameters pit) is changed along the direction so as to produce the
largest decrease in the MSE. This is achieved using the iterative equation

(3)

The convergence factor 1u is used to control the convergence rate of the system. The main simplification
of the LMS approach is the replacement of the mean-square error by the instantaneous error, resulting in
the following approximate update equation:

(t + 1) = p(t) — 2,u(z(t) — d(t)),uVz(t) (4)

In this paper this update rule is used for supervised training of mm-max classifiers. The members of
the training set are formed into a sequence d(t). The step variable t is the sample number within the
training data set.

Specializing to the mm-max classifier, the parameter p(t) is a k x 2d+ 1 dimensional vector. They include
the threshold 0, and k x 2d parameters for specifying the I — there are k input masks, each requiring 2d
parameters to determine whether the variable or its complement is to be included. In the discussion that
follows, it is more convenient to restrict the minimum functions to be monotone, i.e. their input variables
are not complemented. Complemented variables are introduced by remapping d-dimensional input vectort into a 2d-dimensional one X composed of pairs of uncomplemented and complemented variables.

Now, we define the parameters that specify the input masks 13,j = 1, . . . , k. Since the learning
algorithm employs gradients of the internal states, the states should be continuous variables. We adopt
the approach suggested in [4] : for each Ij we introduce 2d continuous real variables m3 , i = 1, . . . , 2d

corresponding to the remapped feature vector X. They control the coordinate list in the following manner:

• X is included in I if m2 0,

• X is excluded from I if m2 < 0.

We are now in a position to find the gradients required in Equation (4). It follows from the definition
of the threshold function

(5)

where sgn() is the signum function defined as

11 ifx�0,
sgn(x)= 0 ifx=0,

( —1 otherwise.
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Figure 2: The approximation to the (x). /3 is a training parameter to be specified.

A strict forward calculation yields the derivative,

=-(y-e). (6)

The delta function in the above equation is approximated using a finite impulse shown in Figure 2. The
parameter j3 controls the width of the pulse. Using this approximation, one derives the approximate
derivative

( 1 .c i-t_f_) — 11 v p,
7a9 1 0 otherwise.

To calculate the derivatives with respect to the parameters mj ,one employs the chain rule:

Oz _OzOy ôh 8
t9m2 '9y ôh t9m2

3.1 Derivative of Maximum
The second term in the right hand side of Equation (8) is the derivative of the output of a maximum
function with respect to one of its inputs. It cannot be calculated using the explicit form of the maximum
function

y=max{hl,...,hk}.
One can use instead an implicit definition of the maximum function [4]

k

G(y,hl,...,hk) = {sgn(y— hi)— 1}+ Ge = 0. (9)
j=1

The quantity Ge is the number of inputs h that are equal to the output y. The total derivative of GQ
with respect to m2 is identically zero. Following the derivation in [4], one obtains

Oyf - ify=h2
100 otherwise.

3.2 Derivative of Minimum
The third derivative in Equation (8) now poses no special difficulties. The output of the j-th minimum
function is

h3 = min{X2 : i = 1,...,2d and m23 � 0}
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Figure 3: Sample data from the handwritten database.

Using an implicit formulation again, this equation can be reexpressed as

L(h,Xl,...,X2d;ml,...,m2d)= {sn(mii)+1sgn(xjhj)_ 1}+Le 0, (11)

where L denotes the number of inputs X2 whose m3 0 and are equal to the output value h, . Following
calculations similar to the previous section one finds the approximate gradient:

8h ej J —E if ImI � 3 and h =X
(12)

8m3 o otherwise.

4 Application to Handwritten Character Recognition
In this section we shall apply the LMS algorithm to hand-written character recognition. Due to the binary
nature of the mm-max classifier we shall use it for distinguishing between 0's and l's. Our database
consists of segmented and cleaned handwritten digits.1 Sample 0 and 1 digits from the database are shown
in Figure 3. The size of each digit is around 50 x 50 pixels. For our experiments, we selected 600 samples
of 0's and l's to form a training set of 1200 digits. The test set consists of 200 samples of each of 0's and
l's for a total of 400 test digits.

4.1 Feature Extraction
4.1.1 Fourier Descriptors

The first variety of feature is based on the chain code description of the boundary of the characters [10].
The algorithm is similar to Algorithm 7.1 in [10] with the modification that we used a four-connectivity
chain instead. Only the outer boundary of the character is traced.

