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1. INTRODUCTION

One of the main objectives of the EU project MOBOT [1],
which generally aims at the development of an intelligent
active mobility assistance robot, is to provide multimodal
sensory processing capabilities for human action recognition.
Specifically, a reliable multimodal information processing
and action recognition system needs to be developed, that
will detect, analyze and recognize the human user actions
based on the captured multimodal sensory signals and with
a reasonable level of accuracy and detail within the context
of the MOBOT framework for intelligent assistive robotics.
Different sensory modalities need to be combined into an
integrated human action recognition system. One of the
main thrusts in the above effort is the development of ro-
bust and effective computer vision techniques to achieve the
visual processing goals based on multiple cues such as spatio-
temporal RGB appearance data as well as depth data from
Kinect sensors. Another major challenge is the integration
of recognizing specific verbal and gestural commands in the
considered human-robot interaction context.

In this presentation we summarize advancements in three
tasks of the above multimodal processing system for human-
robot interaction (HRI): action recognition, gesture recogni-
tion and spoken command recognition.

2. ACTION RECOGNITION

Our approach to detect and classify human actions from con-
tinuous RGB-D video streams, captured by visual sensors on
the MOBOT robotic platform, consists of the following main
steps: visual feature extraction, feature pre-processing and
encoding, and the classification. An initial baseline version of
our system was based on detecting space-time interest points,
computing descriptors in a neighborhood around these points
[e.g. Histogram Of Gradient (HOG) [3], Histogram of Flow
(HOF), and HOG3D], using the Bag-of-Features (BoF) repre-
sentation of the videos, and classification with Support Vector
Machines (SVMs); such systems have exhibited promising
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performance in movie action classification [6]. Subsequently,
we have enriched several sub-components of this pipeline by
developing state-of-the-art approaches, as explained in [2].
Specifically, for the visual features we employ approaches
such as spatio-temporal interest points by computing spatio-
temporal energies via our multiscale Gabor 3D detector [7]
on the RGB or Depth visual streams, as well as dense tra-
jectories [10]. Then several descriptors capture appearance
and motion information. State-of-the-art encoding methods
employed include i) vector quantization and ii) vector of lo-
cally aggregated descriptors [4]. After feature encoding we
train discriminative classifiers, such as SVMs, and classify a
video segment containing a single action instance by employ-
ing different state-of-the-art variants of the widely used bag of
visual words framework. In our set of tools employed (either
in post-processing or in gesture recognition), we also com-
bine SVMs with Hidden Markov Models (HMMs) and related
algorithms. Overall, our system automatically detects human
activity, classifies detected actions and localizes them in time;
see Figure 1 for an overview of the system’s pipeline. All the
above have been evaluated on both the MOBOT dataset as
well as on known datasets found in the literature. Our recog-
nition results reach 86% on the MOBOT dataset and 93% on
the KTH dataset. Details can be found in [2].

3. GESTURE RECOGNITION

Gesture recognition concerns the communication of the el-
derly subjects with the platform via a predefined set of ges-
tural commands. There are several challenges faced during
our work with the MOBOT dataset. For instance, it is usual
to have alternative pronunciations of the same gesture among
performances by different users. Further, in the MOBOT
case, mobility disabilities seriously impede the performance
ability of a gesture for some users, and therefore, alternative
pronunciations are more frequent. Our gesture recognition
systems shares some methodologies with the visual action
recognition system. Initially, for the visual processing we
used the RGB video stream, combined with pose information
that became available after pose annotation. The extracted
features included either handshape or movement information.
For handshape features we focused on a neighbourhood of



Fig. 1: Visual action recognition system overview. Top: Actions performed by patients in the MOBOT dataset. Bottom: Action
localization and classification pipeline.

