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Abstract This paper presents a rectangular cuboid approx-
imation framework (RMAP) for 3D mapping. The goal of
RMAP is to provide computational and memory efficient
environment representations for 3D robotic mapping using
axis aligned rectangular cuboids (RC). This paper focuses on
two aspects of the RMAP framework: (i) An occupancy grid
approach and (ii) A RC approximation of 3D environments
based on point cloud density. The RMAP occupancy grid is
based on the Rtree data structure which is composed of a hier-
archy of RC. The proposed approach is capable of generating
probabilistic 3D representations with multiresolution capa-
bilities. It reduces the memory complexity in large scale 3D
occupancy grids by avoiding explicit modelling of free space.
In contrast to point cloud and fixed resolution cell represen-
tations based on beam end point observations, an approxi-
mation approach using point cloud density is presented. The
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proposed approach generates variable sized RC approxima-
tions that are memory efficient for axis aligned surfaces.
Evaluation of the RMAP occupancy grid and approximation
approach based on computational and memory complexity
on different datasets shows the effectiveness of this frame-
work for 3D mapping.

Keywords 3D mapping · Point cloud approximation

1 Introduction

An accurate 3D map of the environment is an essential
requirement for all autonomous robots to perform navigation
and collision avoidance. Many recent research works focus
on mapping and localization. The environment representa-
tion can be topological (Thrun 1998) or metric (Elfes 1989;
Thrun 2003; Hornung et al. 2013). Topological maps utilize
graph structures to represent the environment whereas met-
ric maps capture its area or volume. This paper presents the
RMAP framework which generates metric maps using axis
aligned rectangular cuboids (RC). The goal of this frame-
work is to provide computational and memory efficient envi-
ronment representations for 3D robotic mapping.

A commonly used environment representation for met-
ric mapping is an occupancy grid (Moravec and Elfes 1985;
Elfes 1989; Thrun 2003), which has been used extensively
for navigation, localization and exploration in the field of
robotics. 2D NDT (Biber and Straßer 2003) (Normal Dis-
tribution Transform) additionally models the grid cell cen-
ters and their uncertainty using Gaussian distributions. Some
approaches model the 2D environment using geometric prim-
itives such as lines (Nguyen et al. 2007) which are computa-
tionally less expensive compared to grid representations. The
main drawback of 2D environment representations is that
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they are applicable in case of planar environments. Besides
2D environment representations, some grid structures also
store the height corresponding to each cell leading to 2.5D
height maps (Herbert et al 1989) however they are unable to
model the explicit shape of the environment.

The recent surge in 3D sensing technology with the influx
of Kinect and Velodyne has shifted the focus of the robot-
ics society from 2D to 3D environment representations. A
common approach for 3D environment representation is uti-
lizing point clouds or 3D occupancy grids. An extension of
2D occupancy grid concepts directly to 3D leads to a large
overhead in terms of memory and computational cost due to
the explicit modelling of free space. In contrast to standard
occupancy grids some techniques keep a list of occupied cells
(Ryde et al. 2012, 2010). MVOG (Multi volume occupancy
grids) have been presented in (Dryanovski et al. 2010) which
groups observations in vertical volumes over a 2D occupancy
grid. The vertical volumes represent positive (obstacle) and
negative (free) readings. A 3D probabilistic occupancy grid is
formed by merging these volumes. Multi level surface maps
(Triebel et al 2006) in contrast to elevation maps use inter-
vals for each 2D grid cell to represent vertical surfaces and
hence are more suitable for navigation. The work presented in
(Einhorn et al. 2011) proposes a formulation which adapts the
resolution of the grid in an online manner based on measure-
ments. A fully probabilistic grid structure based on octrees
titled Octomap (Wurm et al. 2010; Hornung et al. 2013) has
been presented which generates accurate 3D environment
representations. Recently an extension of 3D NDT concepts
titled NDT-OM (Occupancy mapping) has been presented
(Saarinen et al. 2013) which has similar computational com-
plexity to Octomap (Wurm et al. 2010; Hornung et al. 2013),
whereas the memory complexity issue is not discussed.

Since different approaches are available for 3D environ-
ment representation, an explicit comparison of each of them
to the RMAP framework is essential. This paper focuses
on two aspects of the RMAP framework: (i) An occupancy
grid approach and (ii) A RC approximation approach based
on point cloud density. To the author’s best knowledge no
prior work in 3D robotic mapping focuses on extracting axis
aligned RC approximation based on point cloud density. The
most similar work uses bounding volume hierarchies for col-
lision detection in computer graphics (Figueiredo et al. 2010).
Hence a comparison of the RMAP occupancy grid with other
approaches is discussed. Point cloud representation is com-
mon in robotics, however it requires a large amount of mem-
ory since each point is stored and does not allow fusion of data
in a probabilistic manner. Height maps (Herbert et al 1989)
and multi level surface maps (Triebel et al 2006) do not model
the explicit shape and hence cannot represent any arbitrary
3D shaped environment. In comparison to Octomap (Wurm
et al. 2010; Hornung et al. 2013), the RMAP occupancy grid
approach avoids explicit free space modelling hence it does

not differentiate between free and unknown space in the grid.
This approach leads to advantages in terms of memory and
computational cost and does not limit the applicability of this
framework for most robotic applications such as localization,
registration and even navigation, exploration as discussed in
Sect. 4.

Motivation and contribution of RMAP

The goal of the RMAP framework is to provide computa-
tional and memory efficient representations for 3D mapping
using axis aligned RC. 3D representations commonly used
in robotics can be classified into two categories:

(1) Representations with free and unmapped space mod-
elling

(2) Representations without free and unmapped space mod-
elling

Mapping techniques which fall in these categories and their
characteristics are discussed below.

Standard occupancy grid

The standard occupancy grid falls within the first category.
Figure 1a shows an exemplary occupancy grid representation
composed of occupied, free and unmapped cells. In this paper
the term cell based on context is used abstractly for squares,
rectangles, cubes (3D) and RC (3D). Given the robot position
(shown in green) all cells inside the field of view (FOV) of the
sensor (shown in red) are marked as free or occupied whereas
all cells outside this FOV are unmapped areas. Occupancy
grid formulations are very common in robotics because they
generate probabilistic representations that allow to cope with
sensor noise and provide a principled formulation for sensor
fusion. Differentiating free and unmapped areas is important
for exploration and navigation. In context of safe navigation,
the robot path should only be planned through regions cov-
ered by sensor measurements.

