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Abstract—The ability to accurately locate the boundaries of
speech activity is an important attribute of any modern speech
recognition, processing, or transmission system. The effort in this
paper is the development of efficient, sophisticated features for
speech detection in noisy environments, using ideas and tech-
niques from recent advances in speech modeling and analysis, like
presence of modulations in speech formants, energy separation
and multiband filtering. First we present a method, conceptually
based on a classic speech–silence discrimination procedure, that
uses some newly developed, short-time signal analysis tools and
provide for it a detection theoretic motivation. The new energy and
spectral content representations are derived through filtering the
signal in various frequency bands, estimating the Teager–Kaiser
Energy for each and demodulating the most active one in order
to derive the signal’s dominant AM–FM components. This mod-
ulation approach demonstrated an improved robustness in noise
over the classic algorithm, reaching an average error reduction of
33.5% under 5–30-dB noise. Second, by incorporating alternative
modulation energy features in voice activity detection, improve-
ment in overall misclassification error of a high hit rate detector
reached 7.5% and 9.5% on different benchmarks.

Index Terms—Detector evaluation, energy separation algorithm
(ESA), modulations, multiband demodulation, speech analysis,
speech endpoint detection, Teager energy, voice activity detection
(VAD).

I. INTRODUCTION

DETECTING speech endpoints, the location of the begin-
ning and ending time instances of speech in an acoustic

background of silence, has been an important research problem
with many interesting practical applications. This can be either
a direct problem of labeling the boundaries of speech segments
in silence and noise or an indirect one of speech versus silence
classification [known as voice activity detection (VAD)]. Sepa-
ration of speech from silence is considered a specific case of the
more general problems of speech segmentation and event detec-
tion.

Accurate detection of speech endpoints and robust automatic
segmentation, especially under noisy conditions, has come to
be of importance in tasks regarding speech recognition, coding,
processing, and transmission. Generally, it is critical to reduce
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all processing computations by selecting only the useful speech
segments of a recorded signal. In word recognition or speaker
verification systems, locating the speech segments is a crucial
issue for the formation of speech patterns that will provide the
highest recognition accuracy [1]. Estimation of speech bound-
aries can be helpful in segmentation of large speech databases,
usually consisting of phrases, where the instances that define
various speech events (e.g., isolated words) are estimated man-
ually. It is also incorporated in various speech enhancement and
manipulation techniques like noise spectrum estimation [2] and
frame dropping for efficient front-ends [3], noise reduction [4],
echo cancelation, energy normalization [5], and silence com-
pression. Detecting speech in telecommunications is used for
real-time speech transmission over networks, serving more cus-
tomers per transmission channel, by assigning it to a new user
only when silence is detected (time-assignment speech interpo-
lation technique) [6], while in modern cellular systems (GSM,
UMTS, 3GPP) voice activity detectors are used for selective
power-reserving transmission [7], [8].

A broad variety of endpoint detection algorithms have been
proposed by researchers in the past based on a classic algorithm
developed by Rabiner and Sambur [9]. Through a procedure that
involved time-domain representations of a signal and statistical
characterization of a small silence segment from the beginning
of an utterance, the algorithm used threshold checks to clas-
sify between speech and silence. The method displayed accurate
endpoint decisions in environments where the signal-to-noise
ratio (SNR) was of the order of 30 dB or better. Several ap-
proaches to improve the ideas of that basic algorithm were made
aiming at increasing accuracy especially in extreme noise con-
ditions, depending on specific applications. The major trends
toward that direction focus either on the development of sophis-
ticated features or the decision logic complexity.

In the latter, direction approaches included incorporation of
semantic and syntactic constraints on the detection procedure
[1], use of multiple potential endpoint ordering and recognition
accuracy of the detected words [10], or three-state models
(speech, silence, and transition state) and knowledge-based
heuristics [11]. On a rather different approach, the voice
detection problem was dealt through a pattern recognition
framework in [12], classifying voiced or unvoiced segments
using multiple features, and in [13] through a network training
and classification process. To avoid empirically determined
thresholds, a self-organizing neural fuzzy network was applied
in [14] to label speech or nonspeech frames. A geometrically
adaptive energy threshold in a fusion scheme was proposed
in [15] for separating speech from silence in noise, analysis
in four subbands and adaptive thresholds to improve voice
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activity detectors was suggested in [16], while combinations of
multiple features were tested through a CART algorithm in [17]
and an HMM/TRAPS model in [18]. Finally, in [5] and [19],
in the spirit of image edge detection, development of a one-di-
mensional optimum filter as energy edge-endpoint detector and
a three-state decision logic was considered with the estimated
endpoints providing reference for energy normalization and
speech recognition.

Novel features for improved noisy speech detection are
inspired by exploring alternative signal properties. Apart from
energy and zero-crossings rate, literature includes “periodicity”
and jitter [20], pitch stability [21], spatial signal correlation [4],
spectral entropy [22], cepstral features [23], LPC residual [24],
alternative energy measures [25], autocorrelation measures
[18], temporal power envelope [2], spectral divergence [3],
[26]. A time-frequency parameter was introduced in [21] and
modified through multiband analysis in [14]. Recently, the
statistical framework gains interest as properties of higher order
statistics of speech are used in [24] to classify short segments,
endpoint detection for nonstationary non-Gaussian noise is
explored in [27] by means of bispectral-based energy functions,
and optimized likelihood ratio rules are proposed in [28].

Motivated by recent advances in the field of nonlinear speech
modeling and analysis, we approach the basic problem focusing
on alternative, more sophisticated features. Our approach in-
volves the development of new time-domain signal representa-
tions derived using demodulation of the signal in AM–FM com-
ponents through the energy separation algorithm (ESA) [29].
The demodulation takes place in multiple frequency bands, fol-
lowing a multiband analysis scheme [30], to isolate the strongest
modulation components in each band. Finally, a maximum av-
erage energy tracking process over the various frequency bands
is used to yield short-time measurements of multiband signal
modulation energy and demodulated instant amplitude and fre-
quency.

