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Abstract We present the i-Walk system1, a novel framework for intelligent mo-
bility assistance applications. The proposed system is capable of automatically
understanding human activity, assessing mobility and rehabilitation progress, re-
cognizing human intentions and communicating with the patients by giving mean-
ingful feedback. To this end, multiple sensors, i.e. cameras, microphones, lasers,
provide multimodal data in order to allow for user monitoring, while state-of-the-
art and beyond algorithms have been developed and integrated into the system
to enable recognition, interaction and assessment. More specifically, i-Walk per-
forms in real-time and consists of four main sub-modules that interact automatic-
ally to provide speech understanding, activity recognition, mobility analysis and
multimodal communication for seamless HRI. The i-Walk assessment system is
evaluated on a database of healthy subjects and patients, who participated in care-
fully designed experimental scenarios that cover essential needs of rehabilitation.
The presented results highlight the efficacy of the proposed framework to endow
personal assistants with intelligence.

Keywords: intelligent assessment system, human-robot interaction, activity re-
cognition, 3D pose estimation, speech understanding, gait tracking, gait stability,
multimodal communication

1 Introduction

The rapid increase of people with special needs, such as the elderly population, and the
simultaneous reduction of personal care staff, reinforce the need for robotic assistants
[29]. When designing an intelligent assistant platform for people with mobility and/or
cognitive impairment, special care should be given in developing a system that will
monitor and promote rehabilitation in a natural and seamless way.

In order for an intelligent robotic assistant to achieve these goals, the development
of advanced Human-Robot Interaction (HRI) components and their integration under
a unified autonomous system is more than essential. More specifically, the platform
should be capable of understanding human activities, intentions and needs, but also
? First three authors have equal contribution.
1 This research has been co-financed by the European Union and Greek national funds through the Operational Pro-

gram Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH CREATE INOVATE (project
code: T1EDK- 01248, acronym: i-Walk).
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Figure 1: Left: A patient walking supported by the i-Walk assistant platform. Right: A patient
performing rehabilitation exercises while being monitored by i-Walk.

analysing multi-sensory signals related to gait and postural stability, so as to provide
support and communication.

The i-Walk platform (Fig. 1) has been carefully designed to fill this need, by com-
bining multisensory streams to perform a multitask understanding of human behavior,
i.e., speech intention recognition, generalized human activity recognition, and mobil-
ity analysis. The multimodal interaction framework of i-Walk aims to provide natural
communication and valuable feedback to the user and the medical experts regarding
rehabilitation progress, in a way close to that of a personal carer.

Design and development of personal robotic assistants for elderly is prominent in
scientific research [17, 27]. The role of personal care robots is multiple, covering phys-
ical, sensorial and cognitive assistance [22], health and behavior monitoring and com-
panionship [39]. Most intelligent assistive platform designs aim to solve only specific
problems, e.g. GUIDO [36] and iWalker [23] provided navigation assistance. Consid-
erable amount of research has focused on analysing anthropometric data from various
sensors for assessing human state [19] and eventually control a robotic platform, like
CAIROW [13]. The ISR-AIWALKER employed RGB-D data for monitoring the users
[31]. MOBOT [29] was equipped with various sensors, attempting to model human
activities from multimodal data [20, 35] and perform gait and stability analysis [9, 12].
In [11] a method was proposed that integrated a human motion intention model, exploit-
ing RGB-D and laser data of the user, into a decision making framework for adapting
the platform’s motion.

Several works aim to integrate visual perception into assistive robotic applications
[24, 41]. Robotic assistive vision is an important topic for HRI systems [18], while
also multi-sensory systems integrating visual activity with speech recognition [15] for
communicating with robots have recently emerged [43,44]. Human activity recognition
is a long-term research problem [47] where human skeleton representations from single
images [14] have been extensively used [46, 48–50]. Deep Learning progress led to
efficient methods for human pose estimation [8] while action recognition benefits from
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Figure 2: Overview of the multimodal i-Walk intelligent assessment system.

these improved skeleton estimations by employing recurrent methods like Long Short
Term Memory (LSTM) networks, which have the ability to model temporal information
of action sequences [16, 26, 38, 40, 45, 51].