A major obstacle in application of occupancy grids for
large scale 3D mapping is efficiency, specifically compu-
tational and memory efficiency. As mentioned in (Hornung
et al. 2013) in the context of occupancy grids “the mem-
ory consumption is often the bottle neck for 3D mapping”.
The majority of cells in large scale 3D occupancy grids are
composed of free space. This can be visualized by consider-
ing the usage of a standard 3D occupancy grid of 10–20 cm
resolution for the 1st laser scan of Freiburg campus1 which
contains beam lengths up to 50 m range shown in Fig. 2a. In
case of large scale 3D mapping the robot accumulates mul-
tiple scans, hence the efficiency issue becomes a dominating
factor.

1 Courtesy of Steder and Kümmerle, available at http://ais.informatik.
uni-freiburg.de/projects/datasets/octomap/.
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(a) (b) (c)

Fig. 1 Different 2D environment representations. a A standard occu-
pancy grid with explicit free space modelling. The regions inside the
field of view (shown in red) based on the robot position (green) are
marked as occupied or free. In large scale 3D mapping explicit free
space modelling is not a feasible option in context of efficiency as major-
ity of cells in large scale 3D occupancy grids are composed of free space.
b The RMAP occupancy grid focuses on the transition from a to b with

ray tracing and implicit free space modelling. The RMAP occupancy
grid can be considered as an extension of b. c A variable resolution
environment representation which is memory efficient in comparison
to b. The RMAP RC approximation based on point cloud density can be
considered as the transition from a fixed resolution representation based
on beam end points shown in b to a variable resolution representation
shown in c (both approaches based on beam end points)

Fig. 2 a–b Different resolution views of the 1st scan from the Freiburg
campus dataset. Using a standard 3D occupancy grid of 10–20 cm res-
olution for a scan consisting of beam lengths upto 50 m range would
mostly constitute of free space for the scenario shown above. Free space
modelling becomes an important aspect in context of efficiency for
large scale 3D occupancy mapping. The question to be raised here is

if explicit modelling of free space is essential. c The RMAP occupancy
grid is capable of generating multiresolution representations within a
scan. In the figure shown, all regions close to the robot are shown in high
resolution whereas regions far away are shown with lower resolution.
All images shown above are height colored

Since the majority of the cells in large scale occupancy
grids are composed of free space the questions arises if
explicit modelling of free space in occupancy grids is essen-
tial. The goal is the transition from Fig. 1a to 1b which
involves ray tracing, however avoiding explicit free space
modelling. Differentiation of free and unmapped areas can
be based on the robot path (during 3D mapping), sensor
characteristics (maximum range and FOV) and the map gen-
erated by the robot as discussed in Sect. 4.1. The RMAP
occupancy grid can be considered as an extension of Fig.
1b which implicitly models free space and allows multires-
olution capabilities. The transition from Fig. 1a to 1b based
on the RMAP occupancy grid and the variation in compu-
tational and memory complexity due to this transition is the
focus of Sect. 2.2.

Point cloud and occupied cell representations

3D representations without free and unmapped space mod-
elling can be useful in different robotic applications such as
registration and localization. Such representations are mostly
used when the sensor is quite accurate and the environment is
static (dynamic environments require additional processing).

Point cloud representations store beam end point observa-
tions and fall within the second category. Point cloud repre-
sentation is useful but requires a large amount of memory as
all points are stored. In context of this subsection a fixed res-
olution cell representation of Fig. 1b using beam end points
is possible based on the number of sensor observations for a
specific cell. A cell is marked as occupied if the occupancy
probability is beyond a certain threshold. An important point
to specify here is that once a cell has been marked as occu-
pied it remains occupied as ray tracing is not performed. The
question to be raised here is if such representations can be
further improved.

The focus is the transition from Fig. 1b to 1c (both
approaches without raytracing) which uses variable resolu-
tion cells. In the example shown in Fig. 1, the fixed resolu-
tion representation requires five grid cells whereas the vari-
able resolution approach utilizes two grid cells. It is obvious
that variable resolution representations require less memory
as fewer cells need to be saved. Once a variable resolution
representation has been developed the computational cost
of 3D reconstruction is reduced because fewer cells need to
accessed. Finding the best resolution of grid cells for a spe-

123



264 Auton Robot (2014) 37:261–277

(a) (b)

Fig. 3 Examples illustrating the Rtree hierarchy. a The Rtree data
structure is a hierarchy of minimum bounding axis aligned rectangles
(2D). Search for a specific rectangle is carried out by performing con-
tainement/overlap tests throughout the heirarchy of the tree. b An exem-

plary Rtree hierarchy in which the inner node branches overlap. This
overlap plays an important role in the performance of the Rtree data
structure in context of 3D mapping

cific environment is a challenging problem because surface
shapes can be complicated. In this paper an approach based
on point cloud density is presented (Sect. 2.3) which can be
used to extract axis aligned RC approximations of the 3D
environment. The proposed approximation focuses on axis
aligned planar surfaces as they can be approximated accu-
rately by RC.

Based on the discussion above, the main contributions of
this paper are highlighted below:

– An evaluation of the Rtree data structure in context of 3D
robotic mapping on a publically available dataset.

– The RMAP occupancy grid approach with implicit free
space modelling for large scale 3D mapping. The pro-
posed approach generates probabilistic 3D representa-
tion with multiresolution capabilties.

– An axis aligned RC approximation of 3D environments
based on point cloud density. The proposed approach
allows memory efficient representations in contrast to
fixed resolution voxels and point clouds representations
for axis aligned surfaces.

The remainder of this paper is organized as follows: The
RMAP occupancy grid and variable size RC approximation
approach is presented in Sect. 2. In Sect. 3, results are pre-
sented by conducting different simulation and experimental
evaluations. Discussion and comments related to each sec-
tion are presented in Sect. 4. Conclusions and future work is
presented in Sect. 5.

