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Abstract— Child-robot interaction is an interdisciplinary re-
search area that has been attracting growing interest, primarily
focusing on edutainment applications. A crucial factor to
the successful deployment and wide adoption of such appli-
cations remains the robust perception of the child’s multi-
modal actions, when interacting with the robot in a natural
and untethered fashion. Since robotic sensory and perception
capabilities are platform-dependent and most often rather
limited, we propose a multiple Kinect-based system to perceive
the child-robot interaction scene that is robot-independent and
suitable for indoors interaction scenarios. The audio-visual
input from the Kinect sensors is fed into speech, gesture,
and action recognition modules, appropriately developed in
this paper to address the challenging nature of child-robot
interaction. For this purpose, data from multiple children are
collected and used for module training or adaptation. Further,
information from the multiple sensors is fused to enhance
module performance. The perception system is integrated in a
modular multi-robot architecture demonstrating its flexibility
and scalability with different robotic platforms. The whole
system, called Multi3, is evaluated, both objectively at the
module level and subjectively in its entirety, under appropriate
child-robot interaction scenarios containing several carefully
designed games between children and robots.

I. INTRODUCTION

Human-robot interaction (HRI) has drawn research interest
during the last few years, mostly due to the growing intrusion
of social robots in everyday life [11]. Although significant
progress has been made that further developed use cases
like assisted living [4], [33], the need for more intuitive,
natural communication and better human behavior tracking
has raised new challenges. Humans communicate mostly
with the exchange of audio-visual information, thus gesture
and speech recognition are in the spotlight of HRI research.

At the same time, social robots are increasingly entering
our lives for entertainment and educational purposes [16],
[27], especially childrens’ [3], [24], thus creating new chal-
lenges. Children are very adaptive, quick learners and famil-
iarized with new technologies. They have unique communi-
cation skills, as they can easily convey or share complex
information with little spoken language. They constitute
a perfect target group for studying the effect of HRI on
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Fig. 1: Left: Diagram of the spatial arrangement of sensors and robots in
the Multi3 system. Right: Picture of the setup.

the development and enhancement of communicative abili-
ties [12]. Thus, child-robot interaction (CRI) is an emerging
research field that at the same time presents new challenges,
e.g., action and speech recognition for children [10], [17],
because the majority of perception systems are designed and
developed for adults. However, children behave differently
than adults, and action and speech recognition models trained
on adults usually do not perform sufficiently well in the
case of children. Thus children data, though difficult and
time-consuming to collect, are essential for building children-
specific systems.

The development of technologies like action, gesture,
and speech recognition, in parallel with the development
of new sensors, like Kinect cameras, microphone arrays,
etc., has launched a new era of multi-modal and multi-
sensory systems that can increase robustness and overall
performance [15]. More and more often, traditionally uni-
modal systems incorporate additional modalities in order
to improve performance via fusion [2], [21]. However, the
perception capabilities are platform-dependent and rather
limited, since audio-visual sensors are often embedded on
robotic platforms. In order to tackle this problem, recent HRI
works have employed external sensors mounted in a space
where the interaction takes place [22], [9], without however
evaluating the perception results from combining and fusing
the different sensors.

In this paper we propose a multi-robot, multi-modal,
and multi-sensory system for robot perception, specifically
developed for CRI, which we call the “Multi3” system. The
child can interact with the social robots naturally, using body
actions, gestures, and speech. The system employs multiple
Kinects, using both their visual sensors and microphone
arrays to unobtrusively capture from the far-field the child’s
activity, allowing natural, untethered CRI. The contributions
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Fig. 2: Multi-modal, multi-sensory robot perception and multi-robot system architecture. “A” refers to the Kinect microphone array.

of the paper can be summarized as follows:
• The development of a multi-modal (action, gesture,

speech), multi-sensory (multiple Kinects) robot per-
ception system for child-robot interaction, the Multi3
system, presented in detail in Section II.