However, those methods present difficulties in getting integrated in robotics, since
most of them rely on datasets from constrained environments with static cameras, which
makes them vulnerable to camera motion effects. Moreover, the most recent imple-
mentations incorporating human pose estimation and/or action recognition for robotic
applications [33,34,37,52] usually focus on specific tasks rather than provide a holistic
approach that demands multimodal human perception and real-time feedback from the
system.

In this paper we present the i-Walk intelligent assessment system, a multi-sensory,
multimodal HRI framework destined to provide simple rollators with intelligence, aim-
ing to be of use by patients with mobility and/or cognitive impairment. The system has
three important goals: monitoring the patient in terms of his/her activity and mobility,
interacting with the patient by allowing him/her to communicate his/her intentions to the
platform, engaging in dialog with him/her, giving feedback, etc., and assess the patient’s
status in the context of a rehabilitation procedure. To this end our main contributions
are the design, development, integration and evaluation of the assessment system with
its individual interacting sub-modules: the speech understanding, the activity recogni-
tion, the mobility analysis and the multimodal communication system. All sub-modules
communicate automatically, providing direct feedback. The proposed system has been
extensively evaluated using a large corpus of multi-sensory data, both from healthy
subjects and real patients from a rehabilitation center, who participated in experimental
scenarios that meet the real needs of daily living and mobility rehabilitation.

2 System Overview

The i-Walk Assessment System with its respective sub-modules is presented in Fig.2.
The upper flow (orange blocks) represents the Speech Understanding module, the middle
flow (light blue blocks) the Activity Recognition, while the lower one (light pink blocks)
the Mobility Analysis module. Each module exerts certain outputs for assessing the
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activity state and performance, the spoken and gestural intentions and the mobility per-
formance of the user. The Multimodal Communication module (red block) is respons-
ible for triggering the dialog management (light green block) providing speech feedback
to the users. These modules along with their respective parts are described below.

2.1 Speech Understanding

Speech is the most natural and instant means of communication. Thus, a speech under-
standing module that will enable the patient to communicate his/her intentions to the
robot is a key component of the system and involves two sub-modules, as depicted in
Fig. 2: An Automatic Speech Recognition (ASR) module and a Natural Language Un-
derstanding (NLU) one. For ASR, a state-of-the-art system has been integrated, where
speech recorded through a microphone array serves as input to Google speech-to-text
API [2] and is transformed into text. Subsequently, the transcribed text serves as input to
the NLU module, in order to be translated into a human intention. The integrated NLU
system has been built with RASA [3,4,7]: A set of pre-defined intentions, both general
purpose and specific to the current application has been designed. The former category
includes 7 general intents, namely greeting, saying my name, saying goodbye, thanking,
affirming, denying, asking to repeat, while the latter one includes 7 intents designed for
the HRI: standing up, sitting down, walking, stopping, ending interaction, going to the
bathroom, doing exercises. Each intention is associated with various phrases to express
this particular intention. For example, a user can express his/her will to stand up by
saying “I want to stand up”, “Can you please help me stand up”, or any other variation.
A RASA NLU pipeline called tensorflow embeddings [3] is then employed to predict
the current intention based on the speech transcription. The predicted intent is the input
to the multimodal communication module, that is described later in this section.

2.2 Activity Recognition

Apart from speech, gestures and human activities convey crucial information about a
person’s intent or state as well. We have designed and implemented a novel sub-module
for human activity and gesture recognition that consists of two different subsystems:
The first one performs 3D human pose estimation (Fig. 2) using the RGB-D sensor,
which is mounted on the the robotic rollator (Fig. 1), while the second one recognizes
human activity by employing a LSTM-based network architecture (Fig 3). In case the
recognized activity is an exercise, the exercise monitoring module presents (on a screen
placed on the rollator) and stores the corresponding recognition scores, while in case a
gesture is detected, the gesture recognition module is triggered.
3D Pose Estimation: For the detection of the 2D body keypoints on the image plane we
employ Open Pose Library [8] with the accompanied models trained on large annotated
datasets [6, 25]. The third dimension of the 3D body keypoints is obtained by the cor-
responding depth maps. Subsequently, given a pair of pixel coordinates for a body joint
and the depth value at this pixel, we calculate the corresponding 3D joint’s coordinates
through the inverse perspective mapping using the calibration matrix of the camera. For
the final human skeleton we discard the keypoints of face, hands and feet either because
in many cases they are not detected, or the depth values at these points are not reliable.

