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Phase-Modulated Resonances Modeled
as Self-Similar Processes With
Application to Turbulent Sounds
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Abstract—In this paper, we propose a nonlinear stochastic
model for time-varying resonances where the instantaneous phase
(and frequency) of a sinusoidal oscillation is allowed to vary
proportionally to an «c-stable self-similar stochastic processes. The
main motivation of our work stems from previous experimental
and theoretical evidence that speech resonances in fricative sounds
can be modeled phenomenologically as AM-FM signals with
randomly varying instantaneous frequencies and that several
signal classes related to turbulent phenomena are self-similar 1/f
processes. Our general approach is to model the instantaneous
phase of an AM-FM resonance as a self-similar «-stable process.
As a special case, this random phase model includes the class of
random fractal signals known as fractional Brownian motion.
We theoretically explore this random modulation model and
analytically derive its autocorrelation and power spectrum. We
also propose an algorithm to fit this model to arbitrary resonances
with random phase modulation. Further, we apply the above ideas
to real speech data and demonstrate that this model is suitable for
resonances of fricative sounds.

Index Terms—Alpha stable, fractal, fractional Brownian mo-
tion, modulation, 1/f process, power-law, self-similar, speech,
turbulence.

1. INTRODUCTION

SCILLATIONS and resonances are phenomena of great
O importance in physical systems. Their modeling and de-
tection in signals emanating from such systems are significant
problems in signal processing and communications. Examples
and application areas include spectrum estimation, speech and
sound processing, waveform modulation, and general time-se-
ries analysis. The archetypal model for single-component oscil-
lations is a linear harmonic oscillator whose motion is governed
by a linear differential equation with constant coefficients

2" (t) + 282" (t) + wiz(t) = u(t) @)
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where z(¢) may represent displacement in mechanical oscilla-
tors or an electric quantity (e.g., charge, current) in electrical os-
cillators, =’ = dz/dt, 3 is a damping coefficient, wy is the nat-
ural undamped oscillation frequency, and u(t) is an excitation
signal. We henceforth assume that # < wq so that the system
can oscillate. The oscillator’s zero-input response is

z(t) = Aexp(—pt) cos(wet + 0) )

where w, = \/wg — (2 is the damped oscillation frequency.
This sinusoid is “stationary,” i.e. the sine parameters are con-
stant with the possible exception of an exponentially-decaying
amplitude if damping is present. Such stationary exponentials
and sines form the basis of linear models for many categories
of real-world signals, e.g., the LPC model in speech and the
ARMA models for general time-series.

Despite the mathematical tractability of the above models, the
majority of significant problems in engineering and sciences in-
volve nonstationary signals. Thus, real-world oscillations may
usually have a time-varying frequency, and this time variation
may be of a random nature. Examples include frequency fluc-
tuations in quartz crystals, atomic clocks, heart beats, and reso-
nances in speech sounds. There are at least two ways in signal
processing to approach nonstationarity in oscillation parame-
ters: 1) Linear time-varying systems represented by differential
or difference equations with time-varying coefficients, and 2)
nonlinear signal models of sines with joint amplitude modula-
tion (AM) and frequency modulation (FM) or phase modulation
(PM)

o0 =wit+p0) = [wdrt . G
0

This AM—FM signal is a sine with time-varying instantaneous
amplitude a(t), instantaneous frequency w;(t), and nonlinear
instantaneous phase p(¢). Note that the two approaches are re-
lated. For example, if the damping and/or frequency related
coefficients in the harmonic oscillator’s equation (1) become
time-varying functions, then it can be shown (see Van der Pol
[48] for a classic analysis) that an approximate solution of the
time-varying differential equation is of the AM—FM type. In
general, given an AM-FM signal, we can construct a differen-
tial equation that can generate it. The converse, however, is not
always possible. In the work presented herein, we focus on the
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signal modulation approach because it allows us some mathe-
matical tractability of its theoretical properties when the phase
is a self-similar stochastic process.

The purpose of this paper is twofold since we advance two
main ideas, which we explore both theoretically and experimen-
tally: First, we propose a random phase modulation model for
arbitrary oscillations where fluctuations in their instantaneous
frequency and phase are represented by 1/f self-similar signals.
Second, we apply this model to explore the structure of reso-
nances in turbulent speech sounds. Our contributions in theory
consist of using the class of self-similar a-stable processes as
stochastic representations of the random instantaneous phase
in our model and in deriving analytically the autocorrelation
and power spectrum of the modulated process. This theoretical
framework is quite general. For instance, popular models such
as the fractional stable Levy motion (FSLM) [43] and the frac-
tional Brownian motion (FBM) [24] are special cases of stable
self-similar processes. From the algorithmic and experimental
side, our contributions consist of developing an algorithm
to estimate the model parameters, applying it to real speech
sounds, and testing its validity. A summary of our results has
also been presented in [8]and [29] in the context of nonlinear
speech modeling.