• The development of a multi-robot modular cross-
platform architecture in ROS (Robot Operating Sys-
tem [1]) that handles the dialog and component com-
munication, described in Section III.

• The design of a use case scenario for CRI, described in
Section IV, that involves three games between the child
and robots and aims both at engaging the child but also
testing and showcasing the Multi3 system.

• Children data collection for model training/adaptation
and evaluation, both of the Multi3 system in an objective
way, but also of the CRI use case in a subjective way.
Results can be found in Section V.

II. MULTI-MODAL, MULTI-SENSORY ROBOT
PERCEPTION

As described above, our setup aims at allowing multiple
CRI modalities, namely visual actions and speech, neces-
sitating the use of multiple sensors for video and audio
capture. During CRI, occlusions and pose variations are
expected, thus the use of a single camera is not adequate.
The same applies also for audio: Children may be far from
the microphones as they play or move. For this reason, we
employ distributed cameras and microphone arrays aspiring
to monitor as much of the playing area as possible. The
spatial arrangement of the sensors and the system in place
along with the three robots currently integrated in the system
(which are described in Section IV-A) can be seen in
Fig. 1. The architecture of our multi-sensor system uses
three Kinect V2 sensors both for video and audio capture.
Each one includes: A full high definition color camera (with
a 30FPS framerate), a depth sensor using a Time-of-Flight
method, and four microphones. Two of the Kinect sensors
are positioned sideways and symmetrically with respect to
the central interaction area, and the third is mounted on the
ceiling facing the floor, in order to get the floor plan view.

The multi-modal, multi-sensory robot perception sys-
tem, which is depicted in Fig. 2, has been designed and
trained/adapted specifically for children. The upper part of
the perception system refers to action and gesture recog-
nition, while the lower part to distant speech recognition.
Results from the perception modules are forwarded to the
multi-robot architecture described in Section III.

A. Multi-view Action and Gesture Recognition

Our multi-sensory action and gesture frontend employs
Dense Trajectories features along with the popular Bag-of-
Visual-Words (BoVW) framework. The Dense Trajectories
method [29] has received attention due to its superior per-
formance on challenging datasets. Its main concept consists
of sampling feature points from each RGB frame on a
regular grid and tracking them through time based on optical
flow. Tracking is performed in multiple spatial scales, and
trajectories are pruned to a fixed length L to avoid drifting.

Hence, the algorithm for each sampled feature point
with index n results in a trajectory xn = (P1,P2, . . . ,PL),
which is a sequence of points P1,..,PL in consecutive frames,
beginning at frame tb(xn) and ending at te(xn) (see also
Fig. 3). Following the trajectory extraction, different visual
features are computed within space-time volumes along each
trajectory. More specifically, the following are used: the
Trajectory descriptor [29], Histograms of Oriented Gradients
(HOG) [19], Histograms of Optical Flow (HOF) [19], and
Motion Boundary Histograms (MBH) [29] computed on both
axes (MBHx, MBHy). The trajectory descriptor encodes
the shape of the trajectories, while histographic features
describe the local shape, appearance, and motion along each
trajectory.

In more detail, the Trajectory descriptor consists of the
sequence of displacement vectors between consecutive tra-
jectory points, ∆Pl = Pl+1 −Pl , normalized by the sum of
the displacement vector magnitudes over the trajectory. The
HOG descriptor can model the local static appearance based
on the orientation and magnitude of the image intensity gra-
dient. HOF captures motion information using the orientation
and magnitude of the optical flow. Finally, MBHx/MBHy are
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Fig. 3: An example of Dense Trajectories for a recording of the “Show me
the Gesture” game (discussed in Section IV-B). Each row corresponds to a
different Kinect camera view.

computed on the gradient of the horizontal/vertical optical
flow components, and MBH is their concatenation, being
more robust to camera motion.