2 Formulation of the RMAP framework

In this paper two aspects of the RMAP framework are dis-
cussed. Firstly an occupancy grid formulation and secondly
an axis aligned RC approximation approach of 3D environ-
ments based on point cloud density. The RMAP occupancy
grid is an application of the Rtree data structure (Guttman
1984) for 3D robotic mapping. The Rtree data structure is

a hierarchy of minimum bounding axis aligned rectangles
(MBR) as depicted in a simplified example in Fig. 3a. The
term MBR and minimum bounding axis aligned rectangular
cuboids (MBRC) will be used for 2D and 3D environments
respectively. The tree structure depiction in Fig. 3a, b is dif-
ferent than the normal convention in order to facilitate the
discussion about RMAP in the experimental section. In order
to define the Rtree node structure three different terms will
be used such as leaf, root and inner nodes. As shown in Fig.
3a, some nodes in the tree are labelled L, R to denote leaf
and root nodes respectively. Figure 3a does not show inner
nodes however, as the tree structure expands inner nodes are
added as well. All branches connected to the leaf, inner and
root node are termed leaf, inner and root branches respec-
tively. The root, inner branches contain information regard-
ing the MBR or rectangle in case of leaf branches. An Rtree
of order (n,M), has the following characteristics (Guttman
1984; Nanopoulos et al. (2006)):

– Each leaf node can have a maximum of M branches and
a minimum of n where n ≤ M

2 . The leaf node branches
contain the elements (Rectangle, Object). The object in
context of the RMAP occupancy grid (Sect. 2.2) repre-
sents the occupancy probability of the rectangle. In case
of RC approximations (Sect. 2.3) it contains the density
of points in the rectangle. As the Rtree is height balanced
all leaf nodes are at the same height.

– Each inner node can contain a maximum of M branches
and a minimum of n entries. Each inner branch consists
of a MBR which contains all the MBR/rectangles of its
child node branches.

– The root node can have a minimum of two branches
unless it is a leaf node.

The insertion of a rectangle into the Rtree structure
involves searching for an inner branch that leads to the least
expansion of the MBR. In case the number of branches in
a node is greater than M the node splits. Figure 3b shows
an exemplary Rtree hierarchy assuming that each node can
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have a maximum of 2 branches. Initially rectangles A and B
are inserted, such that the Rtree structure consists of a sin-
gle node. If further rectangles C and D are added the node
splits increasing the height of the structure and forms over-
lapping MBR (E and F) as shown in Fig. 3b. The splitting
strategy shown in Fig. 3b is just an illustration. The strategy
used in this paper is termed as quadratic splitting (Guttman
1984) and was chosen due to its better quality of split in
comparison to linear splitting. The important aspect is that
the MBR of the branches in the Rtree structure can overlap.
This overlap between inner branches plays a important role
in the performance of the Rtree in context of 3D mapping.
The effect of overlaps is that multiple nodes might need to
be searched during a spatial query or least expansion during
insertion. Given any arbitrary query rectangle, the number
of rectangles contained within it can be found by perform-
ing overlap/containement tests throughout the hierarchy of
the tree structure. The focus of this paper is on 3D mapping,
hence the term RC will be used for leaf branches and MBRC
for inner and root branches.

2.1 Properties of the Rtree data structure

In this section different properties of the Rtree data structure
are mentioned. The following aspects are important:

– Number of branches per node (M): The Rtree inner or
leaf nodes can have an integer number of branches M . For
a fixed number of leaf branches increasing M generate’s
tree structures containing fewer inner nodes and less
height reducing the memory required for representation
but creates more overlaps. Consider the scenario shown
in Fig. 3b in which the assumption of 2 branches per node
is considered. If the maximum number of branches per
node is increased from 2 to 4, one node is required in
the hierarchy to represent all leaf branches reducing the
number of nodes and the memory respectively.

– Assumptions of the data structure: The tree hierarchy
in the Rtree data structure is created and updated incre-
mentally as RC are inserted which are constrained to be
axis aligned. The tree hierarchy is not pre-defined hence
it requires additional maintenance during insertion such
as node splitting and checking for least expansion.

– Overlap: The most important aspect for the Rtree data
structure is the overlap factor which arises indirectly
due to the assumptions of the data structures. The Rtree
inner branches MBRC can overlap. A disadvantage of
this overlap is that search for a RC in the Rtree can
become computationally costly as multiple inner nodes
might need to be accessed during a query.

All the aspects listed above affect the performance of
the Rtree in the context of 3D mapping. Important perfor-

mance parameters from 3D mapping perspective are inser-
tion, extraction times and memory consumption. The extrac-
tion time corresponds to the time required to access all occu-
pied cells once all laser scans have been inserted. The inser-
tion time corresponds to the time required to insert beam end
points as occupied and beam path as free.

The following section explains the basic aspects of the
RMAP occupancy grid such as the initialization and calcu-
lation of occupancy probabilities for the RC.

2.2 RMAP occupancy grid framework

The RMAP occupancy grid tackles the computational and
memory complexity issue in standard grids by making an
important assumption that all space a priori is considered as
free. This assumption is termed as the free space assumption.
Unlike standard grids in which the structure is pre-allocated,
the grid in the RMAP occupancy approach is not defined a
priori rather created as sensor observations are obtained. The
RMAP occupancy grid is probabilistic in nature and models
the occupancy of a RC. A grid cell is initialized by inserting
a RC at the beam end point. Ray tracing is done along the
beam path to update the occupancy values of all RC which
were initialized once. All uninitialized cells are considered
as free. All RC in the leaf branches of the RMAP occupancy
grid are of fixed volume (possibly cubic) based on the chosen
resolution of the grid, axis aligned and do not overlap. How-
ever the inner branches MBRC can overlap. Let z represent
the observation and subscript t the time instance at which the
observation was recorded. The occupancy probability of any
leaf branch ri which represents the ith RC is estimated by
(Moravec and Elfes 1985)

P(ri |z1:t )

=
[

1 + 1 − P(ri |zt )

P(ri |zt )
· 1 − P(ri |z1:t−1)

P(ri |z1:t−1)
· P(ri )

1 − P(ri )

]−1

,

which is a commonly used sensor model in robotic map-
ping. P(ri |z1:t ) represents the occupancy probability of the
ith RC given all observations. P(ri ) represents the occupancy
probability of a RC prior to any observations. P(ri |zt ) and
P(ri |z1:t−1) represent the probability given the most current
observation zt and observations since the beginning of time
until time t − 1 respectively. To clarify, the RC initializa-
tion and update based on the beam end point observation is
explained. Given the RC to which the beam end point belongs
(mapping a point to the grid), overlap and containement tests
are performed throughout the Rtree hierarchy to determine if
the leaf branch corresponding to the RC exists. If it exists its
prior probability is updated otherwise a leaf branch is added
to the hierarchy (RC is initialized) and the Rtree hierarchy
is updated. To prevent grid cells from being over confident
about its state, a clamping/saturation probability threshold α
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(a) (b)