Our main motivations for this work include the following:
1) In the previous work of Maragos et al. [27] on AM-FM
modeling of speech resonances, where instantaneous variations
in formant frequencies were found in both vowel and fricative
sounds, the conjecture was made based on experimental evi-
dences that turbulent speech sounds accept such an AM-FM
model with a random noise-like signal representing the fre-
quency fluctuations. 2) FBMs, as popularized by Mandelbrot
and coworkers [22], [24], [49], have become a versatile model
for random self-similar processes used in physics, mathematics,
and engineering. In particular, their additional property of being
fractal may be helpful for modeling turbulent sounds since the
geometry of turbulence has been linked with fractals [22]. 3)
Random signals with 1/f spectrum (some of which are called
“fractional noises”) are ubiquitous in engineering and sciences.
They have an extremely broad spectrum of applications in-
cluding areas such as electronics, biology, acoustics, optics,
communications, network traffic, and economics. Statistical
self-similarity is a fundamental property often encountered
in 1/f processes. It is related to long-range dependence in the
data: an attribute that is also present in the time variation of the
parameters of the speech resonances to which we wish to apply
the model. A subclass of self-similar 1/f processes is FBM. A
broader class is the family of a-stable processes, popularized
by Taqqu and coworkers [39], [42], [43], for modeling self-sim-
ilarity and impulsiveness in data with long-range dependence.
For relatively recent expositions on stochastic modeling with
1/f self-similar processes for applications in signal processing
and communications; see [1], [6], [33], [50], and the references
therein. In particular, we deal with the FSLMs [9], [18], [43].

The thematic organization of the paper is as follows: In
Section II, we briefly summarize the main concepts, models,
and algorithms from previous work, which is needed for the
analysis in this paper. The random phase modulation model
is discussed in Section III, where the autocorrelation and its
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power spectrum are analytically derived under the assumption
that the phase is any self-similar symmetric a-stable process of
the FSLM or FBM type. Parameter estimation and testing of
the model validity are discussed in Section IV, where an algo-
rithm is proposed to fit this model to arbitrary data. Section V
contains the application to turbulent sounds in speech.

II. PRELIMINARIES
A. 1/f Self-Similar Processes

We begin with some definitions and basic properties of self-
similar real processes mainly following [9].

The 1/f family of random signals is an important class of sto-
chastic processes X (), which are generally defined as having
measured power spectra obeying a power law decay of the form

Slw) = =) “)

I

for some spectral exponent y and for a broad frequency range.
This spectral behavior is related to statistical self-similarity.

A stochastic process X (t), t > 0 is called (strict-sense)
self-similar if there exists a parameter H > 0, called similarity
exponent, such that for any scale » > 0

X(rt) £ rF X (t) )

where £ denotes equality of all finite-dimensional distributions.
In short, this structure is denoted by H -ss. The above strict sense
can become a wide-sense self-similarity if we restrict it only to
the mean and correlation. Self-similarity implies the following
properties:

X (0) =0 almost surely (6)
EIXOF) =EIXPIIPH, p=12... )
R..(t,s) :r_2HR”(Tt,rs), r >0 8)

where E[-] denotes expectation, and R....(¢, s) is the autocorre-
lation of X (). The proof of the above properties is a straight-
forward corollary of the definition (5). In general, self-similar
processes are nonstationary, given the time dependence of their
moments in (7).

Self-similarity implies a 1/f spectrum, i.e., an H-ss process
has a power spectrum of the type (4) with spectral exponent
v = 2H + 1. A proof of this important fact is given in [38]
for FBMs, based on the Fourier pair between autocorrelation
and power spectrum of stationary processes. Roughly, if X (¥)
is wide-sense stationary (WSS), then (8) implies that its autocor-
relation R, (7) satisfies the relationship R, (r7) = r2f R,.(7).
Applying Fourier transform to this equation yields (4). A more
general proof for nonstationary processes can be obtained based
on Fourier analysis of the time-averaged autocorrelation; details
are beyond the scope of this paper.

A process X (t) is said to have stationary increments Y(t) =
X (t+ s) — X (¢) if all finite-dimensional distributions of Y (¢)
are independent of £. Throughout this paper, we will be inter-
ested in stochastic processes that are self-similar with exponent
H and have stationary increments, which are denoted as H -sssi



DIMAKIS AND MARAGOS: PHASE-MODULATED RESONANCES MODELED AS SELF-SIMILAR PROCESSES

processes. If X (t) is self-similar, then this property is inher-
ited by its increment process. Namely, the following are easy to
prove:

X(t+7rAt) — X(¢) LrF [X(t+ At) — X(£)] (9)
E [|X(t AL - X(t)ﬂ =E [|X(1)|2} AL, (10)

1) Fractional Brownian Motion (FBM): The most well-
known example of an H -sssi process is the standard Brownian
motion B(t), which is a zero-mean Gaussian process with
B(0) = 0 a.s., variance equal to ¢, and independent stationary
increments.

Mandelbrot and van Ness [24] generalized this behavior by
proposing the fractional Brownian motion (FBM) as a zero-
mean Gaussian process By (t),0 < H < 1 that has the property

E [Bu(1)?]

E[Bu(t)Bu(s)] = 5

(|t|2H + |8|2H _ |t _ 8|2H) )

1D
They proved that FBM is an H -sssi process and can be obtained
via a stochastic fractional integration of the standard Brownian
motion B(t). Actually, for H = 1/2, the FBM coincides
with B(t) modulo a multiplicative constant. Additionally, they
proved that FBM is unique in the sense that it coincides with
all Gaussian H-sssi processes, thus making this model very
attractive for analytic manipulation.

2) Self-Similar a-Stable Processes: The main disadvantage
of FBM is that due to its Gaussianity it fails to model impul-
siveness. By impulsiveness, we are referring to very bursty be-
havior that cannot be effectively modeled with distributions of
finite variance.