A human detector may optionally be used to improve
the representation of foreground action. For this purpose
we have employed a simple person detector based on HOG
descriptors [7]. This way, feature extraction time can also
be reduced, since the Dense Trajectories are computed in a
small region of the full HD Kinect frame.

For encoding purposes, codebooks for each descriptor
(Trajectory, HOG, HOF, MBHx, MBHy) are constructed
during the training phase from a subset of randomly selected
training features using K-means. The centroid of each cluster
is defined as a visual word, and each trajectory is assigned
to its closest visual word using the Euclidean distance.
We use BoVW encoding, i.e., a histogram of visual word
occurrences, yielding a sparse K-dimensional video repre-
sentation, which is essentially the histogram of visual word
occurrence frequencies over the space-time volume. Videos
are classified based on their BoVW representation, using
non-linear support vector machines (SVMs) with the χ2

kernel [30]. In addition, different descriptors are combined,
by computing distances between their corresponding BoVW
histograms as:

Q(hi,h j) = ∑
m

exp
(
− 1

Am
D
(
hm

i ,h
m
j
))

, (1)

where hm
i denotes the BoVW representation of the m-th

descriptor of the i-th video, and Am is the mean value of χ2

distances D(hm
i ,hm

j ) between all pairs of training samples.
Since we face multiclass classification problems, we follow
the one-against-all approach and select the class with the
highest score.

For a given Kinect sensor we have trained a different
SVM for all employed classes and obtain the probabilities
as described in [6]. Then we apply a soft-max normalization
to each sensor’s probabilities. For the fusion of the three
sensor output probabilities we have experimented with three
widely used functions: min, max, mean, which correspond to
different approaches in integrating decision scores for each
class across sensors. With max we decide based on the most
confident sensor, min selects the class with high scores for all

sensors, whereas mean lies somewhere in the middle. Finally,
we select the class with the highest fused score, following
the same approach as in the single-sensor case.

B. Multi-microphone Distant Speech Recognition

Incorporating a speech module in a HRI system is essential
for a natural communication between humans and the robot,
let alone children. At the same time it presents challenges,
such as noise, reverberation, and distance between the robot
and the speaker [14]. Our CRI use case necessitates child’s
movement in the space in order to interact and play with the
robots. For this reason we employ distant speech recognition
(DSR) [31], [25] with three microphone arrays (Kinect)
distributed in space. Children communicate with the robot
via a set of utterances adopted for the context of the specific
use case (see Section IV). A continuous speech recognition
system would require a large amount of data to train/adapt
for children in order to perform well, and at the same
time children do not speak continuously. Thus our speech
recognition module is grammar-based.

The DSR module is always-listening, namely it is able
to detect and recognize the utterances spoken by the user
at any time, among other speech and non-speech events,
possibly degraded by environmental noise and reverberation.
The specific set of utterances contains the child’s possible
answers in some games of the use case scenarios, as well
as a few general utterances. More details can be found in
Section V. The employed language is Greek. We target ro-
bustness via denoising of the far-field signals (beamforming)
and adaptation of the acoustic models.

To detect one of the target utterances, we use a sliding
window of 2.5 sec duration with a 0.6 sec shift, in which
we enforce recognition of one of the pre-defined sentences
against other garbage phrases.To improve the quality of the
noisy and reverberant far-field children speech, we employ
a simple delay-and-sum beamforming on each available 4-
microphone Kinect array. The main idea is the insertion of
delays to the different microphone signals an to align them
in order to enhance speech coming from a specific direction.
Thus, for uniform linear arrays with N microphones, if the
desired direction is denoted by φ , the time-delay to be
applied to each microphone is

τn =
(n−1)d cosφ

c
, (2)

where c is the speed of sound and d the space between
microphones. The beamformed signal then results as:

y(t) =
1
N

N

∑
n=1

an(t − τn) (3)

Regarding acoustic modeling, GMM-HMM cross-word
tri-phone models based on a standard MFCC-plus-
derivatives features have been trained on the Logotypografia
database [8]. The corpus was artificially distorted by con-
volving its clean speech with room impulse responses and
adding white Gaussian noise in order to match the far-
field condition [25]. Maximum likelihood linear regression
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(MLLR) adaptation was employed to transform the means
of the HMM state observation Gaussians, aiming to reduce
the mismatch between the initial model and the adaptation
data [32].