Proc. European Conference on Computer Vision Workshops (ECCVW), August 2020.
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Figure 3: Neural Network architectures for human activity recognition based on LSTM units. The
temporal fusion of the predictions can be applied in two different stages.

For activity recognition, either the 2D keypoints on the image plane or the 3D loc-
ations of the human joints are used as features. In the former case, since locations are
pixel coordinates, we apply a standardization scheme (STD) in order to have features
with zero mean and unit variance for each instance sequence. In the latter case, we
transform the 3D body joint locations which are provided in the camera coordinate sys-
tem, to the body coordinate system with the middle-hip joint as origin and normalized
by the length between the left- and right-hip joints (BNORM scheme). In addition, we
can optionally enhance the pose feature vector with the 3D velocity and acceleration of
each joint, computed from the sequence of the normalized 3D joints’ positions.
LSTM-based Network for Activity Recognition: In our deep learning based mod-
ule for human activity recognition we employ a Neural Network architecture based on
LSTM units [21]. LSTM constitutes a special kind of recurrent neural networks that
can effectively learn long-term dependencies that exist in sequential data, such as hu-
man joint trajectories. Our network architecture consists of two LSTM layers stacked
on top of each other (Fig. 3 - blue boxes) and a fully connected (FC) layer, followed by
softmax activation, to obtain per-class scores (Fig. 3 - red boxes). The sequence of the
pose features pt in a temporal window of length T , possibly transformed by a sequence
of FC layers, is used as input to the above network. The usage of FC layers acts as
a static transformation of the initial pose features independently of time dependencies
that are modelled by the LSTM units. The network output consists of a sequence of
per-class labels, one for each kind of human activity.

Usually, an input sequence of length T is classified by choosing the class with the
highest score sT that corresponds to the the hidden state hT of the last frame. However,
in this work we have investigated two different approaches for the temporal fusion of
the network’s predictions. In the first (middle fusion: Fig. 3.a) we fuse the hidden states
ht according the aggregation function h̃ = F (ht), while in the second (scores fusion:
Fig. 3.a) we apply temporal pooling of the softmax scores st : s=F (st). For each one of
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the above fusion schemes we have experimented with four different types of aggregation
functions F : g = F (f), where f can be either the states ht or the scores st .
Average pooling: In this approach, F represents the frame predictions average, inside
a temporal window: g = 1

T ÂT
t=1 ft . While average pooling function is able to capture

information from the whole temporal video segment, it is sensitive to noisy background.
Max pooling: In this function we apply max pooling to the elements of f among the
T frames of the temporal window: g = F (f) = maxt21,··· ,T ft . With max pooling we
emphasize the most discriminative frame of the video segment, which has the strongest
activation, and ignore the other parts that may contain noisy information.
Weighted average: An alternative way of temporal pooling is to use weights gt for each
frame prediction, learned during the network training: g = ÂT

t=1 gt · ft . This way, we
learn the relative importance of each temporal part but the weights are data independent
since they are learned from the whole dataset and are not affected by the content of each
video clip.
Attention weighting: To deal with the above limitations we can apply a weighting
scheme where the importance weights at for each frame depend on the content of the
video: g = ÂT

t=1 at(pt) · ft . More specifically, the weights are learned using an attention
mechanism based on the pose features pt . In the first phase, the features pt of each
frame are transformed to attention activation values bt using a fully connected layer:
bt = FCatt(pt). Then, we compute the weights at by applying a temporal softmax nor-
malization:

at =
exp(bt)

ÂT
t=1 exp(bt )

. (1)

Network training: We trained from scratch the proposed network using mini-batches of
256 clips for 500 epochs, with initial learning rate 0.1, momentum 0.9 and weight decay
10�5. The learning rate is divided by 10 after 100 epochs. For training we employed
the Stochastic Gradient Descend (SGD) optimizer with the a weighted cross-entropy
loss while we have augmented the corpus by flipping the original data in the vertical
dimension:

L = � 1
N

N

Â
j

wc j logsc j (p j
1: t ,W), (2)

where c j denotes the class of the j-th sample in the minibatch, W the trainable para-
meters of the network and w is a vector containing the weights for each class, based on
the appearance frequencies of each class in the dataset.