On speech detection, the terms endpoint, voice activity,
speech pause, word boundary, and silence have been used to
refer to events and detection procedures depending on applica-
tion priorities and specifications. Usually, voice detectors give
crude estimates of speech activity, while endpoint detection
involves refinements for exact boundary estimation. To verify
the effectiveness of the new features, we incorporate them, in
place of classic time-domain signal representations, in an end-
point locating, threshold-based algorithm. The new algorithm,
combining benefits from multiband analysis and modulation
modeling, displayed improved behavior regarding average
detection accuracy under artificial and real noise conditions.
The modulation energy was also considered as a feature for
voice activity detection based on adaptive optimum thresholds
for noisy speech detection [3]. Systematically evaluated under
various noise levels and conditions on large databases, it con-
sistently improved speech detection performance.

In Section II, we give a brief theoretical background on the
ideas and methods mentioned, and then in Section III, we high-
light the motivations for this paper and provide a theoretical in-
terpretation using ideas from detection theory and hypothesis
testing before we describe the developed new features and al-
gorithms. Experimental results on speech endpoint detection in

noise are presented in Section IV, where a method for evaluating
detection performance is also proposed in the framework of the
receiver operating characteristic (ROC) curves. Finally, in Sec-
tion V, voice activity detection testing is presented modularly
with systematic evaluation and comparisons.

II. BACKGROUND

A. Classic Speech Endpoint Detection

The algorithm proposed by Rabiner and Sambur [9] incorpo-
rates the use of two short-time signal representations, namely
energy, expressed via the mean square amplitude, and average
zero-crossings rate. These measurements involve processing
in small frames, and yield information both for the envelope
variations of a signal and its frequency content. This classic
endpoint detector discriminates between speech and silence by
comparing these features with precomputed thresholds based
on background noise statistics.

For isolated words in silence, an initial part of the recorded in-
terval is assumed not to contain speech. Either the mean absolute
amplitude (mAA) or the mean square amplitude (mSA),1 and
the average zero-crossings rate (ZR) measurements are com-
puted for the whole signal duration while estimated statistics
from these representations define activity thresholds. A double
energy-threshold check performs a first discrimination between
unvoiced and voiced regions. Results are then refined by a ZR
check in the unvoiced-labeled regions. If a certain threshold is
exceeded a specific number of times, a boundary is chosen at
the first instance that value was crossed. This follows from the
fact that a high zero-crossings rate, prior or after a voiced re-
gion, is strong indication for the presence of unvoiced speech
energy. The algorithm’s main advantages are: 1) the low com-
putational complexity; 2) the simple structure; and 3) the ability
to adjust to different, though stationary, recording conditions,
as inference of background noise statistics depends only on the
recording interval of an utterance.

B. Energy Operators and Multiband AM–FM Demodulation

The underlying assumption behind any short-time processing
is that the speech signal possesses some kind of local station-
arity for small periods (10–20 ms). The linear model for speech,
according to which each speech formant is modeled through
a damped cosine [6], [29], is also based on that assumption.
However, experimental and theoretical indications about mod-
ulations in various scales during speech production, led to the
proposal of an AM–FM modulation model for speech in [29].

Demodulation of a real-valued AM–FM signal

(1)

with time varying amplitude envelope and instantaneous
frequency signals, can be approached via the use of a
nonlinear differential energy operator developed by Teager and

1In literature the term “short-time energy” is commonly used for mSA. We
prefer “mean square amplitude” as more indicative of its derivation process.



2026 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 6, NOVEMBER 2006

Teager [31] and systematically introduced by Kaiser [32]. For
continuous-time signals , this operator is

(2)

where . The Teager–Kaiser energy operator
can track the instantaneous energy of a source producing an os-
cillation. Applied to an AM–FM signal of the form (1), yields
the instantaneous source energy, i.e., ,
where the approximation error becomes negligible [29], if the
instantaneous amplitude and instantaneous frequency
do not vary too fast or too much with respect to the average value
of .

An AM–FM demodulation scheme was developed by
Maragos et al. in [29] by separating the instantaneous energy
into its amplitude and frequency components. is the main
ingredient of the first ESA

(3)

which can be used for signal and speech AM–FM demodula-
tion. The instantaneous energy separation methodology has led
to several classes of algorithms for demodulating discrete-time
AM–FM signals

(4)

where the integer time indexes and are symbolically treated
by integration as continuous variables, and

. A direct approach is to apply the discrete-time
Teager–Kaiser operator , where

, to the discrete AM–FM signal (4) and derive dis-
crete energy equations of the form .
This is the basis for the Discrete ESA (DESA) demodulation
algorithm [29]

(5)

(6)

The DESA is simple, computationally efficient, and has an ex-
cellent, almost instantaneous, time resolution.

In order to apply demodulation through ESA in speech or
any wideband signal that can be modeled as a sum of AM–FM
components, it is necessary to filter the signal and isolate spe-
cific frequency bands. After applying a bank of bandpass filters,
one can either retain information from every channel or choose
one for demodulation. The multiband demodulation analysis
(MDA) scheme was introduced by Bovik et al. [30] as a way
of capturing modulations in the presence of noise. It has been

refined and extended in [33] for purposes of formant frequency
and bandwidth tracking.

In this paper, MDA is applied through a filterbank of lin-
early-spaced Gabor filters and demodulation of the most active
channel based on a decision rule. Gabor filters [34], whose im-
pulse response and frequency response are given by

(7)

(8)

with the central filter frequency and its rms bandwidth, are
chosen as an optimum candidate for being compact and smooth
and attaining a minimum joint time-frequency spread [29], [30],
[34].

III. MODIFIED SPEECH ENDPOINT DETECTION

A. Motivations and Hypothesis Testing

Short-time features like energy, absolute amplitude,
zero-crossings rate, pitch, cepstrum, and autocorrelation to
name some, are tools frequently used for analysis, coding,
processing, and detection of speech as a means of retaining
slowly-varying, lowpass signal information. In order to ef-
fectively capture speech activity, however, one must take into
account both the energy level of the excitation and its spectral
content. For example, low amplitude level consonants like weak
fricatives or plosives are harder to discriminate than vowels by
simple energy checks.

A scheme that would treat fairly speech versus nonspeech
events should attribute such low energy but high frequency-level
sounds the same amount of importance and sensitivity as to
stronger ones. In that framework, a recently proposed param-
eter in [14] called adaptive time-frequency, based on a feature
in [21], takes into account both the time and frequency content
of a signal. In our work we choose to adopt Teager’s definition
of the energy of a signal as the energy produced by its gener-
ating source, counting both its spectral and its magnitude level.
Moreover, demodulation-decomposition of this energy can pro-
duce alternative time-domain analysis features or complements
to long-established ones.