In order to make the DSR module more robust and exploit
the distributed microphone arrays, we fuse the decisions of
the three different microphone arrays, employing a simple
majority voting for the best hypothesis results. In case all
three microphone arrays disagree, the second best hypothesis
results are taken into consideration.

III. MULTI-ROBOT SYSTEM ARCHITECTURE

In this section the dialog management and the intra-
communication between the system modules are presented,
as well as the integration of all components under a unified
system that performs real-time.

A. Event-driven Communication and Dialog Management

Dialog management and communication between modules
constitutes the backbone of our CRI system and raises several
challenges when multiple robotic agents are considered.
Here, we use the IrisTK [28] framework and extend it for a
multi-robot system. The system follows a completely mod-
ular architecture, and communication between its different
modules takes place through events. Events are divided into
three categories (following the IrisTK framework):

• Action: i.e., things the multi-robot system should do
• Sense: i.e., what the system perceives from its surround-

ings
• Monitor: i.e., the feedback to the actions executed by

the system
Similarly, system modules can be divided into sensors

(gesture recognition, speech recognition, etc.) and actua-
tors (robot speech, robot movement, etc.). The system core
module is dialog management that handles events. Sensors
analyze the environment continuously and send sense events
to the dialog module, while actuators receive action events
from the dialog module and send back feedback (e.g., when
they finish an action). Fig. 2 presents this flow of events.

Dialog follows a variation of the Harel statechart [13] for
event-driven dialog systems. Dialog states can be hierarchi-
cally structured, and each state can contain a number of
parameters that modify its execution and greatly reduce the
required number of states.

A naive approach towards a multi-robot system with three
robotic platforms would be to create three different states,
one for each robot. Using parameters in states leads us
towards a robot agnostic approach, where the acting robot
is another parameter. In our approach we use “action states”
that act as an intermediate layer between core dialog and
actions and are responsible for sending the current event to
the correct robot according to the passed parameter. Dialog
does not move into “action states”, but instead these states
are “called” [28] from the current dialog state, and upon
finishing their execution dialog returns to the current state.
Examples of “action states” are a “speak action state” with
the text to be synthesized and the robotic agent to speak as

Speech State

Parameters:

text, robot

Game State

Parameters:

gesture, robot

Text: I recognized (gesture).

Robot: (robot)

Call Speech State

action (speak)

return

(robot)=zeno

(robot)=furhat

(robot)=nao

Fig. 4: Usage of “action states” and parameters in the dialog for announcing
the recognized gesture in a gesture recognition scenario of a game.

parameters, or an “expression action state” with the name of
the expression (e.g., smile) and the robotic agent to form it
as parameters.

Fig. 4 depicts the aforementioned examples. The state of a
game that involves a gesture recognition scenario calls for an
agent to speak, defined through a parameter chosen in some
previous state called “robot”. This parameter is not used by
the game state but by the “speak action state” that sends a
speech action event to the correct robot. The same figure
also depicts that, when using parameters, only one state is
needed for announcing the gesture.

Using this model, we can keep the core dialog flow
decoupled from specific robot details, and adding a new robot
to the system amounts to just adding its action events to the
“action states” and handling the event on the robot side. Of
course, there are still cases in which the capabilities of the
robot (e.g., if it can move or not) cause variations in the
scenario and have to be treated separately in the dialog.