2.3 Mobility Analysis

Gait stability and mobility assessment are important for evaluating the rehabilitation
progress. The Mobility Analysis module, triggered when activity ‘’Walking” is recog-
nized, consists of the following sub-systems (Fig. 2):
Human-centered Gait Tracking & Gait Analysis: The tracking module exploits the
RGB-D data capturing the upper-body and the laser data detecting the legs. An hier-
archical tracking filter based on an Unscented Kalman Filter estimates the positions
and velocities of the human Center-of-Mass (CoM), which is computed by the estim-
ated 3D human pose, while an Interacting Multiple Model Particle Filter performs the
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gait tracking and the recognition of the gait phases at each time frame [9,12]. Consider-
ing gait analysis literature [32], the walking periods are segmented into distinct strides
given the gait phases recognition and certain gait parameters are computed [10, 28].
Gait Stability Assessment: A deep neural network was designed and evaluated in [9],
as an encoder-decoder sequence to sequence model based on LSTMs. The input features
are the estimated positions of the CoM and the legs along with the respective gait phase
at each time frame, while the output predicts the gait stability state considering two
classes: stable walking and risk-of-fall state. In particular, the stability score used here
is the probability of performing stable walking. If this probability is below a specific
threshold (defined by the the experts usually at around 30% for the most patients) the
rollator’s screen flashes red in order to inform the user to improve his/her gait.
Mobility Assessment: For assessing the patient’s mobility status, we compute gait
parameters, such as stride length, gait speed, etc., which serve as a feature vector for an
SVM classifier [10]. The classes are associated with the Performance Oriented Mobility
Assessment (POMA) [42]. POMA scores less than 18 refer to high risk of fall, while a
score between 19 and 23 indicates a moderate risk. In this work, the mobility score is
taken as the probability for a patient to belong in the high risk mobility class.

The stability and mobility assessment scores, along with several other walking para-
meters, like gait speed, swing phase, etc., are stored for being reported to the experts
responsible for the patients’ rehabilitation, so they can acquire a day-by-day quantitat-
ive information about the patient’s progress.

2.4 Multimodal Communication and Feedback

As depicted in Fig. 2, the multimodal communication module is responsible for gather-
ing and combining the outputs of the speech understanding and the gesture recognition
modules and the human state (i.e. standing, sitting, etc.) so as to produce feedback for
the user. It should be noted (see Fig. 4) that it can have either both inputs (speech, ges-
ture) at the same time or asynchronous, or a single one [44]. The feedback to the user
is given via a TTS (text-to-speech) system [44].

3 Experimental Results

In this section, we present the data collection scenarios and procedure, as well as the
performance evaluation of the several components of the system.

3.1 Data Collection & Evaluation Setup

For the training and evaluation of the proposed multimodal assessment system, several
sessions of data collection took place, involving both healthy subjects and patients with
various mobility and/or cognitive inabilities. The experimental platform depicted in
Fig. 1, was equipped with a RealSense camera, a Hokuyo UST-LX10 laser, and an
eMeet microphone, which provided the multi-sensory data. The communication of the
multiple sensors and sub-modules of the proposed system (Fig. 2) was implemented via
ROS [5], while the platform was also equipped with NVIDIA Jetson TX2 modules that
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Come close, come 
quickly, come 

closer

Stop

I want to stand up

Figure 4: Examples of the multimodal communication system that combines the speech under-
standing and the gesture recognition outputs. Note that in most cases the user’s intention is suc-
cessfully recognized in both modalities (green: correctly recognized intention, red: intent not
recognized).

allow us to have deep learning processing capability on the rollator. In this work, we
present two databases (DB) regarding the collected multimodal data:

1. i-Walk DB: This DB incorporates data both from healthy users and patients. The data
collection with patients took part in DIAPLASIS Rehabilitation center [1] in Kalamata,
Greece in July 2019. Thirteen patients have participated in the experiments, after ap-
proval by the medical staff. The demographic data (age and gender) along with the
respective Mini-Mental Mean Score (MMSE) indicating cognitive capacity and the
POMA scores regarding mobility efficiency are showcased in Table 6. All patients have
signed written consent and are protected under GDPR. For development and compar-
ison purposes, we conducted additional data collection experiments with twenty healthy
users (ages 23-32). The data collection scenarios have been carefully designed in col-
laboration with medical experts, covering real needs regarding ambulation and rehabil-
itation of the patients.