Let us first consider a model-based statistical detector of
speech and explore the role of modulations in the detection
process. For that, we consider a sum of AM–FM sines as a
model for speech, as proposed in [29]

(9)

where is the resonance index and the number of speech for-
mants. The instantaneous varying amplitude and phase
(or frequency ) signals are to be estimated
and detected.

In a statistical detection scheme, the aim is to detect the pres-
ence of speech in the ideal case of background stationary i.i.d.
Gaussian noise . Suppose now that a single AM–FM
signal is present . That can be the case of capturing a
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single modulation with a sufficiently narrowband Gabor filter.
The carrier frequency of the modulated signal can then be
assumed known and approximated via the central frequency of
the Gabor filter. For simplicity, we also assume that the ampli-
tude and phase signals are deterministic and stationary within
each analysis frame, i.e., and . With
the above considerations, the unknown formant of the speech
signal takes the form , where is
a dc offset. The binary hypothesis problem is then formulated
as sinusoid detection with unknown nonrandom parameters in
Gaussian noise of unknown variance [35]

(10)

for each frame of length , with , and
is the set of deterministic parameters estimated

via Maximum Likelihood (ML). We will use to represent the
unknown set of parameters

(11)

under hypothesis , 1 and for their ML estimates.
The conditioned probability distributions are Gaussian under

both hypotheses, due to the noise assumptions, with density
. The distribution condi-

tioned on is

(12)

By maximizing (12) with respect to each of the unknown param-
eters, we have that are the quadrature pair matched filter
estimation of amplitude and phase,

is an approximation of the mean of the ob-
served data, and

is the noise variance estimated under . Using these
estimates, the sum in the argument of the exponential in (12)
becomes

(13)

where we used the approximation from [35, pp. 265], and
is the variance estimated under . By

(13), the maximum log-likelihood of (12) is approximated by

(14)
We decide in favor of hypothesis that maximizes the log-

likelihood function ,
which is the hypothesis that best models the observed data in
each frame. Because the parameters estimated under the two
hypotheses are coupled, as , the modeling accuracy is
always better for . To balance the difference in the number of
estimated parameters, and thus prediction accuracy, some sort
of penalization needs to be imposed on . For that, we use
the generalized ML rule and its approximation the Minimum
Description Length (MDL) criterion [35]. In detail, we choose

that maximizes

(15)

with the cardinality of . The higher the accuracy on the
likelihood estimation, the stronger the penalty. As MDL is anal-
ogous to the log-likelihood of the hypotheses conditioned on
the data, . For where

, we can make the fair generalization that ,
where is some constant and the sinusoid carrier frequency.
This rationale stems from time-frequency uncertainty which we
will briefly explain.

Estimation of depends on maximization of the spectro-
gram using a window of samples. A number of properties and
relationships regarding resolution of the transform can be found
in [36]. For a potential sinusoid and a Gaussian or rectangular
window, it is straightforward to prove that the average frequency
at a given instance is always . The frequency spread at
any instance, i.e., the conditional standard deviation, depends on
the length of the window; hence, in the case of a spread
Gaussian, . The index in these quantities refers to
the given instance . By applying the uncertainty principle for
any , we derive for the product of the average bandwidth
and duration of the signal at any instance

(16)

If we approximate the mean duration of the signal by the
length of the short-time window or the number of samples
available for the estimation and rewrite the mean square fre-
quency as then

(17)

The lower uncertainty bound is a fair approximation of the fre-
quency-window link in the estimation process, something that
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Fig. 1. Multiband filtering, modulation energy tracking, and demodulation of the filter with the maximum average Teager energy operator	 response. Averaging
of the demodulated selected filter output gives values for the mean instant amplitude and frequency features. Local averaging takes place in frames ofN samples.

agrees with physical intuition that locating a sinusoid of a cer-
tain frequency requires a window of size inversely proportional
to the carrier frequency.

By setting this result in (15) and , we have
and with approxima-

tion (14)

(18)

We can then construct a rule for the test (10) on the sinusoid-
speech component detection

(19)

where a function of statistics on the analysis frame, and
is the SNR. The aforementioned rationale also applies

for detecting one out of sinusoids with different carrier
frequencies that may stand for the different speech formants
or the various passbands imposed by Gabor filters. We
then have to test hypothesis by maximizing the MDL
criterion (15) with . We label a frame as noise
if .

This analysis states that in order to detect whether various
sinusoidal components of a signal are present or not, we need
to maximize a quantity that includes squares of signal ampli-
tude and frequency estimates. From [30], the expected value
of the energy operator on a filtered AM–FM signal-plus-noise
can be approximated by

, where and are the filter’s central fre-
quency and frequency response, respectively, and a constant
standing for the averaged filtered noise power. In our case, this

approximation yields and
by taking logarithms we have

(20)

Comparing (18) and (20), we notice the amplitude–frequency
product components and the constants depending on the av-
erage bandpass noise inside the logarithms. These similarities
despite the simplifications posed on the problem, give an in-
sight on the role of the energy operator and the DESA esti-
mates on a channel decision-speech detection process. We in-
terpret our data either in terms of the sinusoid of estimated am-
plitude and carrier frequency that maximizes (15) or as
a background noise process. In the latter case, a quantity sim-
ilar to a maximum log-Teager energy is below some estimated
threshold (19). Either the instant amplitude and frequency esti-
mates through DESA (5), (6) or the Teager Energy estimation
(20) can serve as speech energy tracking and detection features.

Thus, motivations for developing features for speech de-
tection that involve Teager energy, ESA, and MDA include
1) the optimality of a threshold detector that simultaneously
compares mean amplitude and frequency estimates, 2) the dual
amplitude–frequency variation information captured by the
Teager–Kaiser energy operator, 3) the ability of ESA to reveal
and estimate modulations in small time scales, 4) the expected
noise reduction due to multiband demodulation [30].