B. Online System Integration

For the technical integration of sensors and robots we have
designed a hybrid system that uses both the Windows and
Linux operating systems and can handle multiple sensors
in modular configurations. We use the IrisTK framework
running in Windows (as mentioned in Section III-A) for
real-time dialog management and event handling, while all
required data processing takes place in three different Linux
machines using ROS. Events from all modules are sent to a
broker that handles their allocation to the suitable modules.

The three Kinect V2 sensors are connected to three differ-
ent Linux machines and provide raw data of the sensors (i.e.,
color and depth images and raw audio). The touch screen
is connected to a Windows machine and sends continuous
feedback to the dialog module about the choices of the
children, while also receiving and reacting to events sent by
the dialog module that change its state automatically (e.g.,
the current game played).

IV. CHILD-ROBOT INTERACTION USE CASE

In order to develop and evaluate the whole system, a
specific use case that involves three games between children
and robots has been designed. These three games, which
focus on both verbal and non-verbal communication, are
the following: a) “Show me the gesture”, b) “Express the
feeling”, and c) “Pantomime”. During these games, the child
interacts with three different robotic agents (see Fig. 5). In
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(a) Furhat (b) Nao (c) Zeno

Fig. 5: Robotic agents employed in the use case scenario.

(a) Show me the gesture (b) Express the feeling

(c) Pantomime

Fig. 6: Indicative frames from each game included in the use case scenario.

the following subsections, the robotic platforms and the CRI
games for this specific scenario are described.

A. Robotic Platforms

The three robotic agents of this specific scenario are shown
in Fig. 5: a Furhat head, a Nao, and a Zeno robot. We have
enabled Furhat and Nao to speak in the Greek language
through integration with a Greek text-to-speech engine [5].
The Furhat robot head has been created by Furhat Robotics,
and it is a robotic head in which an animated face is back-
projected on a three-dimensional mask. Furhat among other
things is capable of speech, head movement with 2 degreees
of freedom, and facial expressions. The Nao robot has been
created by SoftBank Robotics and is a humanoid robot. It
carries multiple sensors and is capable of speech. The Zeno
robot has been developed by Robokind, has 21 degrees of
freedom, with 7 degrees on the face. Zeno’s ability to make
a wide range of facial expressions improves CRI. Zeno is
able of speech and is also equipped with multiple sensors.

All the above mentioned robots have been used for inter-
action with children. For instance, Nao has taken the role
of kids’ tutor in numerous applications, e.g., dance or quiz
scenarios [26]. Zeno has been used in schools of Denmark as
teachers’ assistant [18]. Furhat has interacted with children
and adults in public spaces, like museums [20].

Regarding the integration of the robots in our system, the
Furhat robot head is already integrated within the IrisTK
framework. For the Nao and Zeno robots, intermediate layers
were developed, that receive events from the dialog module
and convert them to the corresponding actions for each robot.

B. Child-Robot Games

As mentioned earlier, three games have been designed to
prompt children to interact with robots using not only their
voice, but also their facial expressions and body movements
(see also Fig. 6). Thus, the kids perceive that they can play
with robots without many limitations and act as they do while
playing with their peers. These tasks are suitable for children
users of age from six to ten years old, as they neither assume
special knowledge nor restrict kids’ spontaneity.

In the “Show me the gesture” task, the robotic agent
prompts the child to form sequentially some gestures that
denote a meaning. The gesture meanings are depicted on
a screen and signify: an agreement, a greeting, a call to
the robot for coming closer, the drawing of a circle in the
air, to point towards something, to ask the robot to stop,
and to ask the robot to sit down. Since the children are
only provided with the meaning of the gesture and not the
actual way to perform it, each child performs the gesture
differently. When a gesture is performed, it is automatically
recognized by the system, and the robotic agent asks the kid
to confirm whether or not the recognition is correct. If the
recognition is not correct, the child is asked to repeat the
previous gesture, otherwise performs another gesture, and
so on. Along with speaking, the agent often reacts to the
gestures with a movement (if it is capable of moving), e.g.,
it walks to come closer to the child or waves back. With this
task, apart from the child-robot interaction, we evaluate the
gesture recognition module of our perception system. All of
the robotic agents can take part in this game.