Proc. European Conference on Computer Vision Workshops (ECCVW), August 2020.
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Human Activities
ID Codename Description
1 Sitted sitted on chair or bed
2 StandUpPrep preparing to stand up using rollator
3 StandUp standing up from sitted position
4 SitDown sitting down from standing position
5 Walking walking using rollator
6 Standing-still standing still without make any action
7 HandCross place hands crossed on torso while sitted
8 HandCrossTurn turning torso left/right with hands crossed while sitted
9 HandOpenTurn turning torso left/right with hands opened while sitted
10 HandOpen raise hands horizontally while sitted

11 WeightMoves body weight transfers from one leg to another
while standing supported by rollator

12 StepsHigh in-place steps with high knees supported by rollator
13 TurnStanding turning torso left/right while standing supported by rollator
14 Gesture performing gesture towards rollator

Gestures
ID Codename Description
a ComeCloser ask rollator to come closer
b WantStandUp want to stand up
c WantSitDown want to sit up
d Stop stop the procedure
e End procedure completed

Table 1: Description of the activities and gestures classes.

89.8%
7.1%
0.0%
1.9%
0.0%
0.0%
0.0%
0.0%
3.8%
4.6%
0.0%
0.0%
0.0%
1.7%

2.5%
60.7%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
7.4%
0.0%
0.0%
0.0%
6.2%

1.6%
0.0%

83.7%
5.1%
0.0%
1.7%
0.0%
0.0%
0.0%
0.0%
0.0%
3.2%
0.0%
0.7%

1.0%
0.0%
0.0%

76.4%
0.0%
3.3%
0.0%
0.0%
0.0%
0.0%
1.1%

15.7%
1.7%
2.2%

0.0%
0.0%
0.0%
0.0%

88.5%
0.9%
0.0%
0.0%
0.0%
0.0%
2.6%
1.0%
0.0%
0.5%

0.0%
14.3%
3.5%
5.6%
0.0%

66.0%
0.0%
0.0%
0.0%
0.0%

23.8%
23.4%
36.7%
7.3%

0.0%
0.0%
0.0%
0.0%
0.0%
0.0%

81.8%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%

1.2%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%

100.0%
1.5%
0.0%
0.0%
0.0%
0.0%
0.0%

0.0%
0.0%
0.0%
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0.0%
0.0%
0.0%
0.0%

91.3%
0.0%
0.0%
0.0%
1.7%
0.0%

0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.8%

87.9%
0.0%
0.0%
1.7%
0.2%

0.0%
0.0%
1.9%
0.0%
0.0%
5.4%
0.0%
0.0%
0.0%
0.0%

43.8%
0.9%
5.8%
0.0%

0.0%
0.0%
0.0%
3.8%
0.0%
3.2%
0.0%
0.0%
0.0%
0.0%

10.0%
52.1%
0.4%
0.0%

0.0%
0.0%
0.0%
0.0%
0.0%
0.6%
0.0%
0.0%
0.0%
0.0%
3.1%
0.0%

32.6%
0.0%

3.9%
17.9%
10.9%
7.1%

11.5%
18.8%
18.2%
0.0%
2.6%
0.0%

15.6%
3.8%

19.5%
81.1%

Predicted Class
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ta
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ss

1 
2 
3 
4 
5 
6 
7 
8 
9 
10
11
12
13
14

Table 2: Confusion matrix for the activity recognition module (middle fusion using MAX) in the
i-Walk DB (patients activities).
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Accuracy: 67.81%

Predicted Class
ComeCloser WantStandUp WantSitDown Stop End

Ta
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ComeCloser

WantStandUp

WantSitDown

Stop

End

Table 3: Confusion matrix for the gestures recognition module (middle fusion using MAX) in the
i-Walk DB (patients gestures).

