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Abstract— Human assistive devices are expected to support
daily life in several nations, and are studied and developed
intensively. In order to promote the industrial expansion in
this field, the quantitative evaluation about their effect on
humans will have a great role. Though human motion capturing
can estimate the joint trajectories and torques of each person
when using a device, the measurement or estimation of his/her
subject-specific parameters is essential for the accurate evalu-
ation. This paper presents our work about the identification of
whole-body geometric and inertial parameters by using motion
capture system and force plates.

I. INTRODUCTION

Recent development of human assistive devices have been
gathering attention in several nations entering the super-aged
society. They are expected to support both the daily life
of elderly people and to relieve the burden on nursing-care
workers. However, the difficulty of evaluation often leads
the slow development and implementation of the devices.
The reliable evaluation framework of the devices, especially
for the assistive performance on human body, needs to
be developed for industrial growth, and has recently been
studied and investigated [1], [2].

Human motion capturing also has an important role to
estimate human joint trajectories and torques during when
using an assistive device. Inverse kinematics and dynamics
analysis of human motion [3] often need each human model
whose inertial and geometric properties are known. The
accurate motion analysis of each human subject requires the
measurement or estimation of his/her parameters, and those
techniques have been studied and developed [4], [5], [6],
[7], [8], [9]. Non-invasive and simple technique becomes
important for such a subject-specific analysis; on the other
hand, a lot of properties of whole body segments also need
to be obtained for the whole body analysis. Most techniques
are difficult to satisfy both requirements.

In the field of robotics, the identification methods of a
robot including a humanoid robot has been developed [10],
[11], [12]. Based on the robotics technologies, the identifica-
tion of human subject specific parameters has been studied
[13], [14]. This paper presents the method to identify the
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Fig. 1. Flow of the human motion analysis by using motion capture.

geometric and inertial parameters of whole body segments
by using motion capture system and force plates.

II. INVERSE KINEMATICS AND DYNAMICS ANALYSIS

Robotics computation theories are applied for human
motion capturing in recent days [3]. Inverse kinematics
computes the human joint trajectories from human motion
capture data. Inverse dynamics can calculate the joint torques
from joint trajectories and external forces from the ground
and the contact objects. Fig.1 shows the flow of the analysis.
They are introduced in this section.

A. Inverse kinematics

Let us model human skeletal system as a multi-body sys-
tem. The system consists of NL rigid bodies. It has a floating
base-link whose generalized coordinates is represented by
qO ∈ SE(3). Each joint connecting bone is considered to
be a mechanical one such as a rotational or spherical joint.
Let NJ be the number of DOF of the system, and qC ∈ R

NJ

be the joint angles. We now define q � [qO
T qC

T ]T as the
whole generalized coordinates of the system.

Typical motion capture measures the position of the mark-
ers located on an object. Let NM be the number of markers,
pi(q) ∈ R

3 is the position of markers in the space, and
p̂i ∈ R

3 is the measured position of each marker. The
inverse kinematics solves the nonlinear optimization problem
to minimize the following cost function.

min
q

1

2

NM∑
i=1

σi||pi(q)− p̂i||2 (1)

where, σi(> 0) is the weighting factor of the measurement
error of each marker. There are several algorisms to solve
the nonlinear optimization problem [15], and the efficient
method for large-scale human musculoskeletal system has
also been proposed [16].



B. Inverse dynamics

The equations of motion of legged systems are given by
Eq.(2).[
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where, Hij(i, j = O, C) is the inertia matrix, bi is the
bias force vector including centrifugal, Coriolis and gravity
forces, τ is the vector of joint torques, Nc is the number
of contact points with the ground or the devices attached on
the human body, F ext

k ∈ R
6 is the vector of external forces

exerted to the system at contact k, Jk � [JOk JCk] is the
basic Jacobian matrix associated to contact k.

In order to compute the joint torques from Eq.(2), we need
to compute the other variables in Eq.(2). Inverse kinematics
computes qO and qC from the position of markers. We can
compute the numerical derivatives of them, and then obtain
Hij and bi. When the contact situation is known, Jk can be
also computed. Contact forces F k can be directly measured
by force plates or force sensors. When evaluating the human
motion using assistive devices, if the simulation model of
the device is known or identified, F k can be also estimated
from the model [2]. In the case of multiple contact situation,
F k can be estimated by solving optimization problem [3].

III. IDENTIFICATION OF HUMAN GEOMETRIC

PARAMETERS

Inverse kinematics problem Eq.(1) requires the geometric
parameters of the skeletal model. This section presents an
identification method of the geometric parameters [13].

Let Nξ be the number of the geometric parameters,
ξ ∈ R

Nξ be the constant geometric parameters. Marker
position pi(q, ξ) is regarded as the function of not only
q but also ξ. Let us define NT as the number of time
samples, t1, t2, · · · , tNT

as a time sequence of motion, p̂(t)
i

(1 ≤ t ≤ NT ) as the measured positions of marker i at
time instance t, and q(t) (1 ≤ t ≤ NT ) as the generalized
coordinates at time instance t. Given p̂

(t)
i at all the time

instances, let us solve the following problem.

min
q(1),···q(NT ),ξ

1

2

NT∑
t=1

NM∑
i=1

σi||pi(q
(t), ξ)− p̂

(t)
i ||2 (3)

Now, let us represent ξ as the generalized coordinates
of virtual mechanical joints. For example, the length be-
tween two joints can be represented as a coordinate of
one translational joint. With the generalized coordinates of
virtual joints, the inverse problem to compute ξ can be also
regarded as robotic inverse kinematics. Therefore, Eq.(3)
means that the large-scale inverse kinematics problem to
compute simultaneously the generalized coordinates q(t) at
all the time instances and the virtual coordinates ξ that is
time-invariant through all the instances. Hence, the solution
can be obtained by applying straightforwardly the recent
large-scale inverse kinematics technique [16].