This behavior can be captured by using «-stable distributions
that exhibit “heavy tails” that decay much slower than Gaussian
distributions. Specifically, symmetric a-stable (SaS) distribu-
tions are defined by their characteristic function, which has the
form

®(0) =exp(—|s0]*), 0<a<2. (12)
where s is a scale parameter. Inverse Fourier transform yields
the corresponding probability density functions. For « = 2, we
get the Gaussian, whereas &« = 1 yields the Cauchy density.
There exist no closed-form expressions for the density function
for o different than 1 and 2. A real-valued stochastic process
X (t) is said to be SasS if any linear combination ), arX (tx)
has a SaS distribution.

A popular model for H-sssi, SaS processes is the fractional
stable Levy motion (FSLM) [43]. Specifically, a stochastic
process X (t) is a called a Levy process if it has independent
stationary increments, enjoys certain forms of stochastic con-
tinuity, and X (0) = 0 a.s. [9]. In addition, if X (1) has an
a-stable distribution, then it is called an a-stable Levy process,
which is denoted by Z,(¢) with 0 < a < 2. A generalization
is the FSLM defined via stochastic fractional integration of
Za(t):

+o0

Lu(t) = /‘Ot—sﬁ;i—wﬂﬂ;i)dzm@

— o0

(13)
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where t > 0,0 < H < 1,and H # 1/a. FLSM is an
H-sssi process, which coincides with the FBM when o = 2.
If @ < 2, the FLSM yields H-sssi, SaS processes with non-
Gaussian infinite-variance distributions. Note that the class of
H-sssi, SaS processes is very general. It includes FBM, FLSM,
and a number of other processes used to model impulsiveness
and long-range dependence as special cases.

A related model is described in [7], where the authors present
an amplitude modulated self-similar process. For recent expo-
sitions on 1/f self-similar processes and «-stable distributions
with applications in signal processing and communications, see
[1], [6], [18], [33], and the references therein.

B. Nonlinear Speech Modeling

For several decades, the traditional approach to speech mod-
eling has been the linear (source-filter) model, where the true
nonlinear physics of speech production is approximated via the
standard assumptions of linear acoustics and 1-D plane wave
propagation of the sound in the vocal tract. However, since the
1980s, there has been strong theoretical and experimental evi-
dence [3], [17], [30], [44], [45] for the existence of important
nonlinear aerodynamic phenomena during the speech produc-
tion that cannot be accounted for by the linear model. In the
1990s, this motivated the development of nonlinear signal pro-
cessing systems that were suitable to detect various such phe-
nomena and extract related information. Two such types of non-
linear phenomena in speech are modulations and turbulence.
Next, we briefly review some progress in these fields.

1) Speech Resonance Modulations: Although the linear
model assumes that each speech resonance (formant) signal is
an exponentially damped cosine with constant frequency within
10-30 ms, there is much experimental and theoretical evidence
for the existence of amplitude modulation (AM) and frequency
modulation (FM) in such signals. This motivated Maragos
et al. [27] to propose to model each speech resonance with
an AM-FM signal x(t) = a(t) cos[¢(t)] and the total speech
signal as a superposition of such AM-FM signals: one for each
formant. Here, the instantaneous cyclic frequency signal of
the time-varying formant equals f;(¢t) = (1/ 27r)d</;/ dt. The
short-time formant frequency average f. = (1/7) |, fi(t)dt,
where T is on the order of a pitch period, is viewed as the
carrier frequency of the AM-FM signal.

For demodulating a single resonance signal, Maragos et al.
[27] used the nonlinear Teager-Kaiser energy-tracking operator
Ulz(t)] 2 [/ (t)]? — z(t)x" (t) to develop the following non-
linear algorithm:

TIEICTIP 1670) I
T S ) a(t).

(14)
This is the energy separation algorithm (ESA) and provides
AM-FM demodulation by tracking the physical energy implicit
in the source, producing the observed acoustic resonance signal
and separating it into its amplitude and frequency components.
It yields very good estimates of the instantaneous frequency
signal f;(t) > 0 and of the amplitude envelope |a(¢)| of an
AM-FM signal, assuming that a(t), f;(¢) do not vary too fast
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(small bandwidths) or too greatly compared with the carrier
frequency f..

There is also a discrete version of the ESA, called DESA
[27], which is obtained by using a discrete energy operator. The
DESA is an effective approach for speech demodulation and
outperforms other classical demodulation approaches such as
the Hilbert transform in terms of complexity and time resolu-
tion. Its main disadvantage is a moderate sensitivity to noise. An
effective remedy for this problem is to use filterbanks [5], [37],
because the bandpass filtering reduces the noise and transforms
the wideband speech signal into narrowband AM-FM compo-
nents that the ESAs can efficiently demodulate.

2) Speech Turbulence: The airflow during the production
of several speech sound classes (e.g., in fricative sounds or
during loud speech) contains various amounts of turbulence,
which is defined in [47] as a “state of continuous instability”
characterized by broad-spectrum rapidly varying (in space and
time) velocity and vorticity. In the linear speech model, this has
been dealt with simply by having a white noise source exciting
the vocal tract filter. Nowadays, turbulence can be explored
from several nonlinear aspects. Mandelbrot [22] and others
have conjectured that several geometrical aspects of turbulence
(e.g., shapes of turbulent spots, boundaries of some vortex
types found in turbulent flows, and shape of particle paths) are
fractal in nature.