Scenario 1: Rehabilitation exercises. The users are seated on a bed/ chair and are asked
to perform certain exercises, part of a rehabilitation program. Such exercises include
hands raises, torso turns, sit-to-stand transfers, etc. The complete list of the performed
human activities is depicted in Table 1. The users were also prompted to perform
other meaningful activities, like gestures, and express their respective intentions in free
speech (Table 1).
Scenario 2: Transfer to bathroom. This scenario is essential to patients with mobility
problems, as it aims to assist them in a fundamental daily-living need. The users are
initially seated on a bed/ chair, and express the intend of standing up and going to
the bathroom. The walking includes navigating through the hospital room, entering the
bathroom, sitting on the toilet, standing up, return to the bed/chair.
2. MOBOT DB: This DB was collected in the context of the EU project MOBOT [30]
in Agaplesion Bethanien Hospital in Heidelberg Germany, in 2014. This DB includes
multimodal data from 14 patients who performed a minimal set of activities, namely
the activities with ID: 1,3,4,5,6 listed in Table 1. We aim to showcase the transferability
of the proposed activity recognition model across different setups and sets of activities.

3.2 Evaluation Results

Speech Intent Recognition: In order to assess the speech understanding module per-
formance, we evaluate the percentage of the correctly recognized intents from speech.
For this purpose, we employ the aforementioned i-Walk DB. The collected data contain
free speech uttered by both healthy subjects and patients expressing a specific intent. We
evaluate the performance of the intention recognition. For the healthy subjects, the DB
contains 445 utterances and the accuracy is 94.83%, which is relatively high. For the
patients, results are presented in Table 6, in the Speech Intent Recognition column, both
for each patient separately and in average. The performance for 173 utterances reaches
74.25%, which is lower than the healthy ones’, but this can be attributed to two factors:
First, most of the patients did not only have mobility issues, but also cognitive/mental
ones, as can be seen in Table 6, consequently their speech was often unintelligible and
thus difficult to be transcribed correctly into text. Second, since the patients’ age is
significantly higher than the healthy ones’, their utterances for the same intents are dif-
ferent and have larger variability. Overall, the performance is satisfying, but it could be
improved by collecting more data or creating more specific acoustic models.
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2 LSTM layers (without any FC layers before the LSTMs) with average score fusion
Pose 2D 2D-STD 3D 3D-BNORM 3D-BNORM 3D-BNORM

Features w. veloc. w. veloc. & accel.
MOBOT DB. 50.38 77.62 59.65 86.15 87.72 86.80

3D-BNORM pose features and the average score fusion scheme
Arch. LSTM LSTM FC1+LSTM FC1+FC2+LSTM FC1+FC2

FCs sizes - - 512 [1024, 512] [1024, 512]
LSTM Layers 1 2 2 2 0
Hidden sizes 256 [256, 256] [256, 256] [256, 256] -
MOBOT DB 85.47 86.15 85.08 83.42 71.92

Table 4: Ablation study for the activity recognition system w.r.t. different employed pose features
(top) and different network architectures (bottom).

Method Last Hidden Middle Fusion Score Fusion
Aggreg. Func. - AVG MAX Weighted Attention AVG MAX Weighted Attention

MOBOT DB (patients, 5 activities) 85.83 86.21 90.36 75.55 86.89 87.72 87.91 80.61 87.56
i-Walk DB (healthy users, 14 activities) 92.74 90.87 94.59 91.86 90.44 90.36 95.20 91.60 90,86
i-Walk DB (healthy users, 5 gestures) 80.07 67.58 88.11 78.96 68.54 70.89 88,48 82.89 71.30

i-Walk DB (patients, 14 activities) 68.90 72.01 73.99 72.96 69.53 68.28 70.76 75.82 65.45
i-Walk DB (patients, 5 gestures) 64.42 51.63 67,81 61.72 55.11 56.86 66.21 58.88 51.91

Table 5: Evaluation results for the different temporal fusion approaches. As pose features we
have used 3D-BNORM with velocities while the network architecture consist of 2 LSTM layers
without any FC layers before the LSTMs. Bold fonts stand for the best performance while the
underlined fonts denote the second best.