The “Express the feeling” game focuses on child-robot
emotional interaction with emphasis on facial expressions.
The child walks up to a touch screen that is centrally located
and is presented with six hidden cards. When the kid chooses
a card, an image that depicts a basic emotion appears. The
robotic agent then asks the child to express this particular
emotion, and subsequently the robot expresses the emotion
as well. The six basic emotions used in this game are:
happiness, anger, sadness, disgust, surprise, and fear. This
task enriches the interplay between the child and the robot
as it introduces the meaning of emotions. Through expression
of emotions, the kid and the robot form a non-verbal way
of communication and enhance their interaction. The Zeno
robot participates in this game due to its capability of forming
very realistic facial expressions. In this game we do not
evaluate any of the perception components, but we intend
to study the child-robot interaction while they both express
facial emotions and validate the scalability of cross-platform
robot architecture when more tasks and robots are included.

The game of “Pantomime” allows the child to interact
with the robot in a different way, as the robot and child
interchange roles. Twelve cards are presented on the screen,
each one depicting a type of manual work. The robotic
agent chooses one randomly and mimes it, while the kid
must figure out and name which one is being performed. If
the child’s choice is correct, the robot compliments him/her,
otherwise it allows the child to decide if he/she wants the
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mimed task to be revealed or retry guessing. After the first
round, the robot and the child interchange roles. The child
this time chooses a card and tries to mime it while the robot
tries to recognize it. After recognizing it, the robot asks the
child to verify its recognition result. The twelve cards used
in the “Pantomime” game are: painting a wall, cleaning a
window, driving a bus, swimming, dancing, working out,
playing the guitar, digging a hole, wiping the floor, ironing
a shirt, hammering a nail, and reading a book. In this
particular task, automatic speech recognition reinforces the
naturalness of child-robot interaction since the child says
his/her choice as he/she would act in a pantomime game
with other children. In this challenging game both action
and speech recognition subsystems are evaluated while the
child interacts multi-modally with the Nao robot.

V. EVALUATION

In order to evaluate the whole system we have employed
two evaluation strategies: In the first we perform objective
offline evaluation of the two recognition modules, namely
the action/gesture and speech recognition ones, using the
children dataset collected for the needs of system training
and evaluation. In the second one, we subjectively evaluate
the Multi3 system, by using a questionnaire that was filled
out by children after their interaction with the system.

A. Children Data Collection and Objective Evaluation of
Perception Modules

As noted in the previous sections, children data are
required for a dedicated CRI system to perform robustly.
Regarding visual data, children act, gesture, and express
themselves in a different way than adults, as they are more
imaginative and their behavior has not been standardised yet.
Concerning audio data, children voice characteristics differ
from adults, e.g., the pitch of the voice. Although several
human action and speech databases exist with adult data, they
are not suitable for training/adapting a perception system
dedicated to children. At the same time, children data are
hard and time-consuming to obtain.

Therefore, for each game we performed an extensive data
collection featuring 28 children participants. During data col-
lection, each child performed sequentially all seven gestures
mentioned in the “Show me the gesture” game, expressed the
six feelings from the “Express the feeling” task, mimed the
twelve tasks of the “Pantomime” game, and also performed
random movements for the background models. In addition,
each child uttered 40 out of 120 phrases inspired by and
adapted to the use case scenario. These consist of game-
dependent utterances like pantomime answers with variations
in pronunciation, e.g. “Are you dancing?” and “I think you
are dancing”, and some general purpose utterances, e.g.
“yes”,“no”.