Fig. 4 Point insertion and multiresolution query mechanism. a The
figure shows implicit free space modelling of the RMAP occupancy
grid using the beam end point observations P1 and P2. The approach
updates initialized cells (shown in black) based on beam end point obser-
vations whereas uninitialized cells (shown in red) do not exist in the
grid and are assumed to be free based on the free space assumption. It is
possible that cells like C1 get initialized due to noise or dynamics in the

environment and are always updated assuming that they are in the field
of view of the sensor. In the figure the robot position is marked in green.
b The occupancy probability of any query rectangular cuboid is based
on all initialized and uninitialized cells that are contained in it. Given
the resolution of the grid, size of the query cuboid and the number of
occupied cells returned by the RMAP occupancy grid it is possible to
determine the number of uninitialized cells

and 1−α is utilized, after which the cell is no longer updated.
Given the probabilities of the leaf branches, the occupancy
probability of any query rectangular cuboid qi is calculated
by

P(qi ) = 1

N

∑
i=1

N
P(r̄i ), (1)

where r̄i represents all RC contained in qi which have been
initialized until time t as well as all uninitialized free space
regions based on the chosen resolution of the grid. In princi-
ple any criterion can be choosen for defining the occupancy
probability of the query RC, such as the maxi P(r̄i ). The
main motivation for choosing an average probability of all
RC is because of the smooth variation in the probability as
the size of the query cuboid is increased. The query cuboid
can be used in different regions of interest in the map with
respect to the global frame of reference and allows arbitrary
adaptation of grid resolution as shown in Fig. 2c.

The illustration of point insertion and multi-resolution
query process in the RMAP occupancy grid is shown in a
simplified 2D scenario in Fig. 4. Initially the entire region to
be mapped by the proposed approach is considered to be free
space. Now consider the insertion of a point P1 into a stan-
dard grid and the RMAP occupancy grid as shown in Fig. 4a.
The standard occupancy grid directly updates the probability
of the cell to which the point belongs and updates all cells that
lie in the beam path. In contrast, the RMAP occupancy grid
initializes a grid cell with 0.5 occupancy probability based
on the beam end point observation. Ray tracing is performed
along the beam path to update only those cells which have
been initialized. Once initialized a cell is always updated.
Uninitialized cells (shown in red) do not exist in the RMAP
occupancy grid and based on the free space assumption are
assumed to free, hence they are implicitly modelled in the
RMAP occupancy grid. In this way the proposed approach
avoids explicit modelling of free space. It is possible that cells

such as C1 shown in Fig. 4a get initialized due to noise or
dynamics in the environment. Such cells are always updated
during ray tracing as shown in the case of sensor observation
P2. Hence the RMAP occupancy grid is composed of two
kind of cells, firstly initialized cells which are always updated
if they are in the FOV of the sensor. Secondly uninitialized
cells which are implicitly modelled hence they do not exist
in the grid and are assumed to be free. The occupancy grid
can also contain cells which are initialized due to noise or
dynamics in the environment and are updated if they are in the
FOV of the sensor. Fig. 4b shows the multiresolution query
process in the RMAP occupancy grid. Overlap/containement
tests are performed througout the hierarchy of the Rtree data
structure to find cells contained in the query cell shown in
green. The query cell is constrained to be axis aligned and an
integer multiple of the chosen resolution of the grid. In the
scenario of Fig. 4b the RMAP occupancy grid will return the
occupancy probabilities of the two initialized cells marked in
black. However based on the fixed resolution of the grid, the
RMAP occupancy approach can determine the two uninitial-
ized cells (assumed to be free) that do not exist in the grid
shown in red in Fig. 4b. Based on the initialized and uninitial-
ized cells the RMAP approach can calculate the occupancy
probability of the query cell using (1).

In this subsection the RMAP occupancy grid has been
presented which allows probabilistic representations with
multiresolution capabilties. The proposed approach avoids
explicit modelling of free space in order to reduce the mem-
ory complexity of standard occupancy grids. The structure of
the occupancy grid is created incrementally based on obser-
vations. The proposed occupancy grid can be used for local-
ization, registration and even navigation, exploration. In con-
text of exploration and navigation differentiating free and
unknown space is important. The proposed approach does
not explicitly differentiate between free and unknown space
in the grid. The advantages and disadvantages of the free
space assumption in context of navigation and exploration
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are discussed in Sect. 4. Given the robot trajectory (dur-
ing mapping), sensor characteristics (maximum range and
FOV) and the map generated by the robot it is possible to
differentiate between free and unmapped areas in context of
exploration and navigation as discussed in Sect. 4.

2.3 Rectangular cuboid approximation of point clouds
based on density

In this section an approach is presented that generates vari-
able sized RC approximations based on point cloud density.
The proposed approach has applications in robotics such as
localization in static 3D environments or generating memory
efficient 3D approximations using RC. The approach makes
two important assumptions: (i) The point density is fairly uni-
form (not heavily skewed) for all scanned surfaces and (ii)
Majority of the structure in the point cloud is axis aligned.
The second assumption is present because the RMAP frame
work is based on RC that are constrained to be axis aligned.

The proposed approach initializes by generating a min-
imal bounding RC of the given 3D point cloud. The basic
premise is that the initial RC is not a good approximation of
the point cloud and that it contains smaller regions of high
point density. The approach splits the RC until it finds high
point density regions and the volume satisfies certain con-
traints. Although the splitting strategy is naive as it always
splits the RC into eight equal parts based on its center and
recomputes the RC based on the point cloud, nevertheless it
yields good results if the axis aligned assumption is satisfied
as shown in Sect. 3.