Activity Recognition: We have conducted a series of experiments to verify our design
choices in the proposed system, and investigated several variants in order to achieve the
best performance, which is crucial in robotics applications.
Pose features selection and network architecture: The ablation study (following a leave-
one-out cross validation approach) is presented in Table 4, using the MOBOT DB (862
clips in total) that contains simple actions and is thus suitable for running exploratory
experiments regarding several parameters. We observe that the 3D features with the
body normalization scheme (BNORM) outperform the 2D features, and perform even
better when enhanced with the 3D velocities. We also observe that the 2-layer LSTM
network without FC layers achieves the best performance. Note that the network con-
taining only FC layers has significantly lower accuracy since it does not count for the
temporal information that is necessary for recognizing dynamic activities.
Temporal fusion schemes: In Table 5 we present the evaluation results for the different
fusion levels and the employed aggregation function using the features and network
architecture that have achieved the best performance in the previous ablation analysis.
These experiments have been conducted on the new i-Walk DB, which contains 4 dif-
ferent subsets, in order to validate the generalization of the proposed fusion schemes in
more challenging cases. For the healthy users we conduct experiments by employing a
leave-one-out cross validation strategy resulting in training and testing sets of 1891 and
107 clips respectively. For the patients we employ the whole corpus of the healthy users
as training set (1998 clips) while for the testing we use patients data (1072 clips in total).
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Figure 5: Examples of the activity recognition system. The system monitors the patients exercises
and outputs the scores of their performance (green: correctly performed exercise).

Results indicate that the best performance overall is achieved for fusion using the MAX
function, since this scheme can detect the most discriminative part of the video clip and
ignore the other parts, thus recognizing better highly confusing activity classes. We can
also observe that “Weighting” and “Attention” schemes perform in many cases quite
higher than simple average. Regarding the different fusion levels, middle fusion with
max-pooling has the best performance across the different datasets, users and action
types, since it has at least the second best performance in all cases.
Evaluation analysis: Regarding i-Walk DB results, the patients’ performance is lower
compared to the healthy users’, for both activities and gestures subsets. Moreover, ges-
ture recognition accuracy is lower than the activity recognition one, since patients had
a large variability in the way they performed gestures compared to healthy users. The
confusion matrix presented in Table 2, indicates that activities performed in standing po-
sition are often confused with “still-standing” position (due to many patients’ difficulty
in executing actions while standing). For the same reason, gestures performed in stand-
ing position achieve also lower recognition rates (Table 3). Moreover, activities with
small duration variation in pose (i.e., “StandUpPrep” or “TurnStanding”) are classified
sometimes as gestures. For the per patient performance (Table 6) we note that users with
high MMSE achieve quite high accuracy for both activities and gestures (see examples
in Fig 5. Combining gesture recognition results with speech intention recognition ones,
we can observe that in some cases users with low speech intention performance achieve
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Patients Age Gender MMSE POMA Activity Gesture Speech Intent Gait Speed (cm/sec) Stability Score Mobility Score
Performance (%) Recognition (%) Recognition (%) (mean±std) (mean±std) (%) " (mean±std) (%) #

1 80 M 29/30 18/28 75.29 90.00 80.00 23.17±8.36 41.93±31.92 62.48±30.35
2 86 M 27/30 18/28 87.01 92.31 77.77 24.83±9.24 46.59±34.86 63.34±27.71
3 25 F 29/30 18/28 83.54 73.33 100.00 25.09±8.16 40.44±32.83 60.68±27.59
4 83 F 23/30 11/28 80.56 75.00 78.57 21.43±8.62 45.57±32.42 64.54±30.49
5 84 F 17/30 11/28 64.67 54.55 62.50 20.09±8.74 42.64±33.78 63.39±27.76
6 50 M 29/30 13/28 79.75 73.33 93.33 15.54±8.37 45.16±34.73 61.79±27.06
7 78 M 27/30 15/28 83.58 40.00 54.54 19.04±9.43 50.77±31.27 57.30±32.31
8 73 M 18/30 12/28 52.78 52.94 86.67 21.98±8.68 47.23±32.37 62.14±30.62
9 72 F 19/30 11/28 59.49 35.71 46.15 18.12±8.62 47.92±36.88 67.47±28.91
10 75 M 25/30 16/28 59.77 75.00 56.25 18.96±9.60 44.79±33.58 65.20±29.02
11 85 F 19/30 14/28 66.23 56.25 84.62 19.67±9.60 47.62±31.72 66.07±27.03
12 55 F 28/30 16/26 90,79 70.59 100.00 19.98±9.95 31.93±31.72 64.19±28.67
13 75 M 28/30 11/28 91.67 91.91 46.15 26.55±11.71 41.31±33.33 66.24±29.02

