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ABSTRACT 
In this paper we applied min/max signal operations, com- 
mon in morphological image analysis, to both feature ex- 
traction and classification of character images. We propose 
a system that computes an improved version of the mor- 
phological shape-size histogram, which reduces sensitivity to 
stroke thickness, size and rotation. For pattern classifica- 
tion we introduce the class of min-mas classifier, which gen- 
eralizes Boolean DNF functions for real-valued inputs. A 
Least Mean Square (LMS) algorithm was used for practical 
training of min-max classifiers. Experimental results show 
that min-max classifiers were able to achieve error rates 
that  are comparable to neural networks trained using back 
propagation. The main advantage of the min-max/LMS 
algorithm is its simplicity and faster speed of convergence. 

1. INTRODUCTION 
Two separate stages of operations are usually distinguished 
in character recognition systems. In the first one the raw in- 
put image is preprocessed and features are extracted. They 
are designed to capture important information in the input 
character. Good feature vectors can greatly enhance the 
operation of the second stage, the classifier. In this paper 
we describe the application of min/max signal operations, 
common in morphological image analysis, to both of these 
stages. 

For feature extraction we provide improved versions of 
the morphological shape-site histogram [ I ,  21 (also called 
“pattern spectrum in [2]). The shape-size histogram is an 
important tool for shape representation in morphological 
image analysis. It is derived from the morphological size 
distributions [3, I] (also called “granulometries” in [3]), 
which were introduced by Matheron as an axiomatic def- 
inition of “size”. The improvements we made reduced the 
sensitivity of the shape-size histogram to stroke thickness, 
size, and orientation, thus making it a better feature for 
character images. 

For character classification we employed min-mas classi- 
fiers which we introduced in [4]. These functions generalize 
Boolean functions by replacing AND/OR with MIN/MAX 
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operations, thereby allowing real valued inputs within the 
range [0, 1ld. Another motivation for working with the min- 
max classifiers is their close relation to a large class of non- 
linear signal/image operators known as morphological fil- 
ters, which are defined via min-max operations on their 
inputs. As discussed in [l] and [SI, these min-max morpho- 
logical operators can be applied to a broad variety of feature 
extraction and shape analysis/detection tasks in images or 
arbitrary geometrical objects. 

2. FEATURE EXTRACTION VIA SHAPESIZE 

The shape-size histogram is obtained by smoothing the im- 
age I via opening and closing ( 0 )  filters by structuring ele- 
ments 

HISTOGRAMS 

nB = B e  @ B for n 2 1 ;  OB = t(0,O)) - 
n 

that are multiscale dilations (e) of a unit-size convex shape 
B. The size parameter is n. The difference in areas of the 
image I smoothed at  successive sizes gives the shape-size 
histogram: 

S H l ( n ,  B )  = AII 0 ( n  + 1)B] - AII 0 nB],  for n 2 0 (1) 

We employed only the closing part of the shape-size his- 
togram since it gives information about holes and cavities 
in the thin character images. 

The direct application of this shape descriptor as a fea- 
ture may not, however, be desirable. For instance, Fig. 1 
illustrates some problems that may occur. The shape-size 
histograms calculated using a 2 x 2 square structuring ele- 
ment for images are very sensitive to stroke thickness, size, 
and orientation. To reduce the effects of these on the fea- 
ture, we employed a system for extracting enhanced shape- 
size histograms which consists of three steps: 

1. 

2 .  

3.  

thin the character; 

find the area functions A[IonB]  of the thinned images; 

calculate the normalized shape-size histogram from the 
area function. 

2.1. Thinning 
Before thinning, the character is dilated with a 3 x 3 pixel 

square to fill up small gaps. We employed the homotopic 
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Figure 1: Sample zeroes together with their pattern spectra. The second and fifth columns are size histograms calculated 
using a 2 x 2 square. The  third and sixth columns show better results using the normalized radial size histogram. 