The pseudocode of the approximation algorithm is shown
in Fig. 5. The input to the algorithm is the point cloud p to be
approximated, the approximation percentage σ and the min-
imum volume ω threshold. The output is a set of RC R which
approximate the point cloud. The algorithm starts by check-
ing if the number of points are more than 3 (line 1) because
it is the minimal number of points required to describe a vol-
ume. The algorithm then calculates the minimal bounding RC
of the point cloud based on the minimal and maximal points
(line 2). In addition the algorithm calculates the volume V
of the minimal bounding RC and the point density (line 3
and 4). The density and volume are compared to the density
and minimum volume threshold β, ω respectively (line 5). If
the density and the volume are greater than β and ω respec-
tively, the RC is stored in the set R, otherwise the algorithm
splits the RC into 8 equal parts based on the center (line 7).
After splitting, the points in the point cloud are reassigned to
each RC. Each split point cloud is passed recursively to the
3D_approximation (line 8) algorithm until the threshold is
satisfied.

Figure 6 shows the splitting strategy defined in the
pseudocode shown in Fig. 5 for a simplified 2D case. The top
row shows the splitting strategy in case the entire point cloud

Fig. 5 Rectangular cuboid approximation pseudocode

is axis aligned. The bottom row shows the rough approxima-
tion in case the structure is non axis aligned. The initial min-
imal bounding RC is shown in red for both cases. The initial
RC is not a good approximation as the density of points (given
the volume) is low. Hence the RC splits and recomputes the
minimal bounding RC shown in green for both cases. In the
bottom row the difference is the non axis aligned structure
which causes the RC to split until a high density region is
found and it satisfies the volumetric constraint. The split-
ting strategy used in Fig. 5 is similar to an Octree hierarchy
in which the cube is split into 8 equal parts. The differenti-
ating factor is the recomputation of minimal bounding RC
(line 2) which generates variable resolution RC. Addition-
ally the initial minimal bounding RC is not constrained to be
a cube.

This section presented a formulation that generates vari-
able sized RC approximations based on point cloud density.
The approach works well if the point density for the scanned
surfaces is uniform (without noisy measurements) and the
majority of the point cloud structure is axis aligned. The
approximation over estimates the volume in case a few noisy
measurements are close to a high density region. The main
objective of the approach is to search for high point density
regions which satisfy certain volumetric criterion. The pro-
posed approach models the surface based on beam end point
observations without ray tracing. It can be useful for robotic
application such as localization in static environments or gen-
erating memory efficient 3D approximations.
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Fig. 6 Visualization of the splitting strategy for axis aligned point
cloud (top row) and the rough approximation (bottom row) if the point
cloud contains non axis aligned regions. The initial minimal bounding
RC of the point cloud is shown in red for both rows. The initial RC is
not a good approximation, hence based on the density threshold a split
will take place. The recomputed minimal bounding RC after splitting is
shown in green. In case of non axis aligned structures (bottom row) the
split takes place until the density and volumetric contraint is satisfied

3 Experimental evaluation

In this section the RMAP framework is evaluated in terms
of computational cost and memory efficiency. This section is
further divided into three main subsections, the first dealing
with an evaluation of the Rtree data structure in context of
3D mapping. The second subsection deals with the RMAP
occupancy grid and its evaluation in comparison to the latest
version (1.6.1) of Octomap (Wurm et al. 2010; Hornung et
al. 2013). The final subsection deals with the evaluation of
the RMAP RC approximation approach and memory com-
plexity analysis to other approaches on real world data sets
(Freiburg and Bremen city center2 dataset). The experiments
mentioned in this section were carried out on an Intel(R) Core
i5-2500K, 3.30 GHz processor with 16 GB memory.

3.1 Evaluation of the Rtree data structure

An evaluation of the Rtree data structure is performed in
context of 3D mapping with respect to insertion, extraction
times and varying M (number of branches per node) on 70
scans of the Freiburg campus using the RMAP occupancy

2 Courtesy of Dorit Borrmann and Jan Elseberg available at
the Osnabrück robotic 3D scan repository, http://kos.informatik.
uni-osnabrueck.de/3Dscans/.

grid as shown in Fig. 7. The insertion time correponds to
the time taken to update the beam end point as occupied
and beam path as free for 100,000 points. The access time
corresponds to the time taken to access all occupied cells once
all laser scans have been inserted. As discussed in Sect. 2.1,
for a fixed number of leaf branches increasing M generates
compact tree representation (less height and contains less
number of nodes) and correspondingly less memory as can
be seen in Fig. 7c. The memory for M = 8, M = 16 and
M = 32 at 10 cm resolution for 70 scans of the Freiburg
campus is 200 MB, 182 MB and 172 MB respectively. It can
be seen from the figure that the variation in memory (due
to M) decreases with increasing grid cell size. Compact tree
representations (with increasing M) allow faster access times
for occupied cells as can be seen in Fig. 7a however due to
increased overlaps the insertion time increases. The memory
of RMAP for 64 bit architectures is calculated based on

memoryRM AP = Ninner × f (M) + Nlea f × f (M),

which gives the memory in bytes. Ninner , Nlea f denotes the
number of inner and leaf nodes whereas f (M) is a value
dependent on the number of branches allowed per node. For
the RMAP occupancy grid each inner or leaf node, contains
2 integers (one for the number of its branches and one for
the current height of the Rtree) utilizing 8 bytes (4 bytes + 4
bytes = 8 bytes) and an array of branches. A branch contains
6 integers defining the MBRC or RC and a union which
consists of a pointer to the next node or the object in case of
inner or leaf branch respectively consuming 32 bytes in total.
Given M = 8, M = 16 or M = 32, the value of f (M) is
264 (8 bytes + 8 × 32 bytes = 264 bytes), 520 or 1032 bytes
respectively.

3.2 Comparison of the RMAP occupancy grid with
octomap

In this section the Octomap approach is compared with the
RMAP occupancy grid. The objective of this section is to
validate the free space assumption by comparing it with
Octomap to give a scale of memory and computational sav-
ings for large scale 3D mapping. The comparison of the
RMAP occupancy grid with Octomap (Wurm et al. 2010;
Hornung et al. 2013) version 1.6.1 was done for different
resolutions in terms of insertion, extraction time and mem-
ory costs on 70 scans of the Freiburg campus. Figure 8 shows
the insertion, access times and memory consumption of both
approaches. An important point here is that the access time
and memory consumption are shown in a semi-log plot in
the Figures. The RMAP occupancy grid has better access
and memory consumption as can be seen in Fig. 8a, c. The
large difference in memory is due to the free space assump-
tion and implicit free space modelling. The RMAP occu-
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(a) (b) (c)