the hand centroid, so that we can use local descriptors such
as HOG to extract features on the handshape. For movement-
position features we used the available pose annotation to
compute characteristics about position and motion of the
arms (positions, velocities, accelerations of hands and el-
bows mostly). We have evaluated the complete framework
of feature extraction and gesture learning based on HMMs
for the statistical modeling. Our experimental results on the
2013 ACM Gesture Challenge dataset can found in [8] and
preliminary results for the MOBOT data set can be found in
[2]. More recently, in an effort to view gestures as refined vi-
sual actions, we have developed a visual front-end for gesture
recognition that is based on the same approach used for ac-
tion recognition, i.e. dense trajectories, feature encoding, and
SVMs. This newer approach on gesture data showed that we
can get roughly similar results to the ones obtained with our
previous system, but without employing any manual (human
provided) pose annotations. Our current gesture recognition
systems has an average performance of about 70% on the
MOBOT dataset, by using only motion-appearance features
extracted from the RGB data. Our ongoing plans include the
incorporation of an automatic pose annotation system.

4. SPOKEN COMMAND RECOGNITION

In the context of multimodal processing for human action
recognition, we have developed a first version of an online
system for always-listening spoken command recognition in
German that is integrated on the ROS-based robotic platform
and operates with an 8-channel MEMS microphone array.
Based on the multichannel input, the module is designed to

detect and recognize the user’s intention to execute a spe-
cific operation of the robotic assistant. For instance, the el-
derly user may call the system by uttering a keyword like
“MOBOT” and then provide a voice command from a pre-
defined set of commands that are included on the recogni-
tion grammar, e.g, “MOBOT, turn right”. The detection and
recognition tasks are expected to be challenging due to the
distant speaking configuration which is prone to noise and
reverberation effects depending on the acoustic environment
in which the session is taking place. Additional challenges
may be introduced due to the existence of background speech
and non-speech events possibly overlapping with the keyword
and command segments to be detected and recognized. An
overview of the implemented multichannel speech process-
ing pipeline is depicted in Fig. 3. To support always-listening
operation, the pipeline is built on the widely used cascade of
three speech processing stages: a) voice activity detection, to
separate speech from non-speech events, b) key-phrase detec-
tion based on the keyword-filler approach, to identify a pre-
defined system activation phrase, and c) grammar-based auto-
matic speech recognition, to recognize the issued command.
All stages are applied to the denoised signal derived after de-
lay and sum beamforming of the MEMS channels. Context-
dependent German triphones have been trained on 55 hours of
publicly available read speech and used for keyword spotting
and recognition. Promising results were obtained after testing
the system on MOBOT data. Two tests were conducted: i) the
first on 8 patients seated approximately two meters in front
of the robotic platform providing verbal and non-verbal (ges-
tural) commands and ii) the second on 10 normal German-
speaking users which held and followed the platform operat-



Fig. 2: Overview: Visual gesture recognition. Multiple information channels are combined within a common framework.

ing in a “following mode”. The achieved average word accu-
racies of 73% and 85% on leave-one-out experiments (testing
on one speaker after global MLLR adaptation of the acous-
tic models to the other speakers) renders the system usable as
stand-alone or combined with the other modalities. More de-
tails about the employed methods for key-word spotting and
recognition can be found in our previous work [5].

5. MULTIMODAL SENSOR FUSION

Within the MOBOT objective of multisensory processing for
HRI, we have also been working with the design and experi-
mentation of fusion algorithms for the integration of gestural
and spoken command recognition. Such a cross-modal in-
tegration can significantly increase performance. Our first
experimental system was based on a multimodal sensor fu-
sion for audio-visual gesture recognition that exploited the
color, depth and audio information captured by a Kinect sen-
sor. Recognition of a time sequence of audio-visual gesture
commands was based on an optimized fusion of all different
cues and modalities (audio, movement-position, handshape).
Our system [8, 9] was evaluated on the ACM 2013 Gesture
Challenge dataset where it outperformed all other compet-
ing published approaches and achieved a 93% accuracy. We
are currently adapting this multimodal action-gesture-speech
recognition system for the MOBOT dataset and are develop-
ing a real-time version on the ROS robotic platform.
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