Average - - - - 75.01 67.69 74.25 21.24±9.97 45.10±33.86 63.80±28.95

Table 6: Demographics and evaluation scores for the thirteen patients of the i-Walk database.

quite high rates in gesture recognition, a fact that highlights gestures as an alternative
way for communication.
Mobility Analysis: The individual components of the mobility analysis module are
adopted from works in [9,11,12] proving tracking robustness [9,11] and high perform-
ance scores in stability and mobility status recognition [9,10], hence are suitable for the
multimodal setting of i-Walk framework. Building on this mobility analysis system, we
fine-tuned the models with walking data of some trials of users in the i-Walk DB (from
a different walking scenario not included in this work), in order to provide the necessary
mobility assessment scores for monitoring rehabilitation. In particular, we evaluate the
stability performance, the mobility classification, and present the gait speed parameter
for each patient w.r.t. their categorization by the medical experts.

The average stability scores of each patient along with the respective standard de-
viations (std) are depicted in Fig. 7. The solid red line represents the average stability
score of the healthy subjects and the dotted lines the upper and lower confidence levels
of the healthy stability measure. It is evident that all patients present low stability while
walking, and only some of them can achieve instances of stability close to the lower
bound of the healthy performance. This can also be affirmed by the results in Table 6
(Stability score), where the average stability score across all patients is 45.1%, while
the healthy score is 81.46%. The upward arrow means that higher scores correspond to
more stable performance.

Table 6 also presents the Mobility scores and the mean and std for gait speed. All
patients have been classified to the high risk-of-fall class, which is also confirmed by
the POMA scores. Here, the downward arrow denotes that lower scores refer to better
performance. It is interesting that patients with higher POMA perform slightly better,
e.g. patient #3 (POMA 18) had average gait speed 25cm/sec w.r.t #6 (POMA 13) with
average speed 15.5cm/sec. Although, this is not the norm, as more gait parameters are
important for mobility classification [10], it is an indication for examining interclass
categorization, for which a larger database from patients, presenting higher variation
in terms of mobility, should be collected. Figure 6 presents snapshots from patients #4
and #7 with a depiction of the center of mass and legs’ state estimation, that feed the
stability and mobility analysis classifiers. In the current setting patient #4 is performing
less stable walking than patient #7 (scores 44% against 70% of stability). Such a detec-
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Figure 6: Mobility analysis examples. The center of mass from the detected pose is fused with the
legs’ state estimation for an accurate patient tracking. These observations feed the gait stability
network and the mobility assessment classifier. Upper: Snapshots from patient #7 with current
estimate of stability at 44%. Lower: Snapshots of patient #4 with current estimate of stability at
70% (higher score is better).
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Figure 7: Average per patient stability performance w.r.t. the average stability of the healthy sub-
jects and their confidence levels.

ted instability shall trigger a red alarm on the rollator’s screen. In general, the mobility
analysis results follow the respective POMA categorization of the patients highlight-
ing the ability of this module to successfully assess measures essential for measuring
rehabilitation progress.

4 Conclusions

This paper presents a multi-sensory multimodal framework, the i-Walk assessment sys-
tem, that endows assistant platforms with the ability to successfully recognize human
activities, understand audio-gestural intentions, monitor user’s stability and mobility
and assess rehabilitation progress giving meaningful feedback to the user. The i-Walk
assessment system is extensively evaluated on a database of healthy subjects and pa-
tients where the presented results show quite high performance of the developed sys-
tem components as well as the efficacy of the proposed framework not only to provide
passive rollators with “intelligence”, but also to be integrated into a general decision
making strategy for natural and user-adaptive HRI of robotic assistant platforms.
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