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ABSTRACT
We explore new aspects on assistive living via smart social
human-robot interaction (HRI) involving automatic recog-
nition of multimodal gestures and speech in a natural inter-
face, providing social features in HRI. We discuss a whole
framework of resources, including datasets and tools, briefly
shown in two real-life use cases for elderly subjects: a multi-
modal interface of an assistive robotic rollator and an assis-
tive bathing robot. We discuss these domain specific tasks,
and open source tools, which can be used to build such HRI
systems, as well as indicative results. Sharing such resources
can open new perspectives in assistive HRI.
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1. INTRODUCTION
Social human-robot interaction is under an abrupt emerg-

ing reinvention. This is evident (1) by facts in the market
e.g., 1.5bn in global robotics for 2019; (2) the research span-
ning a great range of cases e.g., social companions [1], to
ones that deal with dementia [8] and disorders [3]; (3) as
a consequence of the core machine learning advancements,
with deep learning in natural language processing, computer
vision and speech recognition, where rates have been dou-
bled in tough tasks within a few years [7]. What is crucial for
the above is the data. For recent deep learning approaches,
domain specific datasets are the cornerstone for training.

Herein, we show our perspective on social human-robot
interaction via a rich HRI set of resources including domain
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Figure 1: Interacting with smart robotic assistants for

everyday activities: assistive robotic rollator (top); au-

tomated bathing environment (bottom).

specific datasets and automatic machine learning tools. This
refers to multimodal communication with speech and ges-
tures, as applied on the assistive service robots for the el-
derly, in two real-life use cases: a) a robotic platform that
supports the mobility and thus enforces fitness and vitality,
see Fig. 1 (top), and b) an assistive bathing robot, which
helps to perform and complete bathings tasks identified as
difficult and stressful, see Fig. 1 (bottom). Both cases shall
assist towards independent living for the elderly to improve
their life quality. The automatic multimodal recognition on
both cases is based on state-of-the-art algorithms and a suite
of tools that can train audio-visual models and recognize, in
an online manner, gestures.

The technological advances in assistive living have led HRI
research to extend into various areas [4], such as multimodal
interfaces. Even though, our everyday communication is a
blend of various modalities, e.g., speech, gestures and eye
gaze, co-speech gesturing is still quite limited in HRI [2].



Figure 2: Sample gestures for the two HRI tasks. Left: assistive robotic rollator; right: bathing task.

Our goal is to enhance the communication, making it nat-
ural, intuitive and easy to use, in other words enhancing it
wrt social aspects. For a review, we refer the reader to [6].

2. TWO REAL-LIFE USE CASES
MOBOT1: The first use case includes an active mo-

bility assistance robot for indoor environments aiming to
support mobility and thus enforce fitness and vitality pro-
viding user-centered, context-adaptive and natural support.
The developed experimental prototype shown in Fig. 1 (top)
consists of a robotic rollator equipped with sensors such as:
laser range sensors scanning the walking area for environ-
ment mapping and obstacle detection, detecting also lower
limbs movement at the back; force/torque handle sensors;
two Kinect sensors to record users’ upper body movements
and the lower limbs and an array of 8-microphone MEMS
for audio capturing.

I-Support2: In the second use case the goal is to develop
a robotic shower system in order to enable independent liv-
ing for elderly so as to improve their life quality. The core
system functionalities identified as important from a clinical
perspective (taking into account impairments, limitations
and user requirements) are the tasks for bathing the distal
region and the back region [9]. The experimental prototype
in this case includes three Kinect sensors, as shown in Fig. 1
(bottom), that reconstruct the 3D pose of the human and
the robot, recognizing also user gestures and an audio sys-
tem including 8 distributed condenser microphones.

Kinect cameras and microphones, in both cases, are used
to record, challenging at times, audio-gestural data (i.e., ac-
tions for modeling the interaction between the users and
the robot); keeping however in mind that elderly have to be
able to perform and remember them regardless their cultural
background. The collected domain specific audio-gestural
commands are related to the specific tasks, including also
actions for emergency situations. An online multimodal ac-
tion recognition system has been used [5] to monitor, an-
alyze and predict user actions in those challenging condi-
tions, giving emphasis to the command-level speech and ges-
ture recognition. Always-listening recognition, using state-
of-the-art methods, is applied separately for spoken com-
mands and gestures with their results combined at a second
fusion phase. The output is fed to the robot’s controller and
the predicted action or task is executed.

For the first use case, experiments have been conducted on
challenging data acquired with elderly users while interact-
ing with the platform, using 8 gestures and German spoken
commands (see Fig. 2), obtaining accuracies of 84.1%, 57%
and 90.2% for the audio, visual modality, and their fusion,
respectively. For the experiments of the two bathing tasks
(i.e., washing the back and the legs) a small audio-gestural

1
http://www.mobot-project.eu/

2
http://www.i-support-project.eu/

Modality “washing the back” “washing the legs”

Visual 83.9% 81.1%
Audio 75.3% 81.6%

Table 1: Recognition results for the two bathing
tasks.

dataset was used, including 28 gestures and German spoken
commands (see Fig. 2), accomplishing average accuracy of
ca. 82% for gesture recognition and ca. 75% for spoken
command recognition (see Table 1).

3. CONCLUSIONS
We presented two real-life use cases, tools and data. Such

resources can be employed to develop natural interfaces for
multimodal interaction. Our intention is to further investi-
gate how the communication will be as intuitive as possible
using co-speech gesturing, which is the most natural way
for human-human communication, while also enhancing the
recognition, in cases of speech dysfluencies or kinetic prob-
lems. In addition, multiple domain data could be combined
to build a generalized dataset which in the future could be
used to tackle challenging tasks were multimodality in inter-
action is in question. Finally, by sharing such resources, we
aim to build a public crowdsourced library that shall open
new perspectives in smart assistive HRI.
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