B. Modulation-Based Analysis

We propose three new time-domain signal representations
as alternatives to the common mean square amplitude (mSA),
mean absolute amplitude (mAA), and average zero-crossings
rate (ZR). These multiband features are the maximum average
Teager Energy (MTE), the mean instant amplitude (MIA), and
mean instant frequency (MIF) through a max-energy output
filter selection and demodulation scheme.2 The block diagram

2Analogous to the common ones, the new measurements are also based on
an underlying averaging-lowpassing procedure per signal frame. For simplicity
though, we exclude the term “mean” from the abbreviations. “M” will stand for
multiband.
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in Fig. 1 shows how these new representations are derived. The
signal is processed in small analysis frames varying between
10–25 ms. For speech signals, a choice of window length in that
range is aimed at covering all pitch duration diversities between
different speakers. Every frame is filtered through a bank of
Gabor bandpass filters with linearly spaced center frequencies.
Frequency steps between adjacent filters may vary between
200–400 Hz, yielding filterbanks consisting of 20–40 filters.
The discrete Teager–Kaiser energy operator is then applied to
the output of every filter, and the average frame Teager energy
is computed.

For each frame , the maximum average energy is tracked
on the multidimensional filter response feature space. The filter
considered most active in this energy sense is submitted to de-
modulation via the DESA. The instant demodulated amplitude
and frequency derived from the energy separation algorithm are
also averaged over the frame duration

(21)

(22a)

(22b)

where denotes convolution and the impulse response of
the filter. Averaging takes place over samples of frame

and is the sample index with .
Each frame yields average measurements for the Teager energy,
instant amplitude and frequency based on the filter that captures
the strongest modulation component of the signal. The max-
imum average Teager energy may be thought of as the dominant
signal modulation energy.

The classic and new short-time speech analysis features are
depicted in Fig. 2, for the word /idiosyncrasies/ in low-level
background noise. All plots are normalized with respect to
the ratio of maximum signal value to maximum feature value
and post-smoothed. The new features were derived through a
linear filterbank of 25 Gabor filters with 160-Hz rms effective
bandwidth. To obtain smooth frequency representations, the
demodulated instant frequency from the dominant channel is
smoothed, prior to averaging, using a 13-point median filter, in
order to reduce effects of demodulation errors.

Regarding the captured signal information, especially for
tasks of speech versus silence discrimination:

1) Both the classic mAA (or mSA) and the new MTE and
MIA, provide information about signal envelope varia-
tions. The new MTE assigns greater values to fricatives,
stops, and nasals compared to silence than the common
mSA.

2) The classic ZR and the proposed MIF relate to the signal’s
spectral content. MIF has a block-like variance with time,
due to the max-select procedure, an attribute that may be
used for speech labeling and discrimination. Furthermore
it attributes to some speech sounds, like nasals or voiced
fricatives, high frequency components, and in some cases
decreases the level distance between speech and silence.

Fig. 2. Short-time features for signal analysis using 15-ms Hamming frames,
updated every 1/2 of frame duration, at a 16-kHz sampling rate. Signal wave-
form, classic features (mAA and ZR) and the proposed new features of multi-
band Teager energy (MTE), instant amplitude (MIA) and frequency (MIF) are
depicted. Plots are all normalized and smoothed by combined linear-nonlinear
post-filtering (three-point median, three-point Hanning).

3) The MTE energy can be considered as an alternative en-
ergy measurement, that even as a stand-alone feature can
easily indicate existence of speech, due to its joint ampli-
tude–frequency information. However, because it is based
on differential operators it is very sensitive to abrupt noise
artifacts and nonspeech events, e.g., pops, mouth clicks.

C. Endpoint Detection With Modulation Features

We based our endpoint detection approach on ideas similar to
the classic one, only with different signal processing methods
and measurements, aiming to improve isolated word detection
and explore the effectiveness of the developed features for
speech analysis. We used the MTE measurement instead of
mAA for a first voiced region approximation and MIF instead of
ZR for a refinement of the initial estimates. A modified Teager
energy measurement was also used in [25], as a feature for
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endpoint detection, however, not in a multiband demodulation
framework. Multiband processes have been applied to voice
detection in [16] and word boundary detection in [14] as useful
band selection mechanisms.

The MTE and MIF representations are computed for the
whole signal. From the first 100 ms, which are assumed to
contain no speech and a priori labeled as silence, we esti-
mate the mean and standard deviation of the “silent”
instant frequency measurement. The maximum MTE values
for silence, , and for the whole signal, , are also
computed. Finally, three thresholds, one for MIF and two for
MTE, are estimated according to the rules

(23)

(24)

where are weighting constants. The energy thresholds are in
essence decided by comparing the ratio to a fixed
constant.

The double energy-threshold check, searching for the point
where the higher one is exceeded and then moving back-
ward (in search for the beginning) and forward (if searching
for the end of the word) until the lower-stricter threshold is
reached, detects the main duration of the speech signal. Because
of the frequency content inherent in the Teager energy, this en-
ergy check alone may often be adequate for accurate endpoint
detection. In order to increase accuracy, a refinement check is
made using the frequency threshold. Weak unvoiced frica-
tives, stops, or nasals are searched for in the previous (in the
beginning) or following (in the end) 250 ms. If the threshold is
exceeded a fixed number of times, depending on the frame re-
fresh rate, a starting or ending point for the word is chosen at the
first crossing instance. In our tests, we used , .
The frequency threshold cannot be made stricter without subse-
quent increase in the rate of false alarms.

Apart from the prominent pair MTE and MIF, which gave the
best word detection results, we tested various combinations of
the classic (mSA, mAA, ZR) and the new modulation (MTE,
MIA, MIF) short-time tools. The efficacy of the new features
depends equally on the advantages of both multiband analysis
and modulation energy features. To demonstrate that we tested
two other forms of Teager energy analysis (STE, PTE) for their
detection ability and a multiband version of the classic measure-
ments (MAA, MZR).

IV. EXPERIMENTAL RESULTS

The results in this section refer to endpoint detection of iso-
lated words or short phrases, performance evaluation and ro-
bustness in noise. Generally, there are three categories of er-
rors encountered in detecting speech boundaries, which are: 1)
lost phonemes in the beginning or end of a word; 2) overesti-
mation of the “silent” period prior or after a word, known as
“spoke too soon” errors; and 3) misclassification of nonspeech,
acoustic events (clicks, pops, breathy speech) as speech end-
points. Here, we are primarily concerned with the first type, that
leads to cropped or entirely lost phonemes, like stops, unvoiced

fricatives, and whispers of low energy but high spectral compo-
nents. The other two categories are jointly dealt with, as the pres-
ence of an unknown acoustic event may often lead to boundary
overestimation. Note that below 30-dB human noises that lead
to errors of the third type are obscured by the additive noise and
thus do not deteriorate the detection process.