To evaluate the gesture recognition system we employ
the annotated multi-sensory data that was collected by the
three Kinect sensors, depicting the 28 children of the data
collection performing gestures in different positions, as well
as background data with random movement. Using these

Single Camera Fusion
Feat. Kin. #1 Kin. #2 Kin. #3 mean min max

Traj. 68.75 66.90 65.74 76.62 75.00 71.53
HOG 40.74 33.33 29.40 39.58 36.57 39.58
HOF 70.83 70.37 69.21 78.01 77.55 76.39
MBH 76.85 67.82 68.29 83.80 80.09 78.24
Comb. 77.78 73.84 73.61 81.94 83.56 77.55

TABLE I: Average classification accuracy (%) for the children gesture
recognition task. Results for the five different features for both single and
multi-stream cases are shown.

Single Camera Fusion
Feat. Kin. #1 Kin. #2 Kin. #3 mean min max

Traj. 63.08 48.62 45.54 64.00 61.23 62.15
HOG 39.69 32.00 27.69 43.38 35.38 41.85
HOF 68.31 56.31 48.62 68.31 65.54 68.92
MBH 70.77 60.92 61.85 74.46 73.54 72.31
Comb. 73.85 63.38 60.00 74.46 74.46 73.85

TABLE II: Average classification accuracy (%) for the children action
recognition task. Results for the five different features for both single and
multi-stream cases are shown.

No-adapt Adapt-all Adapt-per-array
WCOR SCOR WCOR SCOR WCOR SCOR

Kinect #1 79.30 70.53 98.41 95.95 98.30 95.95
Kinect #2 81.04 72.48 97.56 95.95 97.35 95.95
Kinect #3 76.85 66.83 97.45 94.60 97.56 94.60
Fusion - 65.02 - 97.05 - 96.30

TABLE III: Average word (WCOR) and sentence accuracy (SCOR) (%) for
the children DSR task. Results for each Kinect array separately and their
decision fusion for all adaptation schemes are depicted.

data we have trained one individual model for each Kinect
following a leave-one-out cross-validation approach.

Table I presents average accuracy results (%) for the
7 gestures. Results indicate that the combination of the
proposed features (denoted as Comb. in the Table) performs
slightly better for both single-sensor and multi-sensor cases.
Additionally, the motion related descriptors (HOF, MBH)
yield better results than the static (HOG) one, since all
employed gestures include motion of the whole arm rather
than formation of the handshape. Regarding the fusion of the
different streams, recognition performance seems to improve
significantly compared to the best single-stream result. Top
performance is achieved using the min fusion scheme.

In order to verify the appropriateness of the proposed
action and gesture recognition system in more challenging
tasks, we evaluate the pantomime actions described previ-
ously. These actions are more complex than gestures, since
children perform them in many different ways. In Table II we
present the average accuracy results (%) for the 12 gestures
as well as the background model. Despite the difficulty of
the task, the system performs quite well with fusion yielding
around 74% accuracy for a 13-class problem.

In order to objectively evaluate the DSR task offline,
the collected data have been used both for adapting speech
models and for testing. Results are presented in Table III in
terms of word and sentence accuracies, denoted by WCOR
and SCOR respectively. The first three rows depict WCORs
and SCORs for each Kinect separately, and the last one
presents the decision fusion results.

Three different adaptation schemes have been tested for
comparison: In the “No-adapt” case, the employed models
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Fig. 7: Subjective evaluation by 28 children. The chart depicts the 8 different questions and the children responses (%) in a five-point ordinal scale.

have been trained on the Logotypografia database that con-
tains adult data. The available children data have been used
for testing. In the “Adapt-all” case, data from 20 out of 28
participants have been used in order to adapt speech models
globally, i.e. data from all three Kinect arrays have been
used to adapt a single model. The remaining 8 participants
form the test set. The adaptation and testing has been 4-fold
cross-validated. In addition we experimented with adaptation
per array, by adapting one model per Kinect with data only
from the specific Kinect array. The same data partitioning
has been used, also 4-fold cross-validated.

