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Robust AM-FM Features for Speech Recognition

Dimitrios Dimitriadis, Member, IEEE, Petros Maragos, Fellow, IEEE, and Alexandros Potamianos, Member, IEEE

Abstract—In this letter, a nonlinear AM-FM speech model is
used to extract robust features for speech recognition. The pro-
posed features measure the amount of amplitude and frequency
modulation that exists in speech resonances and attempt to model
aspects of the speech acoustic information that the commonly
used linear source-filter model fails to capture. The robustness
and discriminability of the AM-FM features is investigated in
combination with mel cepstrum coefficients (MFCCs). It is shown
that these hybrid features perform well in the presence of noise,
both in terms of phoneme-discrimination (J-measure) and in
terms of speech recognition performance in several different tasks.
Average relative error rate reduction up to 11% for clean and
46% for mismatched noisy conditions is achieved when AM-FM
features are combined with MFCCs.

Index Terms—AM-FM, ASR, features, nonlinear, speech.

1. INTRODUCTION

ESPITE the intense research activity, automatic speech
D recognition (ASR) systems do not yet exhibit acceptable
performance in many real-life environments. Robust ASR is an
active research field, and a variety of algorithms can be used to
improve speech recognition performance under adverse condi-
tions, including speech enhancement techniques, robust feature
extraction, and model compensation. In this letter, we focus on
robust feature extraction schemes.

Motivated by strong evidence for the existence of amplitude
and frequency (AM-FM) modulations in speech signals [5], a
speech resonance can be modeled by an AM-FM signal

ro(8) = as(t) cos <27r | /0 t f7;<7)d7> ()

and correspondingly the total speech signal as a superposition
of a small number of such AM-FM signals [9]. We have found
that speech sounds are better modeled by six such AM-FM sig-
nals (roughly corresponding one to each resonance). The esti-
mation of their instantaneous frequencies f;(¢) and amplitude
envelopes |a;(t)] is referred to as the “Demodulation Problem”
and is significant for speech applications.

This letter deals with both extracting speech features inspired
by the AM-FM model and applying them to speech classifi-
cation and recognition tasks. Other work related to Teager en-
ergy or AM-FM feature extraction can be found in [3] and [10]
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TABLE 1
J-MEASURE ESTIMATES FOR FEATURE SETS ON VOWELS AND FRICATIVES.
(A) VOWELS AND (B) FRICATIVES

Vowels
SNR || -5dB | 0dB | 5dB | 10dB | 20 dB | clean
Features
MFCC 2.84 2.98 3.05 3.07 3.09 3.09
MFCC+IA-Mean 2.97 3.14 3.22 3.25 3.26 3.27
MFCC+IF-Mean 2.92 3.12 3.23 3.29 3.35 3.36
MFCC+FMP 2.94 3.10 3.16 3.21 3.27 3.31
A)
Fricatives
SNR || -5dB | 0dB | 5dB | 10dB | 20 dB | clean
Features
MFCC 4.65 5.02 5.23 5.28 5.24 5.19
MFCC+IA-Mean 4.96 5.37 5.60 5.67 5.62 5.56
MFCC+IF-Mean 4.73 5.15 5.37 5.43 5.40 5.38
MFCC+FMP 4.74 5.16 5.38 5.43 5.34 5.30
(B)
TABLE 1I

CORRECT WORD ACCURACIES (%) FOR MODULATION FEATURES
ON THE AURORA-3 (SPANISH TASK) DATABASE

Scenario | WM MM HM Average | Av. Rel.
Features Improv.
Aurora Frontend (WI007) | 92.94 | 80.31 | 51.55 74.93 -
MFEFCC+CMS (Baseline) 93.68 | 92.73 | 65.18 83.86 35.62
MFCC+CMS-+IA-Mean 93.22 | 91.35 | 71.35 85.31 41.40
MFCC+CMS+IF-Mean 90.71 | 89.52 | 72.36 84.20 36.98
MFCC+CMS+FMP 94.38 | 92.46 | 72.79 86.54 46.31
TABLE 1II
CORRECT PHONEME ACCURACIES (%) FOR MODULATION
FEATURES ON THE TIMIT TASKS
Phoneme Accuracy for the TIMIT Tasks (%) for SNR=10 dB
TIMIT | NTIMIT TIMIT TIMIT | TIMIT | TIMIT | Av. Rel.
+Babble | +White | +Pink +Car Improv.
MFCC 58.40 42.42 27.71 17.72 18.60 52.75 -
MFCC+ 59.61 43.53 39.25 26.03 31.05 56.50 17.62
IA-Mean
MFCC+ 59.41 43.70 38.56 26.05 32.81 56.75 19.13
IF-Mean
MFCC+ 59.92 43.69 38.60 26.15 32.84 55.97 18.17
FMP