A. Test Databases

To evaluate detection performance and the advantages of the
new short-time features for speech-signal analysis, we used
three datasets of utterances from the English DARPA-TIMIT,
NYNEX-NTIMIT and Spanish SDC-Aurora database. From
Aurora, due to the lack of labeled data, we used a fairly small
number of isolated digits, chosen randomly on three different
noise conditions, labeled manually through auditory and vi-
sual inspection (50 utterances). These serve for indications,
qualitative evaluation, and examples only, but such results will
nevertheless be mentioned. SDC-Aurora consists of digits,
isolated or sequences, in three noise conditions (quiet, low, and
high road-traffic noise) [37].

For the actual quantitative evaluation of our methods, we used
the TIMIT and NTIMIT databases. The manually labeled data
from these databases consist of phrases, in different dialects and
various male and female speakers. The task was to detect the
phrase boundaries and compare results with the labels speci-
fied in documentations. For that we used the first and last word
of each phrase and treated them as a single utterance, ignoring
activity in between.3 Our demand was that at least 100 ms at
the beginning of the phrases are silence and that no extreme
or long-duration nonsilence nonspeech noise artifacts existed.4

This candidate scan to the TIMIT test set led to 1570 (out of a
1680 total) utterances which formed our dataset. Detection was
evaluated under artificial noise added at five different SNRs. For
real noise conditions testing, we used the NTIMIT database, a
telephone bandwidth adjunct to TIMIT, developed by transmit-
ting TIMIT through a telephone network.

On some rough databases statistics, the beginning or ending
phonemes were on the average: 19% vocals, 21.1% unvoiced
stops, 13.3% voiced stops, 1% voiced fricatives, 22.2% un-
voiced fricatives, 5.4% nasals, and 18% semivowels. We will
refer to the different sets as Aurora, TIMIT, and NTIMIT,
corresponding to the previously described databases.

B. Indications—Examples

In Table I, we present experimental results that indicate im-
provement over the classic method by use of the combination of
Teager energy (MTE) and demodulated instant frequency (MIF)
features. The tests were performed on the Aurora set and re-
sults refer to percent of correctly detected endpoints. An error
in detection was considered when a first or last phoneme of a
word was cropped more than 30 ms or when the boundaries
were overestimated for more than 60 ms.5 The percentages refer
to the total number of endpoints (beginning and end). We used

3This is actually what the classic endpoint algorithm performs by finding two
high energy-level instances and considering everything in-between as speech.

4These artifacts usually affect detection under large SNRs.
5For frames of 15 ms, with 50% overlap between adjacent frames, 30 and 60

ms are four and eight signal frames, respectively.
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TABLE I
PERCENTAGE (%) OF DETECTED SPEECH ENDPOINTS WITH VARIOUS FEATURES ON AURORA SAMPLES

Fig. 3. Endpoint detection using classic and proposed modulation features in utterances. (a) /siete/, from Spanish SDC-Aurora. (b) /view-bedrooms/, from TIMIT
phrase (on a 30-dB SNR level). Top figures are the signal waveforms with vertical lines marking the actual endpoints. Following are the MTE (continuous curve)
and the classic mAA (dashed curve) superimposed, on a decibel scale. The proposed MIF and the conventional ZR are presented below (after median filtering).
All were derived using windows of 15 ms updated every 5 ms. The markers for the endpoints detected with the classic features are dashed, while for the proposed
are solid vertical segments.

various combinations of conventional and proposed features for
the most efficient choices in terms of detection. Column MTE
refers to detection using only the new energy feature, while
MIA MIF is an energy detector based on the two feature
product. The last two columns of single-feature detection refer
to Teager energy alternatives that will be later discussed.

All short-time measurements were made in 15-ms Hamming
windows, updated every 2.5 ms, in 16-kHz sampling frequency
using 16-bit signal representations. The new representations
were derived by choosing the maximum mean Teager energy
from a filterbank of 25 Gabor filters of 160 Hz. Both ZR and
MIF were post-smoothed using median filtering. The number
of times that ZR or MIF threshold (23) was exceeded, thus
signalling unvoiced speech, was empirically set to , where

the window length and the shift in samples. Apart from
results in Table I referring to shifts of 5 ms , the
algorithms were also tested for shifts of 2.5 ms and
7.5 ms . Smaller shifts generally behaved better
toward improvement of detection.

On the noise-free TIMIT set, the results were in favor of the
classic features, in terms of detection error previously defined,
with the classic algorithm achieving 76.3% and the algorithm
with MTE detecting 72.2% of the endpoints. Refinement with
the MIF feature did not improve overall performance. This is
probably due to the nature of the TIMIT data (i.e., manual la-
beling), noise artifacts on silent intervals (to whom the Teager
operator, and any differential operator, is sensitive) which are

obscured at lower SNRs and our measure of performance (by
empirical error thresholds).

Following, in Fig. 3 we show two examples in which the pro-
posed method succeeded in capturing phonemes that the classic
algorithm failed to include in the speech region. The utterance
in (a) is the word /siete/ from the Aurora set at quiet noise con-
ditions (stopped car-motor running). The beginning /s/ and final
/te/ are embedded in the signal of the running engine. As a result,
the low-level mAA completely misses the final endpoint, while
the proposed method accurately marks both and even improves
the manual labeling of the ending instance. In (b), the results
on the utterance consisting of the words /view-bedrooms/ from
the TIMIT set. Here the classic features signify the ending point
much too early, missing the largest part of the second word. Note
that the final /s/ on the MTE is of the same or even higher level
as the vowels of the utterance. Both endpoints are marked in ac-
cordance with manual labeling.

Generally, improved detection was observed mostly in cases
of weak stops, both voiced and unvoiced, weak, low-energy, un-
voiced fricatives and parts of unvoiced-turned phonemes (e.g.,
nasals). Also, in cases of long stops in the middle of words [e.g.,
the /d/ in Fig. 3(b)], the classic algorithm failed to capture the
whole syllable after the stop. The power of the new features
though is the improved robustness in noise.