Although speech recognition results are not very satis-
factory for the “no-adapt” case, the system achieves good
performance when children data are used to adapt the mod-
els, which underlines the importance of collecting children
data. Adaptation per array appears unnecessary as it yields
almost the same results with global adaptation. Performance
is equally good for all Kinect sensors, with the third Kinect
performing slightly worse. Fusion was also performed at
decision level. For the no-adapt case, fusion performs worse
than each Kinect individually, because it is based on unreli-
able speech recognition results, while for adapted models it
achieves the best performance with an SCOR of 97.05%.

B. Subjective Evaluation of the CRI Use Case

Aiming to evaluate the use case scenario, we tested the
Multi3 system real-time. For this purpose, 28 children (18
male, 10 female) from six to ten years old (average: eight
years old), were invited to interact with the system. The
children and their parents volunteered to participate in the
experimental procedure when they met our team in dissemi-
nation events. The interaction took place in an appropriately
designed friendly environment, decorated to remind a child’s
room. The experimental procedure involved one child each
time and lasted for approximately fifteen minutes. The child

entered the setup room accompanied by his/her parent(s)
and a member of our team. Subsequently, the child was
informed about the process, while getting familiar with the
room and the robotic agents. The structure of the procedure
and the rules of the games were explained to the child, and
when he/she felt comfortable, the interplay started without
any human intervention, with the robotic agents introducing
themselves to the child. The interaction then continued with
the scenario that involved the three games presented before.

Subjective evaluation of the Multi3 system took place after
the completion of the child-robot interplay by asking the
children to fill out an eight-question form. Each question
depicted a statement, and the children were instructed to
grade their agreement to it using a 5-point ordinal scale from
“disagree” to “agree”. Children were also asked to pick their
favorite game and justify their answer. Results for all ques-
tions are depicted in Fig. 7. “Pantomime” was voted the most
favorite game, because of the robot movement and speech.
Also, 22 of 28 children stated that they enjoyed playing with
the robots because the agents had cognition and perception
of both their movements and their utterances, while the rest
of them because robots perceived their movements only (no
child expressed an “only utterances” preference).

As far as the graded questions are concerned, the majority
of the children enjoyed interacting with the robots and would
like to continue playing with them. Almost every child said
that it wasn’t difficult to play with the robots, while four
out of five children found the tasks easy. More than half
of them believed that they didn’t need help to play with the
robots. Regarding required prior knowledge, a large variance
in their answers can be observed, which is related to the large
variance in children ages. The majority of disagreement with
the need for prior knowledge was observed in the age group
of 9-10 years old. One quarter of the participants agreed
that the robots behaved like humans, almost 45% of the
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participants mostly agreed with this phrase, while another
quarter of them were neutral. We should of course note the
caveat of the children “ceiling effect” [23], when interpreting
the above results.

Children responses during the subjective evaluation justify
our choice to create a multi-modal perception system able to
recognize utterances, gestures, and pantomime actions. The
Multi3 system appears to be suitable for children of ages
from six to ten years old, and the designed tasks achieved to
both demonstrate the capabilities of the system, but also to be
relatively easy and not boring for the children to accomplish.

Nevertheless, further improvements to the perception sys-
tem and the use case scenario should be made in order
to enable a more human-like and spontaneous interaction
between children and robots. For example, the number of
speech utterances and gestures should be increased, thus im-
proving user experience and naturaleness of the interaction.

VI. CONCLUSIONS
We have proposed and presented Multi3, a multi-robot,

multi-modal, and multi-sensory system for child-robot in-
teraction. The contributions of this work are multi-faceted,
spanning mainly the area of robotic perception where an
action and speech recognition system specifically developed
for child-robot interaction has been proposed. Moreover, a
modular robot architecture able to handle multiple robots,
as well as a carefully designed scenario targeted to chil-
dren incorporating various engaging games, are additional
contributions. System evaluation has been carried out using
children data collected according to the proposed use case,
with objective and subjective evaluation results confirming
the success of our system both in terms of performance and
user acceptability.
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