Digit Normalized Size Normalized Radial Digit Normalized Size Normalized Radial 
Histogram (a) Size Histogram Histogram (0 )  Size Histogram 

Figure 2: Examples of features employed in the experiments. The second and fifth columns contain normalized size his- 
tograms calculated using a 2 x 2 square while the third and sixth are normalized radial size histograms. 

Figure 3: Structuring elements used in the thinning opera- 
tions. 

thinning algorithm described in [6]. The basic operation is 
the thinning operator 

z H z 0 { S , }  = z \ U ( I  8 SI). 

I 

The set mapping I @  S, = (I e A , )  n (I' e B,) is called 
the hit-miss transform [l]. For the structuring elements 
S, = ( A , ,  B,)  we employed (see Fig. 3),  the hit-miss trans- 
form detects the boundary of the image. Therefore, the set 
difference (\) removes parts of the image (u,(I@Sl)) while 
preserving four-connectivity of the foreground Z. In each 
step of the algorithm, the image is thinned used {SI, SZ, Sg} 
and three rotated versions 

This is iterated under convergence (i.e. no change in the 
image). Figure 4 shows some sample digits before and after 
homotopic thinning. 

2.2. Normalization of Area Function 
After the thinning operation, the area functions are cal- 
culated for n = 0, .  . . , N b .  The maximum size Nb is de- 
termined by the relative size of the image with respect to 
the structuring element B. Suppose the dimension of the 
bounding box of the image I is i ,  x i h ,  and that for the 
structuring element b ,  x b h ;  then Nb = max(i,-b,, i h - b h ) .  

0 2 5 6 9  
Processed 0 2 5 6 9  
Original 
image 

image 

Figure 4: Examples of images before and after homotopic 
thinning. 

Intuitively, the parameter Nb is the structuring element size 
n that is required to produce the convex hull of the largest 
image that fits within a box of size z, x ah (i.e. the box 
itself). Since we have features of varying lengths, it is con- 
venient in practice to rescale them to one uniform size. To 
facilitate this we first interpolate A[ZenB],  which is defined 
for integer scales n, to a piecewise constant function defined 
over the continuous size parameters 0 5 9 5 Ng. The do- 
main of the interpolated area function A ( s )  is then rescaled 
to [O,M] and resampled at  integer values m = 0,. . . , M .  
The net effect of these operations is expressed in the for- 
mula: 

~ ' ( m )  = A (I B )  , for = 0 , .  . . , M 

The normalized shape-size histogram S H i ( m ,  B )  is calcu- 
lated from A'(m) as in Eq. (1) with the A replaced by A'. 
Finally, the amplitude is normalized by dividing SH;(m, B )  
with the area of the maximally closed image. Examples of 
this normalized size histogram is shown in Fig. 2. 

Further improvement to reduce sensitivity to  rotation is 
provided by the radial size histogram [a] (see Fig. 1, 2). It 
replaces the closing by a 2-D element B with an intersec- 
tion of closings by the four directed vectors {-, /", t, 2). 
Figure 1 shows the remarkable improvement of this feature 
over the plain shape-size histogram. Experience has also 
shown that the radial size histogram is useful for detecting 
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Figure 5 :  The  connections between different modules within 
a min-max classifier. 

holes in the digit. 
different digits are shown in Fig. 2.  

Examples of radial size histogram for 

3. MIN-MAX CLASSIFIERS 
3.1. Definition 
The signal flow diagram of a min-max classifier is shown in 
Fig. 5 .  Its first layer consists of IC minima functions 

h, = mint , ,  j = 1, .  . . , k 
S E I ,  

calculated over a set of literals ( t , )  equaling either the input 
z, or its complement 1 - 2,. It is more convenient to intro- 
duce the complemented variables by remapping the input 
5 E [0 ,  lId to a 2d-dimensional one that includes both un- 
complemented and complemented variables. Therefore, h, ’ s  
are uncomplemented minima of these 2d remapped vari- 
ables. The  subsets I ,  are controlled via mask variables m,, 
in the following fashion 

0 2, is included in I ,  if m,, 2 0, 

0 z1 is excluded from 1, if mt3 < 0. 