The first one is related to the Fourier descriptors discussed in [11]. Given the initial point, the boundary
is fully characterized by the direction of the transversal at each step. Corresponding to each direction
is the angle it makes with the x axis. Using this mapping scheme, one obtains a periodic functions
çb(n), 0 < n < L— 1, where L is the total length of the chain code. The Discrete Fourier Transform (DFT)
of this sequence is

(k) = fork? 0.

1This database was supplied by Dan Bloomberg of Xerox PARC.
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Since the inputs to the mm-max classifier have to be restricted to a range of [0, 1], the actual features are
computed using the normalized magnitude of the DFT:

(k)= k(k)I
(13)

k(O)I

We shall call this the angular Fourier descriptor. It is within the required range because k(k)I � çL(O)J as
can be proved easily using the triangle inequality and the fact that q(n) are nonnegative values.

Another description of the boundary curve is the sequence of position vectors (x(n), y(n)) of its pixels.
Screen coordinates were used (x increases moving right and y increases moving down). Two Fourier
descriptors are defined using the magnitude of the Discrete Fourier Transforms of x(m) and y(n) as

X(k) = (14)

Y(k) = (15)

where and denotes respectively the DFT of x and y. The same normalization as in Equation (13) is
used.

For our experiments, values of the Fourier descriptors for 1 � k ç 10 were used. Only low frequency
components were used so as to increase noise tolerance. Samples of the features are shown in Figure 5 (left).

4. 1 .2 Morphological S hape-Size Histogram

We shall only describe the closing part of the shape-size histogram since this is the one we employed. To
generate the shape-size histogram, the image is nonlinearly smoothed using the morphological closing filter.
Intuitively, the closing smoothes the background by removing parts of it that the structuring element B
doesn't fit into.

In generating the shape-size histogram, structuring elements of increasing sizes are used. A structuring
element of size n (denoted nB) is given by:

nB=BEI3...B forn>1,and OB={O}.--
n

By taking the difference in the area of images smoothed at consecutive sizes, one obtains the shape-size
histogram. More formally, we have the following definition:

SH(n, B) = A[X • (n + 1)B] — A[X • nB] for n = 0, 1, 2, ...

where A[ I denotes the area of the foreground of the image (for discretized image this is equated to the
pixel count). The shape-size histogram is always nonnegative [6].

As in the case of the Fourier descriptors, the features should be normalized to within the range of 0 to
1. A natural normalization to reduce the effect of differing image sizes is by dividing SH(n, B) by the
area of the maximally closed image (M) defined as

M= lim X•nB=X•KB
n—+oo

where the limit is attained for a finite n = K due to the boundedness of X (see [6]). Obviously,
SHx(n, B) A[MJ. Hence, the actual features used were the normalized shape-size histogram:

NSH(n,B)=
A[M]

,forn�O.
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Figure 4: Structuring elements used in calculating the
(b) Right pointing triangle. (c) 45° vector.
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Figure 5: Examples of features employed in the experiments. The center column shows the normalized
Fourier descriptor (k), while the third one shows the normalized shape-size histogram calculated with
the left pointing triangle in Figure 4(a).

In our experiments we computed closings of size up to n = 39. For our images and choice of structuring
elements, this value is greater than K . Of the forty components that were computed, only ten of them
(0 n< 9) were used.

Turning to the structuring elements B, the three designs are shown in Figure 4. The left pointing
and right pointing triangles are used to detect left and right pointing cavities respectively. The 45 degree

vector is useful for finding long strokes, such as those in characters I and 7 . For samples of the feature
see Figure 5 (right).

4.1.3 Rotating the Feature Vectors

It turns out the boundary of the decision regions of mm-max classifiers are axis-parallel (see [1] for proof).
If the boundary between different clusters in the data conform to this geometry, a low error rate could be
achieved. A simple preprocessing scheme that we tried is rotation of the feature so as to diagonalize the
sample covariance matrix.

A principal direction is an eigenvector of the sample covariance matrix, defined as

= — a)
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where X and a denotes the i-th component of a feature vector and the mean vector respectively. The
summation is carried over the entire set of N feature vectors from the training set. If clusters of different
classes are fairly localized, one expects a principal direction to point perpendicular to the decision plane.
By rotating the eigenvectors to be axis-parallel, hopefully the decision regions will become axis-parallel
too. Using elementary linear algebra, one derives the transformation on the feature vectors

1' = QT(1 — d) (16)

where 0 is the matrix whose columns are the eigenvectors of A. After the rotation, a second step is
performed in which the feature vectors are shrinked uniformly in all directions and then translated so that
an axis-parallel hypercube transformed in the same way would just fit within its original position. This is
to ensure that the transformed feature vector remains in the valid domain [0, 11d•

4.2 Experimental Results
The experiments are centered around three ideas:

Comparison with neural network The misclassification rates of mm-max classifiers trained via the
LMS algorithm and feed forward neural networks trained using the back propagation algorithm [12]
are compared.