C. Detection in Noise

To test robustness of both algorithms under noisy conditions,
we used the dataset of TIMIT utterances, with randomly gener-
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Fig. 4. Error in endpoint detection (%) under different SNR levels (decibels)
for the classic and the proposed features on the TIMIT dataset. Solid line is for
the modulation features, dashed line for the classic features, and dash-dotted for
multiband versions of amplitude and zero-crossings rate.

ated additive white noise. An amplitude parameter, according to
the utterance rms value, was set to provide five SNR levels 40,
30, 20, 10, and 5 dB. As before, we used two critical values to
quantify error in detection (60 ms for a “spoke too soon” error,
60 ms for a “lost phoneme” duration error), with the actual end-
points dictated by the TIMIT files. Fig. 4 shows the deterioration
of both algorithms as the noise level increases by means of abso-
lute % error in detection. Results, averaged over the whole set,
refer to 5-ms shifts of 15-ms frames, retaining the filterbanks
and sampling frequency configurations.

To separately validate the effect of multiband analysis and
the use of modulation Teager operator-based measurements, we
also implemented multiband versions of the classic features.
Specifically, using the same frequency bands as the new algo-
rithm, we choose for the amplitude and zero-crossings rate the
channel that maximizes the absolute amplitude measurement,
analogous to (21) and (22). This leads to multiband max average
amplitude (MAA) and zero-crossings rate (MZR). This MZR is
the rate of crossings at the band with maximum mean filtered
envelope. Notice from Fig. 4 that these features performed tran-
siently between the two. Better than the proposed on the clean
set but worse than the classic one, equally at 40 and 10 dB, al-
most the same at 5, where multiband analysis is most benefi-
cial and worst between 40–10 dB, where improvement is due to
the use of modulation energy features.

As can be seen in Fig. 4, the proposed method is more ro-
bust in detection at noise levels below 30 dB with similar per-
formance at 40 dB. The relative decrease in detection error is

41% (30 dB), 24.6% (20 dB), 23.7% (10 dB), and 32.5% at
high noise level (5 dB), where the classic algorithm is extremely
unreliable. While the classic algorithm is responsible for the
most “lost phonemes” errors, the new one gives more “spoke
too soon” false indications. This may be due to the frequency
component included to the Teager energy measurement. Note

that these results may vary by changing the detection error def-
initions depending on task expectations for endpoint accuracy.

In order to evaluate results independently of the empirical
thresholds that define error in detection, we produced curves
in the philosophy of the ROCs [35], [38]. An ROC curve is a
detector evaluation measure depicting the change of probability
of detection (PD) with the increase of probability of false alarm
(PF). For the fixed decision thresholds of (23), we use a simple
convention to produce curves that approximate the ROCs, by
varying the error interval. We set a rather tight “lost-phoneme”
error threshold at 30 ms and let the “spoke too soon” tolerance
vary from 2 to 150 ms. Any endpoint falling between these error
limits is considered correctly detected. The final detection per-
centage over all data defines the PD, which is plotted against
the estimation tolerance interval. This interval, normalized to
its maximum, yields a measure related to the probability of
false alarm. The two quantities are connected by a one-two-one,
monotonically increasing, unknown function, as increase in the
error interval increases the PF by some amount.6 These curves
are not always convex or above the diagonal, like the actual
ROCs, but they serve as an evaluation measure of the detection
process.

In Fig. 5, we present such detection-tolerance curves for the
TIMIT set, on the noise-free case and the five additive noise
levels for the classic, multiband classic, and proposed algo-
rithms. Above 20 dB, the detection probabilities are increasing
for all three methods. This translates to most errors belonging
to the “spoke-too-soon” category. The estimated endpoints that
fall within the detection interval increase with the tolerance
in “spoke-too-soon” error. In contrast for lower SNRs, the
piecewise flat curves reveal that the errors are mainly due to
lost phoneme durations, where the error threshold is fixed. A
performance around 0.6 at 20 dB, or even lower for increasing
noise may be meaningful only by relaxing the strict constraints
for lost-phoneme duration more than four frames (30 ms),
resulting in overall detection improvement. Comparatively,
detection below 30 dB with the modulation features is superior
compared to the classic one. At 40 dB, there is a transition in
performance around the tolerance interval of 50 ms. Note that
the best performance for the classic algorithm was achieved at
noise-free conditions dB , whereas for the new algorithm
at 30 dB, conditions closer to real-life practical applications.
The area under these curves, expressing average detector per-
formance in ROC analysis, is increased with the modulation
features by 19% at 30 dB over both versions of the classic
features.

The same testing and comparisons were performed on the
NTIMIT noisy-telephone speech dataset. Results for the whole
set, again for various approaches, can be seen in Table II. De-
crease in the average detection error was 38.7% with the sole
use of the MTE feature and 40% after refinement by the MIF.
In Fig. 6, the detection-tolerance curves are illustrated, where
again the improved robustness of the multiband modulation ap-
proach is highlighted, against the classic and the multiband-
classic features, under realistic noise conditions. Notice how the

6PF for speech is complementary to PD for nonspeech events. By the same
logic of error intervals for nonspeech detection, this PD decreases by increasing
the tolerance interval for speech detection.
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Fig. 5. Detection-tolerance curves, in the spirit of ROC, for the TIMIT dataset in various additive noise levels. (a)1 dB (clean data). (b) 40 dB. (c) 30 dB. (d) 20
dB. (e) 10 dB. (f) 5 dB. Dashed line corresponds to results from the classic algorithm, dashed–dotted line to its multiband version, and solid line to the proposed
one. The time interval is the tolerance in endpoint estimation and is related to probability of false alarm.

TABLE II
PERCENTAGE (%) OF DETECTED SPEECH ENDPOINTS

FOR VARIOUS APPROACHES ON NTIMIT

multiband-classic features give worse results compared to their
full-band counterparts, something that was also noted for SNRs
of 20–30 dB at the TIMIT tests.

The aforementioned experiments demonstrate the improved
noise robustness of the modulation features and the proposed
algorithms. However, a stronger criterion on detection accuracy
would be incorporation of the detected words in a speech recog-
nition task. Results presented here were based on the thresholds
that were set to define accuracy in detection. For task-indepen-
dent comparisons, results are repeated in Table III in the form
of absolute deviations in milliseconds from the true manually
defined TIMIT word boundaries, for various SNRs and 15-ms
window length, updated every 2.5 and 7.5 ms. For both sets,
the absolute difference, averaged over all data, is smaller for the
proposed detector under 40 dB.