Fig. 7 An evaluation of the Rtree data structure (the RMAP occupancy
grid with raytracing) in context of 3D mapping on 70 scans of Freiburg
campus. a The access time of the Rtree data structure reduces with
increasing M and increasing grid cell size because the Rtree generates
tree representations of less height and contains less number of nodes

(Sect. 2.1). b The insertion time of the Rtree data structure increases
due to additional overlaps with increasing M . c The memory consump-
tion decreases with increasing M and increasing grid cell size as less
number of nodes are required for representation

(a) (b) (c)

Fig. 8 An evaluation of the RMAP occupancy grid and Octomap on
70 scans of the Freiburg campus. a The extraction times of the RMAP
occupancy grid are better than Octomap because the RMAP occupancy
grid implicitly models free space and generates compact tree represen-
tations. Due to implicit free space modelling the tree contains fewer
nodes which can be traversed quickly. b The insertion times of the
RMAP occupancy grid are comparable to Octomap. The RMAP occu-
pancy grid updates initialized cells and assumes uninitialized cells to

be free whereas Octomap generates and updates all cells (below the
clamping threshold) at each insertion. c The large difference in mem-
ory is due to implicit free space modelling of the RMAP occupancy grid.
The memory of Octomap is mentioned for three different cases: With-
out compression, Pruned and Maximum liklehood (lossy compression).
The full grid corresponds to the minimal grid required to represent the
same information (Wurm et al. 2010; Hornung et al. 2013)

pancy grid updates initialized regions and assumes unini-
tialized region to be free. In contrast Octomap generates
and updates large volumes at each insertion. The insertion
time of the RMAP occupancy grid is better or comparable
to Octomap for M = 8 and M = 16 whereas worse for
M = 32. Based on the insertion time mentioned all 70 scans
of the Freiburg campus can be processed in less then 2 min
by the RMAP occupancy grid. The access, insertion time of
the RMAP occupancy grid is less then 7 ms, 1.25 s (for all
M) respectively and the memory consumption is about 200
MB for a 10 cm resolution grid. In comparison the access,
insertion time for Octomap is about 0.52 and 1.40 s. The
memory consumption is 2249 MB without compression (64
bit architecture), 1778.08 MB based on pruning and 923.78
MB based on maximum likelihood (lossy compression). The
memory of Octomap was calculated based on the nodes of
the structure and confirmed by the graph2tree tool provided

in the implementation. The memory formula in (Hornung et
al. 2013) adapted to 64 bit architectures is

memoryoctomap = Ninner × 80 bytes + Nlea f × 16 bytes,

where Nlea f corresponds to the number of leaf nodes and
Ninner corresponds to the inner nodes in the Octomap struc-
ture. The memory of the RMAP occupancy grid is calculated
based on the formula discussed in the previous section. Fig-
ures 9 and 10 shows the 3D map of the Freiburg and Bremen
city centre dataset generated by the RMAP occupancy grid.

In addition to the comparison above the accuracy of the
generated model by the RMAP approach is evaluated on the
Freiburg campus dataset in a similar manner as in Wurm et al.
(2010), Hornung et al. (2013). The accuracy is measured as
the percentage of correctly mapped cells in the occupancy
grid. A cell is correctly mapped if its state in the gener-
ated map is the same as in the evaluated scan. Therefore this
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process involves inserting the scan being evaluated into an
already built map requiring the beam end point to be occupied
and beam path to be free space. A cell in the map is consid-
ered as occupied if its occupancy probability is greater then
0.9 whereas all uninitialized regions are considered as free
space. Every 5th scan of the Freiburg campus is used as an
evaluation scan to determine the number of correctly mapped
cells. The evaluation is carried out for 20 cm resolution grid
and the accuracy of the model is 99 %. The remaining 1 %
error might be due to sensor noise in the scan or discretization
effects during ray tracing.

In Sect. 3.1, an evaluation of the Rtree structure in con-
text of 3D mapping showed that increasing M (number of
branches per node) reduces memory and access times due to
compact tree representation. In contrast it increases overlaps
and causes the insertion time to increase. An evaluation of
the RMAP occupancy grid and Octomap showed that the free
space assumption in the RMAP occupancy grid leads to large

Fig. 9 Freiburg campus using the RMAP occupancy grid (319×202×
29)

Fig. 10 Bremen city center using the RMAP occupancy grid

memory savings. The RMAP occupancy grid in comparison
to Octomap is shown to have better access times and com-
parable insertion times. This is experimentally validated by
comparing both approaches on the Freiburg campus dataset.
Additionally an evaluation to determine the accuracy of the
generated model is also performed.

3.3 Rectangular cuboid approximation of point clouds
based on density

In this section the pseudo-code in Fig. 5 is evaluated on sim-
ulation and real world datasets. The aim of this approach is
to develop memory efficient variable sized RC approxima-
tions based on point cloud density. This section is divided
into two subsections. The first subsection deals with a sim-
ulation dataset which shows how the algorithm works by
varying the approximation threshold. The second subsection
evaluates the approximation approach on real world datasets
based on memory complexity in comparison to point cloud
and fixed resolution cell representations.

3.3.1 Simulation dataset

In this section an evaluation of the approximation algorithm
on a simulation dataset is presented. Figure 11 shows the
approximation of a sphere using RC in which σ defines the
detail of the approximation. As can be seen in the figure that
as σ is increased, the RC split further generating a more accu-
rate representation. Figure 12a, b show the approximation
time taken by the pseudo-code of Fig. 5 and the increasing
number of RC generated as a function of the approximation
threshold. In case of σ = 98 % around 1500 RC are required
to approximate the sphere.

3.3.2 Real world datasets

In order to evaluate the approximation approach, a memory
consumption analysis is performed on point cloud datasets
in which the majority of the structure is axis aligned. Table 1
shows a comparison of different approaches on the Freiburg
campus (10 scans) and Bremen city center dataset (4 scans).