In fluid dynamics [47], the energy cascade theory attempts to
understand turbulence by focusing on multiscale structures of
vortices. It conjectures that energy produced by vortices with
large size A is transferred hierarchically to the small-size vor-
tices, which actually dissipate this energy due to viscosity. A
related result is the Kolmogorov law

E(k,r) o rik 3 (15)

where k = 27 /\ is the wavenumber, r is the energy dissipation
rate, and E(k,r) is the velocity wavenumber spectrum.

In the area of speech dynamics, motivated by Mandelbrot’s
conjecture that fractals can model multiscale structures in tur-
bulence, Maragos [26] outlined several plausible mechanisms
for speech turbulence and used the short-time multiscale fractal
dimension of speech sounds as a feature to approximately quan-
tify the degree of turbulence in them. This nonlinear feature has
been found useful for speech sound classification segmentation
and recognition [26], [28]. For example, related to the 5/3-law
(15) is the fact that the variance between particle velocities at
two spatial locations X and X + AX varies  |AX|?/3. By
linking this to similar scaling laws in FBMs, it was concluded
in [26] that speech turbulence leads to fractal dimension of 5/3,
which was often approximately observed during experiments
with fricatives.

Finally, there have been several previous approaches for
analyzing speech turbulence from the viewpoint of nonlinear
dynamics by using concepts from chaotic systems, either at
the vocal fold level [4], [46] or at the speech signal level [31].
Further, for voiced fricatives, a source excitation model that
is based on modulating frication noise by vocal fold vibration
was studied in [15], and a related pitch-scaled harmonic filter
was proposed in [16] to decompose the corresponding speech
signal into a voiced and a turbulent component.
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III. MODEL FOR RANDOM RESONANCES

Motivated by the experimental evidence in [27] for the
AM-FM structure of fricative sounds with random instan-
taneous modulating signals as well as by the theoretical
background relating self-similar stochastic processes with
turbulence, we extend the conjecture of Maragos et al. [27]
that turbulent speech sounds accept an AM-FM model with
a random noise-like signal representing the frequency fluc-
tuations by proposing the following model for resonances of
turbulent sounds: We assume the general phase modulation
model

X(t) = A(t) cos [p(1)],  p(t) = wet + P(t) + o

where w, is the center frequency of the resonance. For the sub-
sequent analysis, we ignore the instantaneous amplitude and as-
sume that it is constant.! Further, we assume that we know the
statistics of the nonlinear randomly varying instantaneous phase
modulation process P(t). Specifically, we model P(t) as an
H -sssi SaS process. This process Py (t) has a similarity expo-
nent H > 0, stationary increments and a symmetric c-stable
distribution for each ¢. Thus, we will work with the random
phase modulated process
X(t) = Acos (wet + APg(t) + ¢o) (16)
where the center frequency w. > 0 is assumed a known con-
stant, A > 0 is the modulation index, ¢ is the phase offset at
t = 0, and Pg(t) is an H-sssi process. The (averaged) power
spectrum of Py (¢) is proportional to 1/|w|”, where y = 2H +1.
Thus, we are modeling the phase modulation signal P(¢) as a 1/f
stochastic process. The increments process and hence the instan-
taneous frequency w;(t) = w. + APy () is a stationary process
with a 1/f spectrum whose spectral exponent is 2H — 1. Such a
model was inspired by the special case where Py (t) is an FBM
modeling the fractal aspects of speech turbulence [26], [28] and
by the possibility of synthesisizing speech by exciting CELP
coders with 1/f noises of the FBM type or their increments [25].
In this section, we analytically derive the autocorrelation
function and power spectrum of this phase modulated process
and demonstrate a mathematical relation linking these pro-
cesses with a-stable processes. The problems of testing the
validity of the proposed model as well as fitting it to real data
arise in the following sections.

A. Phase-Modulated H-sssi SaS Process

We will address the problem of finding the properties of a
phase modulated SaS H-sssi process. Popular models for 1/f
signals like the FBM [24] (which is Gaussian) or the FSLM [43]
(which is «-stable) will be addressed as special cases.

Lemma 1: If X (t), t > 0 is a self-similar process with sim-
ilarity exponent H > 0, then for a given ¢, the r.v. X (¢) has a
characteristic function ®(, t) with the property

d(0,t) = d(t70,1). (17)

Note that in general, amplitude modulations could also occur, and the ESA
algorithm we use can easily track them as well. However, this general case goes
beyond the scope of this paper, and we plan to study it in future work.
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Proof: Self similarity of X (¢) means that X (7?) 4

rH X (t), which implies X () L HY (1). Therefore, the

characteristic function of the r.v. X () is
(I)X(t) =E I:ejQX(t):| =E |:€j<tH0)X(1):| (18)
which yields the result. ]
We can now present the basic theorem, which determines the
autocorrelation function of the phase modulated process.2
Theorem 1: Consider the random process X(t) =
Acos(wet + APr(t) + ¢o), where A, w., and A are real
constants, ¢ is a random variable uniformly distributed? over
[0,27) and independent of Py (t), and Py (t) is an a-stable
H-sssi process with characteristic function at each ¢
O (0,t) = exp (- [s()0]"),