D. Related Teager Operator Work

A modified Teager energy has been previously used for
endpoint detection [25]. This feature called frame-based Teager
energy computed as the sum of the squared frequency-weighted

Fig. 6. Detection-tolerance curves for the NTIMIT dataset. Dashed and dash-
dotted lines corresponds to results from the classic and multiband classic fea-
tures and solid line from the proposed modulation ones. The time interval is the
tolerance in endpoint estimation and is related to probability of false alarm.

power spectrum per analysis frame (PTE) performed better
than simple rms energy. Using only one feature for detection,
we tested our MTE against PTE and a short-time version
of Teager’s energy, the average of per frame (STE). The
percentages under STE, PTE in Tables I and II refer to these



2034 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 6, NOVEMBER 2006

TABLE III
AVERAGE DEVIATIONS FROM “TRUE” TIMIT ENDPOINTS

Fig. 7. Endpoint detection error (%) on the TIMIT dataset under various SNR
levels (decibels), using three Teager energy features: The proposed multiband
max average Teager energy (MTE), short-time Teager (STE) , and the frame-
based Teager (PTE).

measurements. For the TIMIT dataset, with and without addi-
tive noise, the results are shown in Fig. 7. MTE is more robust
in noise as a consequence of the multiband filtering process,
with an average 10.1% error decrease over STE and 29.6% over
PTE. In comparing STE either with the classic combination
in Table II, or its multiband alternative, we conclude that im-
proved performance of the proposed MTE does not stem only
from multiband analysis but also from the explicit use of the
modulation energy representation.

V. VOICE ACTIVITY DETECTION (VAD)

The problem of speech detection is formally known in
telecom systems as VAD and is an essential part of most
modern speech recognition and transmission front-ends. Any
VAD performs a rough classification of incoming signal frames
based on feature estimation in two classes: speech activity
and nonspeech events (pauses, silence, or background noise).
The output of such a process is a logical flag pointing at the
speech-classified signal frames.

A. Feature-Based Detector

A recently developed and highly accurate VAD system, based
on short-time features, was proposed in [3] and [26] for noise
reduction and improvement of speech recognition by enhance-
ment and frame dropping. The algorithm is based on adaptive
thresholds and noise parameter updating and decides on speech/

nonspeech activity by estimating a feature termed long-term
spectral divergence (LTSD). For each frame under consid-
eration, the LTSD is defined as

(25)

where LTSE is the long-term spectral envelope, the maximum
spectrum amplitude in a neighborhood of frames, at each dis-
crete frequency , and is the average
noise spectrum magnitude. The LTSD quantifies the divergence
of speech from background noise/silence and is in essence an
energy measure that retains spectral information by keeping the
strong spectral components on neighboring frames.

The algorithm in [3] required estimation of the bounds for the
adaptive voice-triggering threshold and included updating of the
average noise spectrum measurement every time a pause was de-
tected, for adaptation to nonstationary noise environments and
a controlled hang-over scheme to avoid abrupt state transitions.
The VAD algorithm and LTSD were extensively tested in large
databases and varying noise conditions against standard VADs
such as the ITU-G.729 or ETSI-AMR [7], [8]. The LTSD-based
VAD performance was evaluated using both common VAD eval-
uation methods and recognition accuracy.

B. Modulation Energy Detector

To evaluate the modulation-based features, and especially
MTE as efficient speech/nonspeech discriminators in a VAD
system, we chose the LTSD-based VAD for: 1) its improved
performance and slow degradation with SNR; 2) the favorable
comparisons in [3] against standardized detectors; and 3) the
extensive experimental evaluation on appropriate databases.
We adapted the aforementioned algorithm by changing the
core feature with the proposed modulation MTE feature in two
alternative expressions.

The signal is frame-processed and during a short initialization
period the initial noise characteristics are learned. After feature
computation, the level difference in decibels from the respective
background noise feature is compared to an adaptive threshold

(26)

where the background noise energy. The threshold interval
boundaries depend on the cleanest and noisiest ener-
gies, computed during the initialization period from the data-
base under consideration. The noise feature is estimated during
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Fig. 8. Features based on maximum average Teager energy (MTE) for voice
activity detection (digit sequence in 12-dB SNR). Both were derived for frames
of 25 ms with 10-ms shifts and a bank of 25 Gabor filters. Top figure is the
MTE divergence and middle the long-term MTE divergence. The VAD flag in
the waveform was identically derived by both MTED and LTED features.

the initialization period and adapted whenever silence or pause
is detected, by averaging in a small neighborhood of frames.

To measure modulation “divergences” in the spirit of LTSD
for VAD, we use features based on MTE.

1) Multiband Teager Energy Divergence (MTED): The
multiband max average Teager energy MTE as used previously,
compared to the respective feature MTEW for background
noise

(27)

The MTED is measuring the divergence between the multiband
MTE of a frame and the corresponding noise feature. This is
conceptually the same as the endpoint detection algorithm of
Section III-C, comparing MTE level difference.

2) Long-Term Multiband Teager Energy Divergence (LTED):
The MTE is locally maximized in a neighborhood of frames
resulting in a dilated and normalized, with respect to the back-
ground noise, version

(28)

with defining the order of the dependence.
In Fig. 8, the proposed VAD features are presented on a digit

sequence by Aurora 3 in quiet (12-dB), hands-free microphone,

recording conditions [37]. In each plot, superimposed is the
adaptive threshold signalling voice activity.

C. Experimental Evaluation

The experimental framework for comparing performance of
the LTSD-based and the MTE-based VADs, consists of a large
number of detection experiments, under varying noise condi-
tions on the Aurora 2 and Aurora 3 databases. The Aurora 2
[39] consists of connected digits under real-life noises of var-
ious characteristics, added to the clean TIdigits at SNRs 20, 15,
10, 5, 0, and 5 dB, reaching a total of 70 070 utterances. The
Aurora 3 Spanish database [37] consists of 4914 utterances of
the SDC digit sequences, in three noise conditions (quiet, low
noisy, high noisy) corresponding roughly to average SNR values
of 12, 9, and 5 dB and two recording conditions (close-talking
and hands-free recordings).