Fig. 11 A simulation dataset showing the RC approximation with dif-
ferent approximation thresholds σ . Increase in σ causes the RC to split
in order to generate a finer approximation
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Fig. 12 Computation time and
number of RC as a function of σ

for the sphere. An increase in σ

causes an increase in
computation time and number of
RC required for representation

(a) (b)

Table 1 Experimental results of
the RC approximation for 10
scans of Freiburg campus and 4
scans of Bremen city center
dataset

The comparison shows that even
for high approximation
threshold σ the RC
approximation requires a small
amount of memory. A visual
comparison shows that the
proposed approach captures
similar details and generates
memory efficient 3D
approximations for point cloud
with axis aligned structures. The
Octomap implementation was
modified to update based on
beam end points only, hence
ignoring the beam path. The
modified Octomap
implementation can be
considered as the storage of
fixed resolution cells in a
hierarchy

Approach Resolution (cm)/σ Dataset memory (MB)

Freiburg campus Bremen city center

Point cloud – 18.73 119.98

Modified octomap 20 10.53 83.57

40 3.06 25.59

60 1.41 12.79

80 0.85 7.82

Modified octomap-pruned 20 9.89 81.02

40 2.86 24.75

60 1.27 12.35

80 0.77 7.54

Variable resolution RC σ = 95 % 0.09 0.18

σ = 98 % 0.18 0.45

σ = 99 % 0.25 0.59

Storing variable resolution RC in Rtree
(M = 8)

σ = 95 % 0.36 0.69

σ = 98 % 0.72 1.76

σ = 99 % 0.98 2.29

Storing variable resolution RC in Rtree
(M = 16)

σ = 95 % 0.32 0.63

σ = 98 % 0.66 1.61

σ = 99 % 0.89 2.11

Storing variable resolution RC in Rtree
(M = 32)

σ = 95 % 0.31 0.60

σ = 98 % 0.64 1.55

σ = 99 % 0.86 2.00

The Bremen city center dataset is downsampled using a grid
of 5 cm resolution leading to 10484513 points in the first
4 scans of the dataset. The point cloud memory is calcu-
lated by storing 3 floats for each point leading to 12 bytes.
To perform a comparison the Octomap implementation was
modified to update based on beam end points only, hence
ignoring the beam path. The modified Octomap implemen-
tation can be considered as the storage of fixed resolution
cells in a hierarchy. It can be seen from Table 1 that even for
high approximation thresholds (σ ), the variable resolution
RC approximation can generate memory efficient represen-
tations in comparison to other approaches. The memory of
the variable resolution representation was calculated by stor-

ing 6 integers for each RC, leading to 24 bytes. The RC
generated by the approximation approach can be stored in
the Rtree structure or without a hierarchy in a list or vec-
tor. If the objective is 3D reconstruction or visualization, the
RC generated by the density based approximation approach
can be stored in vector or a list. The visualization process
would involve accessing all elements of the vector/list and
displaying them. In case spatial queries have to be carried out
for (small) specific regions it is better to store the RC in the
Rtree structure. The last 3 rows of Table 1 show the memory
consumption of storing the RC generated by the approxima-
tion approach in a Rtree structure for different values of M
(number of branches per node).
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Fig. 13 a–b A visual comparison of the approximation generated by
the RC approximation approach and Modified Octomap approach at 40
and 60 cm resolution. Focusing on high density axis aligned regions
it can be seen that the proposed approximation captures all important
details and requires less memory than its counterpart. Best viewed in
color

It is difficult to define a metric that compares 3D rep-
resentations which differ drastically (without ground truth).
Hence a visual comparison of the RC approximation and
fixed resolution cells was carried out as shown in Fig. 13.
The figure shows a comparison of σ = 95% with the 40 and
60 cm resolution map generated by the modified Octomap
implementation. It can be seen that the approximation cap-
tures similar details with 0.09 MB (memory of RC only) or
0.36 MB, 0.32 MB and 0.31 MB for M = 8, M = 16 and
M = 32 (storing RC in Rtree) in comparison to 3.06 MB and

Fig. 14 RC approximation of a tree and pole. The approach is able to
capture essential details and approximate the pole and the tree based on
point cloud density

1.41 MB taken by the modified Octomap approach. Although
it is difficult to compare the accuracy of both approaches, by
focusing on high density and axis aligned surfaces it can be
stated that the RC approximation generates memory efficient
representations.

Figure 14 shows the RC approximation of a specific sec-
tion (a tree and pole) of the Freiburg campus using a different
visualization. It shows the RC and the point cloud in red and
black respectively. The figure shows that the algorithm adapts
the size of the RC based on the density of the point cloud to
capture essential details. Figure 15a shows the first 10 scans
of the Freiburg campus for σ = 98 %. The coarse approxima-
tion generated by non axis aligned regions can be visualized
in Fig. 15b, specifically the approximation of the buildings.
In parts of the environment that are non axis aligned, the RC
split until the density threshold and volumetric constraint
are satisfied. To evaluate the effect of non-axis aligned struc-
tures on memory, the point cloud from 10 files of the Freiburg
campus was rotated by an increment of 15 degrees and the
memory was recorded for the same approximation threshold
as shown in Fig. 16. It can be seen that a larger number of
RC are required to represent non axis aligned environments.

The approach is also tested for approximation of dense
point clouds with complicated shapes such as the stanford
repository Dragon data set3. Figure 17 shows the approx-
imation of the dragon for different approximation thresh-
olds σ , leading from a coarse to a finer approximation. Fig-
ure 18a–c shows the normalized (per point) approximation
time, memory consumption and number of RC required for
approximation. Figure 18d shows the number of unapproxi-
mated points for the dragon dataset. The computation time of

3 Courtesy of Stanford University Computer Graphics Laboratory,
available at The Stanford 3D Scanning repository, http://graphics.
stanford.edu/data/3Dscanrep/.
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Fig. 15 RC approximation of 10 scans of Freiburg campus and 4 scans
of bremen city center. a Visualization of the RC with the actual point
cloud. It can be seen that the approach is capable of extracting variable
resolution RC approximations based on density. b A visualization to
show how the non-axis aligned structure affects the approximation. It
can be seen that the non-axis aligned buildings have a rougher approx-
imation

the RC approximation algorithm is highly dependent on the
number of points and volume occupied by the point cloud.

4 Discussion and comments

This section highlights different aspects of the topics dis-
cussed in this paper.

4.1 RMAP occupancy grid

In this subsection we discuss the merits/demerits of the free
space assumption in the RMAP occupancy grid for robot-
ics applications. The important point is that as free space
is assumed a priori, differentiating free and unknown space
becomes tedious. This is not a major issue for most robotic
applications such as localization and registration which donot
require differentiation of free and unmapped space. However

Fig. 16 Rotation effect on 10 files of Freiburg campus dataset for σ =
99 %. In case the point cloud structures are not axis aligned the RC
approximation generates a rough approximation which requires more
memory as can be seen in this plot

Fig. 17 a–d An evaluation of the RC approximation on a complex
shape. It can be seen that as σ is increased the approximation gets finer

it can be problematic for navigation and exploration. It is
briefly discussed below how these issues can be addressed.