dealing with the speaker recognition tasks and in [4], [6], and
[11] for the ASR problem. The proposed features measure in-
stantaneous amplitude and frequency modulation; such infor-
mation is not captured by the linear source-filter model and the
mel cepstrum coefficients (MFCCs). In addition, modulation
features are expected to be resistant to noise (see Tables I-III).
The main contribution of this letter is to show that the pro-
posed modulation features, when combined with the MFCCs,
are robust to noise. The feature robustness is demonstrated both
in terms of phoneme-class discrimination (J-measure) and in
terms of improvement of ASR performance for several speech
databases, i.e., the Aurora-3 and the TIMIT-based tasks.
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II. FEATURE EXTRACTION

The AM-FM model suggests the decomposition of speech
signals into a series of a few instantaneous frequency and ampli-
tude signals. These signals can be considered as time-frequency
distributions [7], containing acoustic information that is not cap-
tured by the linear speech model. In [1], preliminary ASR re-
sults have indicated that a significant part of the acoustic infor-
mation cannot be modeled by the linear source-filter acoustic
model, and thus, the need for nonlinear features becomes ap-
parent. These features, which are based on either the FM or the
AM part, provide additional acoustic information. The modula-
tion features have two major advantages compared to the linear
MFCCs. They can model the dynamic nature of speech and cap-
ture some of its fine structure and its rapid fluctuations. Second,
they appear to be relatively noise resistant and, thus, yield im-
proved results, especially for speech recognition in noise, when
a mismatch in the training and testing conditions is present.

A. Modulation Features

The AM-FM model suggests that the formant frequencies
are not constant during a single pitch period, but they can vary
around a center frequency. These variations are partly captured
by the Frequency Modulation Percentages (FMP) features de-
fined as FM P; = B;/F; for each speech resonance %, where
B; is the mean bandwidth (an amplitude-weighted version of
the f;(¢)-signal deviation), and F; is the weighted mean fre-
quency value of resonance ¢. F; and B; provide more accurate
and smooth estimates [8], and they are derived as follows from
the information signals a;(¢) and f;(t):

L foT ai(t)dt
B _ Jo [0+ (filt) = F)*a3(0)dr o
Jo a2(tydt
where 7 = 1,...,6 is the speech resonance index, and 7" is the

time window length. Another frequency-related feature inves-
tigated in this letter is the short-time weighted mean of the in-
stantaneous frequency signal f;(t), i.e., the Instantaneous Fre-
quency Mean (IF-Mean). The proposed features provide infor-
mation about the speech formant fine structure taking advantage
of the excellent time resolution of the ESA. Transitional phe-
nomena and instantaneous formant variations are mapped onto
these FM features.

Next, we attempt to model the fine structure of the amplitude
envelope signal (AM) with the Mean Instantaneous Amplitude
(IA-Mean) features that are defined as the short-time mean of the
instantaneous amplitude signal |a; ()| for each speech resonance
1. The IA-Mean features parametrize the resonance amplitudes
and capture part of the nonlinear behavior of speech, e.g., the mod-
ulation pulses appearing within a single pitch period.

B. Feature Extraction Algorithm

The AM-FM features are computed from the instantaneous
frequency and amplitude signals of each speech resonance. To
extract the resonance signals 7;(¢), we used a fixed six-filter
mel-spaced Gabor filterbank. The Gabor filters were chosen for
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several reasons listed in [5], including their optimal time-fre-
quency discriminability. The filter placing and bandwidths were
dictated by the mel-scale and the need for fixed overlap. We used
a bandwidth overlap of adjacent filters equal to 50%. Once the
resonance signals r;(t) are extracted, they are demodulated and
the f;(t), |a;(t)| are obtained.