Fig. 2. Comparison of the inverse kinematic results between the two
models: the identified model (Left), the template model scaled by the body
height of a subject (Right).

The similar formula is found in the methodology used in
the calibration of serial robot chains, where both the kine-
matics parameters and constant joint offsets [10]. The critical
difference between the calibration of robots and humans is
whether or not the joint angles can be measured directly,
for example, by encoders. Therefore, the human joint angle
trajectories and the geometric parameters generally have to
be identified simultaneously.

The method was applied to obtain a subject-specific pa-
rameters of the human musculoskeletal model shown in [3].
The exercise motion of the whole body was recorded for
the identification. In the only identification process, the low-
dimensional model was used; some bones were grouped in
order to avoid the identifiability problem. After the iden-
tification, the walking motions were also recorded by the
motion capture system. For the validation, the two models
were used for the inverse kinematics; (A). the identified
model, and (B). the template model simply scaled by the
body height of a subject. Fig.2 shows the comparison of the
inverse kinematic results between the two models at a certain
time instance during the walking motion. In the figure, the
muscles are not drawn for illustrative purposes. In the case
of the scaled template model, the spine was bent awkwardly
because the model is not fitting to a subject. Therefore, the
muscle lengths around the spine contained the significant
errors. Such kind of a situation often happens, when the ratio
of the length of body segments of a subject is different to
some extent from that of the template model. The proposed
method can obtain a subject-specific human model, which
can enhance the accuracy of musculoskeletal analysis.

IV. IDENTIFICATION OF HUMAN INERTIAL PARAMETERS

When computing the joint torque from inverse dynamics
model Eq.(2), not only the geometric parameters but also the
inertial parameters assume to be known. This section shows
the identification method of the inertial parameters.

The equations of motion of multi-body systems can be
written in a linear form with respect to the inertial parameters
[17], [11], and Eq.(2) can be transformed to as followings:[
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where, φ ∈ R
10NL is the vector of the inertial parameters of

whole body segments. Each body segment has 10 parameters:



Fig. 3. The visualization interface to display the results of real-time identifi-
cation. The color of each link shows the degree of progress of identification:
red parts are not yet estimated, and green parts are successfully identified.
Red arrow is the force plate measurement of contact force, blue arrow is
the reconstructed contact force from identified dynamics. The red ball is the
total center of mass computed from identified parameters.

mass, center of mass, and inertia tensors [11]. Coefficient
matrices Y BO and Y BC are called regressor matrices.

Most common identification methods in the robotics field
utilize liner form Eq.(4), and need to know all the variables
except φ. However, it is difficult to measure human joint
torques directly. Inverse dynamics Eq.(2) also cannot be
computed because φ is unknown. Now, let us formulate the
following least squares problem:

min
φ

ω1

NT∑
t

||Y O
(t)φ− FO

(t)||2 + ω2||φ− φ̂||2 (5)

The first term of Eq.(5) evaluates the error about only the
upper part of Eq.(4): the equations of the base-link, which
does not contain τ . It has been proven that the number
of the structural identifiable parameters from the base-link
dynamics is the same when using the whole equations [12].
Therefore, in principle, we can perform the identification
even without torque measurement. The second term of
evaluates the error from a-priori knowledge φ̂ about the
inertial parameters which can be obtained from literatures
and databases. Some set of inertial parameters have no
effect on the equation of motions. It is known that they
cannot be structurally identified [11]. The performance of
identification also depends on the motion trajectory used
for the identification [11]. A-priori parameters φ̂ is used for
those unidentifiable or less identifiable parameters.

Since the problem Eq.(5) can be solved iteratively, the real-
time identification can be realized during motion capturing.
One useful application of the real-time identification is the
visualization of the identification result [14]. The outline of
the visualization is shown in Fig.3; the color of each link
changed gradually with the progress of the identification
procedure. The human subject can immediately check the
body segments yet to be identified, and intuitively know
which body part should be moved. Since the performance
of identification depends on the motion trajectory, the visu-
alization can improve the quality of identification results.
Fig.3 also shows that the estimated contact forces from
the identified results (blue arrow) were gradually converged
to the measured forces (red arrow). Hence, the method
is expected to enhance the accuracy of inverse dynamics
analysis.

V. CONCLUSION

The paper presents the method to identify the human
geometric and inertial parameters for subject-specific mod-
eling. When evaluating assistive devices, the estimation of
human joint trajectories and torques has an important role.
The inverse kinematics and dynamics analysis by motion
capturing require the geometric and inertial parameters of
the human model. Our approach can identify the whole-
body parameters non-invasively by using standard motion
capture system and force plates, which is expected to lead the
accurate evaluation of the assistive effects on human bodies.
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