0<a<2 (19

where s(t) is a positive scale parameter. Then
a) X(t) is a wide sense stationary process with zero mean.

b) Its autocorrelation function is given by

Rou(r) = %COS(wCT)eXp (= [s(A [F°H) . 0)

Proof: We define the complex processes
W(t) = exp [APH(t)],  Z(t) = W(t) exp [j(wet + do)]

2D

Then, since X (t) = [Z(t) + Z*(t)]/2, to check whether X (t)

is WSS, it suffices to check the constancy of the mean of Z

and the stationarity of the autocorrelation of Z and of the cross-

correlation* between Z and its conjugate Z*. First, for the mean

E[Z(t)] = ’“"E[W(t)] E[°] = 0. (22)
Second, for the correlations
.- (t+7.8) =Efw(t + Tw(®)] E*] =0 (23)

Roo(t+7,t) = eI TE [ejA(PHum—PH(t))} @4

Since the increments of Py () are stationary, the autocorrelation
of Z(t) and W (t) can be written in the form

Ru(7) =E [P O] = E[W(7)] (25)
R..(T) =% Ry (1) = /< TE[W(7)]. (26)
Hence, X (¢) is a zero-mean WSS process.
Now, note that
E[W(t)] =E [eﬂpﬂm] =D\ 1) 27)

2Some elementary assumptions and implications of the theorem are inspired
from a random frequency modulation model analyzed by Papoulis [35], where
the nonlinear instant phase P(t) was equal to fot F(7)dr, and the instant fre-
quency F'(t) was a strict-sense stationary process.

3A more general assumption for ¢, (for which the theorem is valid) is
E[ei¢0] = E[ei2¢0] = 0.

4The cross-correlation of two complex processes X () and Y (¢) is defined
as Ray(ty,12) = Efa(t)y* (12)].
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where ®g(A,t) is the time-dependent characteristic function
(19) of the r.v. Py (t). Then, from the above results, it follows
that the autocorrelation of X (¢) is

Roo(7) = %Re [R..(7)] = %COS(%T)‘I’H(M)

(28)
Further, due to the self-similarity of Py (t), we use lemma (17)
to obtain
(N t) = exp (= [s(D)A|™ [¢|*F). (29)
Combining the last two equations yields the desired formula
(20) for the autocorrelation. [ ]
Having found the autocorrelation of X (), its power spectrum
can be found as the Fourier transform of R, (7). This spectrum
has a closed formula only for the special cases when aH =
1 or «H = 2, which correspond, respectively, to Cauchy or
Gaussian resonances centered around tw.. Next, we analyze
these special cases when the phase is of the FBM type.

B. Phase Is FBM

For the special case when the nonlinear instant phase Py (t)
is an FBM with 0 < H < 1, at each ¢, Py (¢) is a Gaussian r.v.
with variance

Var [Py (t)] = o[t of =E[Pu(1)’]  (30)
and characteristic function
1
O (6,t) = exp (—§o§92|t|2H> ) (31)

Therefore, if in the previous theorem we set « = 2 and s(1) =
ou/ V2, we find the autocorrelation function of X (t) to be

R.(T) = % cos(w,T) exp (—%U%I/\2|T|2H> . (32)

The power spectrum Sg(w) of X (t) can be found as the
Fourier transform of R, (7). However, there is no closed for-
mula for arbitrary H. There are only two special cases where
the Fourier transform can be analytically derived. Specifically,
for H = 0.5, we obtain the following power spectrum:

So.5(w)= % [

1 1
Moh+4(w—w.)? + )\40§{—|—4(w+wc)2]
(33)

which is a sum of two Cauchy resonances centered at w. and
—w,.For H = 1 (which is only a limit case for FBM), we obtain

1 (w—w,)? (wtwe)?
Siw)=7 pera [EXP(_ 2202, >+GXP<_ 2202, )]
34

which is a sum of two Gaussian resonances centered at w. and
—w,. In this case, the resonance spectrum has the same form as
the frequency response of a Gabor filter.
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(d) Power spectrum of P(t) and P(t).

C. Relation With o-Stable Distributions

One important observation is that the characteristic function
(12) of an «-stable process is of the same form as the autocorre-
lation function (20) we derived before for the phase-modulated
process by replacing the a. exponent of the former with a« H. The
multiplication with the cosine function in (20) merely causes a
shift centering the resonance at w. and —w... This analogy leads
to the following interesting conclusion: The power spectrum
of a phase-modulated H-sssi a-stable process has an analytic
form that is equivalent with the probability density function of
an o H -stable distribution centered at the carrier frequency w...
This result seems to establish an underlying relation between
phase-modulated self-similar processes and «-stable distribu-
tions, which is interesting for further exploration. A related re-
sult connecting power law shot noise with a-stable distributions
can be found in [36].

It is well known that a-Stable distributions are invariant to
convolution and therefore constitute an attractor under consec-
utive convolutions of other density functions (this is the gen-
eralized central limit theorem). Drawing an analogy with our
results, the power spectrum of the modulated self-similar pro-
cesses we proposed is also invariant and attracting with respect
to convolution of power spectra. However, the latter is equiva-
lent with multiplication of the autocorrelation functions. This
important result implies that the modulated self-similar pro-
cesses we proposed constitute attracting processes with respect
to multiplication. This seems to be a mathematical link between
the multiplicative models for turbulence developed by the Rus-
sian school [12] and our proposed modulation model. In our fu-

ture work, we plan to explicitly formulate and investigate these
relations.