Among the various demodulation approaches to esti-
mate the model parameters of a single resonance, we use
the Energy Separation Algorithm (ESA), due to its ex-
cellent time resolution and low complexity [5]. The ESA
estimates of the instantaneous frequency and amplitude sig-
nals are given by f(t) = (1/2m)\/V[2(¢)]/V[x(¢)] and
la(t)] ~ V[z(t)]//¥[(t)], where ¥[z] = i — xi. There is
also an ESA for discrete-time AM-FM signals [5]. In this letter,
we use a more robust ESA, where the discrete-time signal
is expanded over the continuous-time domain, and then, the
continuous-time ESA is applied upon. This approach combines
differentiation and Gabor filtering of the signal into convolu-
tions of the signal with time derivatives of the filter impulse
response. The advantages of such an approach is that one can
avoid the noisy one-sample discrete-time approximations of
the derivatives and achieve smoother estimates of the signal’s
derivatives, even in the presence of noise. Since the convolution
operation commutes with time differentiation, we can combine
the operator U and the bandpass filtering [1]

Ula(t) * g(t)] = {x(t) . d{d_ﬂ

~Ga(0)+9(0) [a) + THD

where x(t) is the input signal, and ¢(t) is the Gabor impulse
response. In this approach, the necessary processes of bandpass
filtering and the subsequent differentiations are combined into a
single convolution of the speech signals with the time deriva-
tives of the Gabor impulse response. So, a filtering/demodu-
lation algorithm is obtained, which we call Gabor ESA. This
algorithm exhibits important advantages compared to the orig-
inal discrete demodulation algorithm DESA [1], most notably
smoother instantaneous estimates.

To obtain robust AM-FM features, it is crucial that the de-
modulation algorithm can provide smooth and accurate esti-
mates for f;(t) and |a;(¢)|. There are cases when the demodula-
tion algorithms presented above provide estimates that have sin-
gularities and spikes that should be eliminated before the feature
measurement process. For this purpose, a binomial smoothing
of the energy signals is done to smooth out the highpass mod-
eling error of the ESA. Also, a post-processing scheme is ap-
plied upon the demodulated instantaneous signals that employs
a median filter with a short window.

} 3)

III. CLASSIFICATION AND RECOGNITION
A. Classification Results

In this section, we investigate the phoneme classification
properties of the proposed features. The ability of each of these
hybrid features to discriminate between phoneme classes is
compared to that of the “standard” MFCCs, both for clean and
noisy conditions. For this purpose, we have used the linear
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Fisher Discriminant [2] and the corresponding J-measure,
which is the ratio of the interclass scatter divided by the intr-
aclass scatter. The larger the value of this ratio, the better the
discrimination of the classes in the feature space. We have used
the maximum J-value of the Fisher Discriminant, which equals
J = trace (S;*Sp), where Sy, and Sp are the within-class
and the between-class scatter matrix, respectively.

Several different combinations of phoneme classes have
been tested to examine the discriminability of the proposed
features. Herein, we present the J-measure estimates only for
two different groups of phonemes, the vowels (/iy/, /ih/,
/eh/, [ae/, Jaa/, [uh/, Juw/, [ah/, and [er/) and the
fricatives (/f/, /s/, /sh/, [v/, /th/, and /z/). The J-measure
was computed for both clean and noise-corrupted instances of
the phonemes. Specifically, white Gaussian noise of different
signal-to-noise ratio (SNR) values was added to the clean
speech signals to test the degradation of class discrimination
under adverse conditions. For the estimation of the J-mea-
sures, smoothed-out versions of both the proposed modulation
features and the MFCC features are used. Instances of the
phonemes are extracted from the TIMIT database according to
the given transcriptions. The steady-state part of the phoneme
is extracted (middle one third) and the features are estimated
over this segment (i.e., the steady state of the phoneme is
assumed as one large speech frame). In this case, the dynamic
time-varying phenomena present in speech are not taken under
consideration, and they are partly smoothed out. However,
the proposed scheme can clearly demonstrate the ability of
the various features to discriminate among phonemes in the
presence of noise.