Importance of each type of feature Two types of features we used were Fourier descriptors and mor-
phological shape-size histograms. Different combinations of these two features were used as inputs
and the effect on the error rate examined.

Rotating the data We explored the possibility of reducing the error rates by preprocessing both the
training and test data using the ideas in Section 4.1.3.

The neural network we used has one input layer, one hidden layer and one output node. This archi-
tecture was used in order to provide fair comparison with the mm-max classifiers — the maximum gate
corresponds to the output node and the minimum gates to the hidden nodes. The number of nodes in
the hidden layer was chosen to be equal to the number of minima in the mm-max function. The second
consideration in maintaining fairness is to allow the LMS and back propagation programs consume the
same amount of CPU time. We approximated this requirement by limiting the number of different initial
conditions that the back propagation to five and report the average of the best four; while the LMS was
run with fifteen initial conditions and we report the average of the best five. In the back propagation
algorithm we also included a momentum term in the update equation.

To explore the importance of different features, three different sets of feature vectors were extracted
from the input images:

1. Mixed set (Set I) Each feature vector is a concatenation of 10 components ofangular Fourier descriptor
(k), 10 components of normalized shape-size histograms calculated using the right pointing triangle
(Figure 4(b) ), and 10 components of shape-size histogram for the 45 degree vector (Figure 4(c)).

2. All Fourier descriptors (Set II) 10 components from the three different types of Fourier descriptors
(4(k),X(k), and Y(k)).

3. All shape-size histograms (Set III) 10 components of normalized shape-size histograms calculated
using each of the structuring elements shown in Figure 4.
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All feature vector has a total of 30 components so that the comparison remains fair.
Finally, for each of these data sets we ran the learning algorithms (LMS and back propagation) both

with and without preprocessing, making a total of six different data sets.
In our experiments, we used the LMS algorithm in a "batch" mode operation. This means that training

and testing are separated into two distinct stages. During each iteration of training stage, the mm-max
function is changed by running the LMS procedure for all the data in the training set. We shall refer each
iteration step as a scan. After each scan, the error rate of the current classifier is calculated using the
training data set. The parameters for the minimum gates were initialized using a random number
generator. However, we found that the convergence depends quite critically on the initial value of the
threshold 0 and therefore it is not randomly generated. In our particular implementation, the training
program performs a fixed number of scans (200 is the value we used), and returns the classifier that
achieved the lowest error rate within the 200 scans. This classifier is then used to calculate the error rate
on the test set. We only report the setting that resulted in the lowest observed training error rate. Typical
values for the convergence rate is /Lmin 1 X iO, /3mjn 1, I 1 X i04, and /3 = 0.1. A similar
procedure was also used for the back propagation where we used 1000 scans.

Table 1 shows the results for the mixed data set (both Fourier descriptors and shape-size histogram).
Typical error rates for the mm-max classifiers are 1.75% on the training set and 4.5% on the test set. These
figures are very encouraging. For the back propagation algorithm, the error rates dropped to 0.4% on the
training set, which is one fourth of the value for the mm-max classifiers. The error rate on the test set
dropped by 0.5% to 4%. A smaller error rate for the neural networks is expected because they are more
general classifiers (i.e. their decision regions are more flexible than the mm-max functions).

Besides comparing the error rates, another attribute that is of interest is the speed of convergence
of the training algorithms. Typical convergence plots of the LMS algorithm and the back propagation
algorithm on data set (I) are shown in Figure 6. The graphs show the error rate on the training data set
as a function of the number of scans. (The error rate is computed after each scan of the entire training
sequence.) The plots terminate after the minimum error rate is found. Judging from these plots, we see that
a clear advantage of the LMS algorithm over the back propagation algorithm is the speed of convergence.
Typically only 20 scans is required before the minimum training error is reached whereas for the back
propagation ten times more scans are required. Another advantage we found in running the programs is
that the mm-max classifier required less execution time: computing a mm-max functions requires only
binary comparisons; while neural networks require the calculating the computational costly exponential
functions.

The advantage in error rate of the neural network over the mm-max classifier diminishes after prepro-
cessing was incorporated. Tables 2 contains the result generated from the preprocessed data. For the LMS
algorithm preprocessing reduced the training error by a significant factor of 3 from the unprocessed value
of 1.75% to around 0.6%. However, the training error dropped by a lower margin from a typical 4.5% to
around 3.7%. These error figures are comparable to the error rate achieved by the neural networks. Turn-
ing to the back propagation algorithm, both the training and test error rates increased. This is probably
due to the decrease in cluster separation due to the scaling operation in the preprocessing.