IV. PARAMETER ESTIMATION

After these theoretical derivations, the practical problems of
testing the validity of the proposed model as well as fitting it to
real data arise. We propose the following algorithm for param-
eter estimation, which consists of five steps.

1) Isolate the resonance by bandpass filtering the signal.

2) Use the ESA demodulation algorithm to estimate the AM
and FM signals, A(¢) and F'(¢).

3) Estimate the instant phase modulation signal P(£) by in-
tegrating the instant frequency: P(t) = 2 fot (F(r) —
F.)dr, where F, is the short-time average of F'(t).

4) Estimate the o exponent that best models the instant phase
modulation signal as a realization of a SaS process.

5) Estimate the vy (or equivalently, H) exponent® that best
models the estimated phase modulation signal P(t) as a
1/f self-similar signal. See Fig. 1 for results of the algo-
rithm on a test signal.

The last two steps are unquestionably the most complicated.
To estimate the o exponent, we exploit the fact that the incre-
ments of the instant phase (namely instant frequency) are sta-
tionary SaS random variables with the same «. Therefore, we
used the Koutrouvelis regression [19], [33] on the sample char-
acteristic function to estimate the o parameter for the instant

SIn this paper, v refers to the spectral exponent appearing in the 1/f7
(averaged) PSD and should not be confused with the dispersion of the stable
distribution.
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frequency process. (However, alternative methods can also be
used.)

The problem of estimating the y exponent has been ap-
proached from a number of different angles utilizing both
time-domain, frequency-domain, and wavelet-domain ap-
proaches. Specifically, a variety of methods have been pro-
posed, and they include, among others, least squares estimation
of the slope of log-axes plots of sample periodograms, methods
based on wavelets, aggregated variance, and maximum like-
lihood (ML) schemes. For detailed reviews, see [6], [34],
[41], and the references therein. The ML estimators [21] are
considered the most sophisticated because they are able to cope
with measurement noise. However, these methods are based
on parametric models, such as FBM. Further, the fact that the
signal P(t) (from which ~ will be estimated) is a low-pass
filtered self-similar process creates difficulties for any estimator
based on an exact model. Specifically, the Gabor filtering that
is used to isolate the speech resonance induces a bias in the
power spectrum of the instant phase for large frequencies. The
wavelet EM approximation algorithm proposed in [50], which
is an interesting approach not based on FBM, was recently
shown in [34] to provide satisfactory estimation only when
0 < v < 1. After extensively testing all the above methods, the
method that seemed to perform best in our specific case was
the GPH local spectral estimator. (This seems to agree with
Taqqu’s empirical study [41] comparing a number of methods
and finding the local spectral estimators to outperform the other
methods for large ~.)

The GPH method was proposed in the early work of Geweke
and Porter-Hudak [10] and is based on the fact thatas w | 0, the
log power spectrum becomes approximately

log S(w) ~ log C — ylog(w) (35)
where C' is a constant. The main advantage that makes this
method suitable for speech resonances is that the GPH local
spectral estimator tries to estimate the -y exponent in the spec-
tral domain as the frequency approaches zero, thus imposing
no restrictions on the behavior of the spectral density for large
frequencies. The tapered periodogram is used to estimate the
power spectrum:

n 2

1 .
S(w) = |—/——— heP(t)e"™
‘ V2T I ;

The taper used is one proposed by Hurvich and Chen [14] and
created specifically for this estimation process:

SN\ P
hy = <1 exp (27rzt)>
n

where p is referred to as the order of the kernel. After estimating
the power spectrum, the  exponent is found according to (35)
by linear regression. The problem is, however, that (35) is only
valid in a neighborhood of the zero frequency, and thus, the
regression line should be computed by using only a subset of
the log-periodogram up to a given bandwidth. The choice of
the bandwidth is known to be a difficult problem involving a
tradeoff: If the bandwidth is small, the estimator is unbiased

(36)

(37)
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Fig. 2. GPH dynamic estimation of 7. Sample mean (solid line) and standard
deviation averaging over 50 artificial 1/f modulated resonances. (True v = 2.5).

but has a large variance. On the other hand, a large bandwidth
will yield small variance and large bias. Several techniques have
been used to find the optimal bandwidth [6]. A simple approach
is to draw a dynamic GPH plot (see Fig. 2 and next section for
more details), that is, a plot of how the estimate of vy changes
for different bandwidth values. To see how well this algorithm
behaves, we performed simulations with artificial signals.

A. Testing the Estimation Algorithm

Fig. 1 demonstrates the application of the estimation algo-
rithm to an artificial phase-modulated resonance signal. For this
case, the 1/f phase modulation signal was an FBM realization
created by filtering white noise; however, any known method for
1/f noise synthesis can be used. Fig. 1(a) illustrates the power
spectrum of the artificial modulated signal and the Gabor filter
used to isolate the resonance. Fig. 1(b) is the instant phase that
was extracted using the ESA algorithm. Fig. 1(c) is the original
and reconstructed phase modulation signals, whereas Fig. 1(d)
illustrates the power spectra of the original and reconstructed
phase modulation signals. As seen in Fig. 1(d), the reconstructed
phase modulation P(#) is a lowpass version of the original P(#).
This is not surprising because of the Gabor filtering and the in-
herent limit to the bandwidth that can be carried by a phase mod-
ulated signal, and this is the reason that local spectral estimators
are the most efficient methods.