In the case of ASR tasks, we augment the linear feature vec-
tors with the robust nonlinear features to improve the feature
robustness to noise [6], [9]. Therefore, we have tested the dis-
criminability of the augmented features according to the J-mea-
sures. The input vectors are derived by the concatenation of the
MFCCs with the modulation features. InTable I, the J-measure
estimates are shown for the augmented feature vectors, for both
clean and noisy conditions. The MFCCs are strongly affected
by noise, and their classification properties deteriorate rapidly
as the SNR level decreases. The J-measure values of the pro-
posed hybrid features appear to be more robust in the presence
of additive noise in both cases.

B. Recognition Results

We have applied the proposed features to the Aurora-3
Speech Database (Spanish task), which is a word-level
recognition task, and to the TIMIT-based tasks, which
are phoneme-based recognition tasks. We created the
“TIMIT + Noise” databases by adding babble, white, pink,
and car noise to the test set of the TIMIT database, which is
sampled at 16 kHz; the SNR level was set equal to 10 dB. The
Aurora-3 Database contains recordings, sampled at 8 kHz, from
two different microphones, at three driving conditions. These
recordings are mixed to create three different training/testing
scenarios: the Well-Matched scenario, the Medium-Mismatch
scenario, where the mismatch is mainly due to the usage
of different microphones, and the High-Mismatch scenario
with different noise levels in the training and the testing sets.
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The ASR experiments have been performed using the hidden
Markov model (HMM)-based HTK Tools system [12]. Con-
text-independent, 14-state, left-right word HMMs with 16
Gaussian mixtures are used. For the TIMIT-based tasks, the
phoneme HMMs are three-state, left-right with 16 mixtures.
The grammar used for both cases is the all-pair, unweighted
grammar. Finally, for the TIMIT + Noise cases, the HMMs
are trained in the clean speech training set and tested in the
noise-corrupted versions of the testing set.

The input vectors are split into two different data streams:
one for the standard MFCCs and the other for the modulation
features. The data streams are assumed independent. The aug-
mented feature vector consists of 57 coefficients, 39 samples
for the “standard” features (normalized energy, MFCCs, first
and second time derivatives), and 18 for the modulation fea-
tures (six coefficients plus their first and second time deriva-
tives). For the Aurora-3 database, Cepstral Mean Subtraction
(CMYS) is applied to the MFCCs to combat convolutional mis-
matches. The frame length is set equal to 30 ms with frame pe-
riod equal to 10 ms. The weights of the two independent data
streams are optimized on held-out data. In practice, the stream
weight for the AM-FM features decreases with the SNR level,
which is another indication of the robustness of the proposed
features. More specifically, for the clean case, i.e., the TIMIT
task, the stream weights are set s; = 1.00 and so = 0.20
for the MFCCs and the modulation features, correspondingly.
For the low SNR cases, the stream weights are s; = 1.00 and
so = 0.50 or so = 1.00, depending on the noise level. In Ta-
bles II and III, the recognition results are presented for the Au-
rora-3 and the TIMIT tasks, respectively. By combining MFCCs
with AM-FM features, we achieve a performance improvement
for the clean and especially for the noisy conditions. The im-
provement is larger for the HM-scenario of the Aurora-3 data-
base and the TIMIT + Noise tasks, where additive noise is the
main source of degradation. On the other hand, for the NTIMIT
and the Aurora-3 WM-, MM-scenarios, where the convolutional
noise is dominant, the hybrid features yield modest results.

IV. CONCLUSION/DISCUSSION

In this letter, new robust modulation features have been pro-
posed. These features are mainly the first-order statistics (mean
values) of the demodulated instantaneous signals, and they pro-
vide robustness to additive noise tasks but less so for convolu-
tional noise. Relative error rate reduction up to 46% for mis-
matched noisy conditions is achieved when these features are
combined with the MFCCs.

The modulation features can model more accurately the
voiced speech signals, but they appear to have good results
even for the unvoiced speech case. We have presented strong
indications that modulation features can model and classify
different phoneme classes better and more efficiently than the
classic MFCC features, especially in the presence of additive
noise. In our ongoing research, we are investigating 1) the
usefulness of second-order statistics of the modulation signals,
2) ways of optimally combining linear and modulation features
for ASR tasks, and 3) the relation of unvoiced speech with the
AM-FM model.
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