In the second stage, the maximum function outputs the 
largest of all the h,’s. I t  is then thresholded at  0 to obtain 
a binary output. Therefore, a min-max function is fully 
specified by the 2dk mask variables and the threshold 8. 

3.2. Training 
For training the min-max classifier we employed a Least 
Mean Square (LMS) algorithm [7]. The basic update equa- 
tion is 

where p’ are the parameters that  define the system (for the 
min-max classifier p’ = ( m I 3 ,  0) ). The speed of convergence 
is controlled by the convergence parameter p .  

Specifying Eq. 2 to  the min-max classifier, we have to 
calculate two types of partial derivatives, and k. 
The first one can be calculated using the definition of the 
thresholding function, whereupon one obtains 

8mt3 

( 3 )  - = {  dZ -L 2 4  if1Y-01 513 3 

ae 0 otherwise. 

We have approximated the derivative of the threshold, a 
delta function (S(y - e ) ) ,  with a finite impulse of width 

p. The derivative with respect to the mask variables are 
calculated using the chain rule 

a2 a Z  a y  ah, 
am,, a y  ah,  am,, 

The expression on the right hand side involves derivatives 
of rank order operations. These are calculated by using im- 
plicit definitions for the maximum and minimum functions. 
Salembier [8] also used a similar approach in his work on 
adaptive morphological filtering. For instance, the inputs 
and output of the maximum function satisfy 

-- --- - 

k 

3 = 1  

In what follows we require two types of step functions 

The variable G, is the number of inputs h, that  are equal 
to the output y. Using the fact = 0, and again approx- 
imating delta functions by finite impulses, we obtain 

d h l  

where N,,, is the number of h,’s such that y - h, 5 8. 
The result for the minimum function is similar. Its implicit 
representation is 

L(h,, x i , .  . . , z d ,  m l , , .  . . , m 2 ~ )  = 

The quantity Le is the number of inputs in 1, that  are equal 
to the minimum. After some simple calculations we find the 
approximate derivative: 

(7) ah, ~ { -* if Im,,I I: 13 and = x, 
ami3 0 otherwise 

where N,,, is the number of inputs such that m,, 2 0 and 
Izt - 5 P.  

4. EXPERIMENTAL RESULTS 
Three different sets of data  were used in our experiments. 

In increasing order of difficulty: the first set consisted of 0’s 
and I’s, the second set 0’s and 6 ’s ,  and the third 6’s and 8’s. 
For each digit we extracted 20 components of normalized 
radial size histogram and 20 components of Fourier descrip- 
tors [9] forming feature vectors of 40 components. There are 
600 of each type of digits in the training data  set and 200 of 
each in the test set. Results for the min-max classifiers are 
shown in Table 1 .  To gauge the performance of the min-max 
classifiers, we used neural networks trained using the back 
propagation algorithm [IO]. The networks have one input 
layer, one hidden layer and one output layer. The number 
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Min-Max 

Digits 
091 
0,6 
6 3  

Digits 1 % error (train) 1 % error (test) 
0.1 I 0.083 I 0.25 

% error (train) % error (test) 
0.083 0 
1.517 1.5 
18.4 18.15 

of hidden nodes is kept the same as the number of minima in 
the min-max classifier. Typical error figures for the neural 
networks are also shown in Table 1. Note that the min-max 
classifiers were able to achieve error rates that  are compa- 
rable to  or better than those generated using neural net- 
works. The  first advantage of the min-max/LMS algorithm 
is its faster speed of convergence compared to the neural 
network/back propagation approach. For example, Fig. 6 
shows typical convergence plots of LMS and back propaga- 
tion. The former takes about 10 times less steps to obtain 
a minimum error rate. Another advantage of the min-max 
classifier is its simplicity, since it involves only min-max o p  
erations. Neural networks, however, require calculation of 
the computational costly logistic function. 

The experimental results on handwritten recognition pro- 
vides evidence on the practical utility of morphological sys- 
tems for feature extraction and the min-max classifier. Our 
immediate goal is t o  develop a full fledged character recog- 
nition system by generalizing the min-max classifier to mul- 
tiple classes. 
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