Table 3 summarizes the results for training the mm-max classifiers with data set II (pure Fourier
descriptors). The training and test error rates for the mm-max functions is much higher than those
obtained with the mixed data set (I), indicating that it is advantageous to include both types of data
for the mm-max classifiers. Interestingly, the training error rate for the back propagation dropped to an
occasional 0%.

The corresponding results with preprocessing are shown in Table 4. By using preprocessing on the
feature vectors, the training error rates for the mm-max classifiers dropped by a factor of about four,
with a corresponding decrease in the test error rate by a factor of 2. However, for the back propagation
algorithm an increase in the training and test error rate was observed. Again this is possibly due to the
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Table 1: Results for 0-1 classification problem using both Fourier descriptors and shape-size histograms.

Table 2: Results for 0-1 classification problem using preprocessed Fourier descriptors plus shape-size his-
tograms.

Table 3: Results for the 0-1 classification problem using only Fourier descriptors.

Table 4: Results generated using preprocessed Fourier descriptors.
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No. of minima
Mm-Max
Error (train)

1
3
5
7

1.75
1.75
1.75
1.75

Neural network
Error (test) Network Error (train) Error (test)

4.5 1,1
4.5 3,1
4.5 5,1
4.5 7,1

0.396
0.417
0.333
0.333

3.813
3.75
3.813
3.5

Mm-Max
No. of minima Error (train)

1
3
5
7

Error (test)
0.517
0.517
0.517
0.517

Network
3.7
3.7

3.75
3.7

Neural network
Error (train) Error (test)

1,1
3,1
5,1
7,1

2.208
2.375
2.417
2.271

5.063
4.875
4.688
4.875

No. of minima
1

3
5
7

Mmn-Max Neural network
Error(train) Error (test) Network Error (train) Error (test)

11. 133
11.85
11.6

12.083

12.15
10.8
10.8

10.75

1,1
3,1
5,1
7,1

0.375
0.0
0.0
0.0

4.313
3.94

4
4

Mm- Max
Error (train)No. of minima

1
3
5
7

Error (test)
1.883
2.017
1.883
1.867

Network
5

4.6
5.1

5.15

Neural network
Error (train) Error (test)

1,1
3,1
5,1
7,1

24.688
12.625
9.729

10.292

21.563
14

10.75
11. 188
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Table 6: Results using preprocessed shape-size histograms.

reduction in cluster separation. For the LMS algorithm, even with data preprocessing the training and
test error rates were still higher than those obtained with the mixed feature type data set.

The third data set that we used consisted only of shape-size histograms. Table 5 displays the results.
Both the training and test error rate for the mm-max function were higher than those obtained using data
set I (both types of features), providing another indication that it is better to use both Fourier descriptors
and shape-size histograms for the LMS algorithm. Preprocessing this set of feature vectors (Table 6),
however, did not improve the performance mm-max classifiers.

5 Conclusion
We reported on our preliminary experimentations on the practical training of mm-max classifiers and
applied it to handwritten character recognition. The results are encouraging. By using preprocessing on
the feature vectors we were able to achieve error rates comparable to neural networks trained by back
propagation. The main advantage of the mm-max classifiers is their simplicity and faster convergence. We
are currently working on refinements of the training equations and the features.
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Mm-Max
No. of minima Error (train) Error (test) Network

Neural network
Error (train) Error (test)

1,1
3,1
5,1
7,1

1 6.117 6.5
3 2.05 2.65
5 1.8 2.65
7 1.733 2.25

Table 5: Results using only

Mm-Max
No. of minima Error (train) Error (test)

3.646
3.729
3.958
3.708

7.75
7.813
8.875

8

shape-size histograms.

1

3
5
7

6.917
6.95

6.967
6.333

Network
7.15
7.55
7.7
8

Neural network
Error (train) Error (test)

1,1
3,1
5,1
7,1

31.521
24.458
21.375
22.021

38.686
29.5

24.688
25
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Figure 6: Plots comparing convergence speed of LMS algorithm with the back propagation. The lines are
terminated after the minimum error rate over the entire scan is achieved. (a) Typical convergence plots
for the LMS algorithm. The minimum error rate (1.75%) is attained within 25 scans. (b) Convergence
plots for the back propagation on the same data set. The error rate decreases to within 1.5% after about
60 scans.
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