Fig. 2 illustrates the result of averaging dynamic GPH plots
for artificial resonances. We plot the mean and the sample stan-
dard deviations. The estimation variance is decreasing for larger
bandwidths but after some point, it starts to increase again (for
very large bandwidths). For a true value of v = 2.5, the es-
timation is most effective if we choose a bandwidth of about
500-1000 Hz, and it involves the aforementioned bias-variance
tradeoff. The bandwidth is related with the Gabor filter used
to isolate the resonance. Experimental evidence suggests that
values up to one half of the rms bandwidth of the Gabor filter
yield better results.

The concluding result from the simulations with artificial sig-
nals is that the algorithm is successful in recovering the instant
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Fig. 3. Two actual speech phase modulation signals visually compared with

an artificial self-similar process. (Top) Phase modulation signal extracted from
a ZH phoneme (Male speaker, Western dialect). (Middle) Phase modulation
signal extracted from a V phoneme (Male speaker, Northern Dialect) (Bottom)
Artificial 1/f signal.

phase signal and estimating the v exponent. However, the vari-
ance of the estimation is considerable, and more work remains
to be done in this area.

V. APPLICATION TO SPEECH SOUNDS

In this section, we present strong experimental evidence that
turbulent speech signals have resonances that can be effectively
modeled as phase modulated 1/f signals. We emphasize that
this modeling is phenomenological, since it does not attempt
to explain the acoustics of speech turbulence but only approxi-
mate the stochastic spectral structure of its resulting speech res-
onance signals. All the speech signals we use in this paper are
segmented phonemes from the TIMIT database. Gender and di-
alect of the speaker of each phoneme used are given in the cor-
responding figure captions.

Fig. 3 offers a visual comparison between the phase mod-
ulation signals (extracted using the proposed algorithm) from
two real speech signals and an artificial self-similar stochastic
process. Plain observation implies that the statistical properties
of the real signals and the proposed model are very similar.
Notice that the artificial self-similar signal has more high-fre-
quency energy. As mentioned in Section IV, this is due to the
fact that the reconstructed phase modulation signal [:’(t) is a
lowpass version of the original P(t). This is due to the Gabor
filter used to isolate the resonance.

Exact statistical tests to verify self-similarity follow in subse-
quent sections.

Fig. 4 illustrates the application of the described algorithm
to two fricative phonemes. Subfigures (b1 and b2) illustrate the
spectrum of the sound and the Gabor filters used to isolate the
resonances. Subfigures (c1 and c2) illustrate the instant frequen-
cies as estimated by the ESA algorithm, whereas subfigures (d1
and d2) are the instant phase modulation signals that are mod-
eled as self-similar processes.
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A. Testing the Validity and Experimental Results

After extracting the instant phase modulation signal, we want
to verify the validity of the proposed model. Specifically, we
want to establish that the instant phase modulation signals of
fricative vowels can be effectively modeled as self-similar sto-
chastic processes.

To show this, we use a number of popular statistical tests fol-
lowing an approach similar to the one found in [20] to rigor-
ously establish the self-similar nature of Ethernet traffic. Before
testing for self-similarity, we performed a number of statistical
tests to examine more fundamental properties for the estimated
instant phase signal P(t). Specifically, we tested our experi-
mental signals for Gaussianity, linearity, and self-similarity.

A random signal y(n) will be called linear if it can be rep-
resented by y(n) = >, u(n — k)h(k), where u(n) are identi-
cally distributed random variables. If u(n) are Gaussian, then
y(n) is linear Gaussian. We used a statistical test developed
by Hinch [13] that jointly tests for Gaussianity and linearity.
The test, which is documented and implemented in the Matlab
Higher-Order Spectral Analysis Toolbox [40], is based on the
fact that if a process is Gaussian, then its bispectrum is zero. Ad-
ditionally, if a process is linear and non-Gaussian, its bicoher-
ence is a nonzero constant. For a comprehensive text on higher
spectral methods, see [32]. We applied the test to several instant
phase signals we extracted from speech signals. As a result of
these tests, the Gaussian hypothesis was rejected, and then, the
linearity assumption was also rejected (with high confidence).

The tests we used for self-similarity are based on time-, fre-
quency-, and wavelet-domain techniques. More specifically, we
have the following.

* The (averaged) power spectral density of self similar pro-
cesses obeys a power law behavior near the origin. We
therefore plot the estimated spectral density and see that
it clearly fits a straight line (which indicates a power law
since the axes are logarithmic) for up to a given cut-off
frequency. See Fig. 5(al), (a2), and (a3).

*  The variance of the wavelet coefficients. Following [50],
if ¢ (t) is an Rth-order regular wavelet basis (R is deter-
mined by ), then the process constructed via the expan-
sion p(t) = >, >, xmy(t) is “nearly 1/f” when the
wavelet coefficients have variances Var(z™) = 02277™,
See Fig. 5(bl), (b2), and (b3).

e Finally, for time domain analysis, we used the
popular rescaled adjusted scale plot (R/S or
Pox Diagram) [23]. The R/S statistic is defined

as R(n)/S(n) = (max(0, Wy, Wy, ---W,) -—
min(0, Wy, Wa, ---W,,))/S(n) (where S%(n) is the
sample variance X(n)) is the sample mean, and
Wip=X1+Xo+ -+ Xp —kX(n),k =1,2---n)
For self-similar processes (as first observed by Hurst),
E(R(n)/S(n)) o nf as n — oo. To create an R/S
plot, we take logarithmically spaced values of n and
plot log(R(n)/S(n)) versus log(n). A typical R/S plot
has a transient zone and asymptotic slope. When the
asymptotic slope is larger than 1/2 and smaller than 1,
this is an indication of self-similarity with parameter H
that can be estimated from this slope. In all our tests, the
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slope is clearly in the 1/2—1 range. See Fig. 5(cl), (c2),
and (c3).