The issue of exploration can be addressed from two per-
spectives. Firstly, most robotic architectures utilize two lay-
ers for navigation and exploration (global and local repre-
sentations of the environment). RMAP can be used to make
a global map, whereas the exploration strategy can be based
on generating frontiers on the local map which can explicitly
model free space and unmapped space. As the local map is a
sliding window grid it is computationally and memory effi-
cient to model free and unmapped space here. The frontiers
found in the local map can then be marked on the global map
to stop the algorithm from exploring already explored areas.
Secondly there exist exploration algorithms (Amigoni et al.
2004) which place frontiers on the global map correspond-
ing to a certain radius based on the robot position and the
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(a) (b)

(c) (d)

Fig. 18 a–c Normalized (per point) computation time, number of RC and memory consumption (without storing in Rtree) of the Dragon dataset
as a function of approximation threshold σ . d The percentage of unapproximated points showing the information loss

Fig. 19 Determining the map boundary. It is possible to differentiate
between free and unmapped space given the robot trajectory (during
3D mapping), sensor characteristics (maximum range and FOV) and the
map generated by the robot. The above information can be used to mark
cells as the boundary of the map in an offline process. Once the boundary
of the map has been marked, all regions beyond the boundary can be
considered unmapped and the robot can be stopped from navigating in
unmapped regions.

maximal FOV of the sensor and thus do not require explicit
free and unknown space modelling.

In context of safe navigation the robot trajectories should
be planned through regions covered by sensor measure-
ments and should be stopped from generating trajectories
in unmapped regions. In case of navigation with a known
map (all explored areas) the RMAP occupancy grid is equiv-
alent to any other grid structure. However maps contain-
ing unmapped regions can be problematic for navigation

as the proposed approach will generate optimistic trajecto-
ries in regions which are unknown assuming they are free.
In principle it is possible to differentiate between free and
unmapped space given the robot trajectory (during 3D map-
ping), sensor characteristics (maximum range and FOV) and
the map generated by robot. The above mentioned infor-
mation can be used to mark cells as the boundary of the
map in an offline process. Once this boundary has been
marked, all regions beyond this boundary can be considered
as unmapped and the robot can be stopped from navigating
in these regions. Figure 19 shows an illustration of the above
mentioned details. The boundary of the map for maximum
range readings can be marked by initializing cells in those
regions. Another aspect specific to navigation is the occu-
pancy probability of cells corresponding to regions contain-
ing dynamics. Consider the case in which the robot returns to
a region previously mapped (implicitly) as free space. How-
ever during the current time index it contains dynamics, hence
the RMAP occupancy grid will initialize grid cells in those
regions whereas the standard occupancy grid will update the
occupancy probability as more observations are obtained. In
this case the occupancy probability will be over estimated
by the RMAP approach however this is not a major issue for
navigation as it will make the robot avoid these regions more
than a standard occupancy grid.

123



Auton Robot (2014) 37:261–277 275

4.2 Rectangular cuboid approximation based on point
cloud density

The RC approximation approach utilizes density as a parame-
ter to determine an approximation of the environment. Differ-
ent sized RC are used for representation of the environment
based on density. This approach is able to find RC approxima-
tions of axis aligned structures, which by intuition would con-
sume less memory in comparison to a fixed resolution repre-
sentations. Factors which affect the performance of the RC
approximation of 3D environments are highlighted below:

1. Axis aligned constraint
The axis aligned constraint plays an important role in
the approximation based on density. If the point cloud
structure is not axis aligned in the global frame of ref-
erence the approximation will be very coarse in com-
parison to axis aligned regions. A natural extension of
this work is an approximation based on OBB (oriented
bounding box). A transition to OBB based approxima-
tion will cause an increase in computational and memory
complexity. An increase in memory complexity occurs
because the RMAP framework stores the minimum and
maximum point of the axis aligned RC whereas in case
of OBB either all corner points or transformation angles
need to be stored. Additional computational cost occurs
because the orientation of the point cloud structure needs
to be extracted at each step. The choice between an axis
aligned and OBB can be considered as a trade off between
computational, memory complexity as well as accuracy.

2. Approximation percentage σ and Minimum volume
threshold ω

The choice of the approximation percentage σ and the
minimum volume threshold ω is highly dependent on the
volume and number of points in the point cloud. As a
general rule of thumb an approximation percentage σ

with values within the range of 90–98 % will always
yield good approximations. However forcing the thresh-
old closer to 100 % can cause the algorithm to degenerate.

3. Density of point cloud
An important factor in the performance of the algorithm
is the density of the point cloud. This factor is highly
dependent on the specific sensor being used and the lay-
out of the environment. The algorithm performs best if the
point density is uniform for all scanned surface (without
noisy measurements). Noisy measurements in the vicin-
ity of high density region can cause the algorithm to over
estimate the RC volume.

5 Conclusion and futurework

In this paper the RMAP framework is presented which uses
axis aligned RC for 3D environment representation. This

paper presented two aspects of the RMAP framework, the
RMAP occupancy grid approach and a RC approximation of
point clouds based on point density. The RMAP occupancy
grid with implicit free space modelling generates 3D proba-
bilistic representations with multiresolution capabilities. An
evaluation of the RMAP occupancy grid in comparison to
Octomap is presented on the Freiburg campus dataset in con-
text of large scale 3D mapping. The evaluation showed that
RMAP occupancy grid generates memory efficient represen-
tations due to implicit free space modelling and allows faster
access times with comparable insertion times to Octomap.
In addition an evaluation of the Rtree data structure is per-
formed in context of 3D mapping. A visual evaluation of
the axis aligned RC approximation approach showed that it
is capable of generating memory efficient representations for
point clouds containing axis aligned surfaces. It can be stated
in general that the RMAP framework presents specific advan-
tages in terms of computational/memory complexity for 3D
mapping.

Future work includes an extensive evaluation of the pro-
posed RMAP occupancy grid in the context of exploration
and navigation. Additionally an OBB based approximation
algorithm will be investigated in order to determine the
advantage/disadvantage in comparison to the axis aligned
RC approximation.
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