The tests we have performed are very similar to the tests used
in [20] to verify the self-similarity of Ethernet traffic. We have
not used the more statistically rigorous Whittle’s approximate
MLE approach because the speech signals have very few sam-
ples (less than 1000 in most cases since the sampling rate is
16 kHz), and more importantly, the bandpass filtering used to
isolate the resonances limits the scales in which we can ob-
serve self-similarity (as already mentioned, we are essentially
dealing with a lowpass filtered self-similar signal). Therefore,
we cannot use the parametric methods that yield confidence in-
tervals because our signals fit the parametric model only for a
subset of scales. It is a very interesting direction for future work
to rigorously analyze the effects of sampling and filtering and
derive statistical tests and MLE estimators for signals that ex-
hibit self-similarity only for a range of scales.

On the other hand, Ethernet data used in [20] had sequences
with 360 000 observations. Testing and estimation problems are
therefore much harder for speech data, but still, we believe that
the self-similar character has been clearly demonstrated by the
power spectra, wavelet variances, and R/S statistics, which ap-
proximate straight lines for broad ranges of scales.

We have performed similar tests on more than 100 phonemes
from the TIMIT database, and in all these experiments, we
found strong evidence that the phase modulation of speech
resonances for fricative phonemes exhibits self-similarity.

The results of these experiments are summarized in Table I,
where we give the measured y and « exponents for a number
of different phonemes. For each phoneme, 15 or more separate
tokens were used (from the TIMIT database). After isolating a
strong resonance using a broad Gabor filter (whose center fre-
quency was manually determined), we estimate the v and « ex-
ponents and tabulate their mean values and sample variances.
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TABLE 1
MEASURED EXPONENTS FOR DIFFERENT PHONEMES
Phoneme 5 Var(~) @ Var(a) | F.(Hz)
F 2.59 0.06 1.92 | 0.0008 4400
S 2.67 0.10 1.92 | 0.0005 3850
\Y 2.85 0.05 1.94 | 0.0011 2450
ZH 2.78 0.10 1.94 | 0.0002 3100
A 3.02 0.15 1.95 | 0.0014 2200
IX 2.99 0.04 1.94 | 0.0012 2400
1Y 3.01 0.09 1.93 | 0.0011 2200

fThe rms bandwidth of the Gabor filters was 2000 Hz.

Our experiments indicate that their values are correlated with
the nature of each phoneme. Namely, unvoiced fricatives usu-
ally yielded the smaller v exponents.

Intuitively, v and « are measuring the variability of a given
resonance in time. Therefore, smaller y exponents for unvoiced
fricatives are not surprising since the resonances of unvoiced
fricatives (like F or S) seem to be less smooth, and smaller ~
exponents indicate more rapidly varying realizations. The « ex-
ponent measures the impulsiveness of the instant phase of the
resonance. We observed that unvoiced fricatives have (slightly)
smaller o exponents, which indicate more impulsive behavior
relative to voiced fricatives and vowels.

An important thing to note is that the proposed model is suit-
able for modeling broad resonances that are isolated in the spec-
trum. In our experiments, we enforced the finding of such broad
resonances by using an rms Gabor filter bandwidth of B =
2000 Hz. Phonemes that exhibit this type of resonance are typi-
cally voiced and unvoiced fricatives. Experiments on such broad
frequency bands containing formants of smooth vowels (like A)
indicate that their phase modulation signals have exponentially
decaying spectra. Further, if there are no well-separated reso-
nances (as is the case in vowel formants), the broad filter may
allow “parasitic” modulations from neighbor formants [27]. In
general, the applicability of the proposed model to the case of
vowels is still under investigation.®

VI. CONCLUSIONS

In this paper, we have proposed a phenomenological random
phase modulation model for resonances of turbulent sounds,
where the instant phase modulation signal is an «a-stable self-
similar process. Our contribution includes a theoretical analysis
of some statistical properties of the model, the development of
an algorithm to estimate its parameters, and some experimental
work on testing and fitting the model to real speech data.

The work herein is a continuation of previous work on mod-
eling speech resonances with AM-FM signals and on modeling
turbulence in fricative and other speech sounds with random
fractal signals. Our ongoing work in this area includes research
on better estimation algorithms as well as a statistical study re-
lating estimated exponents with types of sounds. Such relations
can be used in speech recognition applications. Another inter-
esting extension is to study models that exhibit both amplitude
and frequency modulation. Relating our model with turbulence

SWhen trying to fit the model to these sounds, one obtains very large - expo-
nents (even larger than 3), which vary considerably.
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and multifractals is another promising research direction. Fi-
nally, we believe that our model can be used in the study of other
time-varying oscillating physical systems since 1/ f fluctuations
in periodic phenomena seem to be ubiquitous in nature.
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