Evaluation is based on classification errors at different SNRs
[2], [3], [8] using some reference labeling of the clean digit
set. In our experiments, automatic speech recognition experi-
ments were used to segment and label the speech/nonspeech
events on the databases. High recognition rates on the clean
sets defined the ground truth for the digit sequences. Briefly, for
Aurora 2, the training was done using 32 mixtures, 18 states.
and the 39-long feature vector on the
clean-train scenario. The test run on the clean data achieved a
word accuracy of 99.6%. For Aurora 3, the training was done
with 16 mixtures, 16 states, and the same feature vector. A
1522 subset of the 4914 utterances was used as the test set (well
matched test) with a word recognition accuracy of 93.7%. Ut-
terances with erroneously recognized digits were removed from
the reference labeling to improve ground truth accuracy.

For the reference LTSD-based VAD, we used the specifica-
tions and the values reported in [3] about the decision thresholds
(26) ( dB, dB), with the background noise ener-
gies , estimated by the averages of the first 100 ms on all
utterances, in the cleanest and noisiest conditions, respectively.
The hang-over mechanism was set to four frames. For the pro-
posed VADs, we used roughly similar specifications but deter-
mined the optimum thresholds by means of ROC curves anal-
ysis [38]. In Fig. 9, these curves are presented in the cleanest
and noisiest sets for the MTED and LTED-based VADs. We
chose the thresholds that correspond to the points of the curves
with minimum distance from the upper left, ideal working point,
corner. This analysis led to dB, dB for
the MTED-based VAD and dB, dB for the
LTED-based one on the Aurora 2 set. The tests on Aurora 3 were
conducted for all three features with the same pair of thresholds
for reference.

The recognition-labeled speech, pause and silence durations
were used to define the actual speech and nonspeech intervals.
Performance of the VADs was evaluated with respect to the
speech hit rate HR1, defined as the ratio of the detected speech
frames to the total number of speech frames and the nonspeech
hit rate HR0, defined, respectively, as the detected percentage
of the nonspeech frames in the dataset. Complementary to these
quantities, and , are
the false alarm rates (FARs) of the decision for speech or non-
speech.



2036 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 6, NOVEMBER 2006

Fig. 9. ROC curves for speech detection performance in (a) clean and (b) noisiest (�5 dB) Aurora 2 set for the MTE-based VADs. Decision thresholds varied as
4 � 
 � 38 in the clean and �1 � 
 � 3 in the noise case. The operating point of the LTSD-based VAD is also depicted.

Fig. 10. Overall false alarm error for speech/nonspeech detection in various SNR levels on (a) Aurora 2 and (b) Aurora 3.

In Tables IV and V, we present detection performance results
for the various VADs on the reference datasets. Results are pre-
sented in terms of both hit rates per noise level and averages over
all data. The rates HR1 and HR0 are considered of equal impor-
tance since misclassification errors take place both in speech
and silent signal periods. This may be quantified through the

norm of false alarm rates. In effect, we aim to minimize the
overall false alarm error norm:

(29)

Statistically, this measure expresses the average performance of
the detector as times the rms error norm of the false alarms,
while geometrically it is the shortest Euclidian distance from

the ideal operating point (upper left corner) on the ROC plot of
a detector ( , ) (see also Fig. 9). In Fig. 10,
that error norm is presented for the two datasets and the three
VADs as a function of decreasing SNR.

The LTSD-based detector, as proposed in [3], is quite con-
servative with respect to the actual silence percentages that
are being detected, with high speech hit rates in return. On the
Aurora 2 tests, where the thresholds were optimally set, the
MTE-based algorithms equally weight both percentages giving
average hit rates above 70% on both speech and silence periods.
The LTED achieved the minimum false alarm error norm, with
a 7.6% decrease of the overall error over the LTSD-based VAD.
In Fig. 10(a), the LTED detector minimizes the error, except on
20-dB SNR, where all three features follow analogous degrada-
tions in performance. On the Aurora 3 results in Table V, where
the detection thresholds were the same, the LTED achieves
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TABLE IV
DETECTION ACCURACY, AURORA 2

HR1: speech hit rate, HR0: nonspeech hit rate.

TABLE V
DETECTION ACCURACY, AURORA 3

HR1: speech hit rate, HR0: nonspeech hit rate.

higher individual hit rate performance than LTSD and an
overall decrease in error of 7.7%. Minimum false alarm error is
given by the MTED feature with a relative decrease of 9.5%,
while both modulation feature-based algorithms outperform
the LTSD in terms of the overall error under all three noise
conditions, as can be seen in Fig. 10(b). Note that LTED is
consistently best on both sets.

VI. CONCLUSION

The existence of modulations in speech, energy operators,
and multiband analysis have been applied to problems regarding
endpoint detection of isolated words in a “silent” background,
speech analysis, and voice activity detection. We proposed
speech detection algorithms based on new short-time signal
features, derived through multiband filtering and modulation
energy tracking. These features seem efficient in capturing
slowly varying amplitude and frequency information, inherent
in the modulation model for speech signals. Motivation also
comes from a decision-theoretic analysis where, using multiple
hypothesis testing, we derived a close link between the energy
operator and an optimum detector of multiple sinusoids in
noise.

Experimental results showed that an algorithm for endpoint
detection with the developed features decreased the detection
error of conventional time-domain features. It demonstrated im-
proved robustness in noise: 32.5% detection error reduction at
a 5-dB noise level on the TIMIT set, compared to the classic
one and 40% reduction on the NTIMIT set. Additive noise, up
to 30 dB, seemingly contributed beneficially as the proposed
method at 30-dB SNR gave better results by a 45.3% compared
to the noise-free case. The effectiveness of these features, espe-
cially of the multiband maximum average Teager energy, stems

equally from their multiband nature and the duality of ampli-
tude–frequency analysis.

In the direction of performance evaluation for speech detec-
tors, a convenient method was proposed and used, following
ideas from typical ROC analysis. Curves of detection proba-
bility versus a time parameter dictating certainty in endpoint es-
timation, can be applied to evaluate average performance even
for nonstatistical endpoint detectors without explicit measure-
ment of detected speech recognition accuracy.

Modulation energy tracking was also applied for voice
activity detection. Based on a recent speech/noise divergence
feature of high detection accuracy, we proposed a multiband
Teager energy divergence and a long-term alternative for speech
detection in alternating sequences of speech and nonspeech
events. Through extensive evaluation on large databases, we
aimed at minimizing an overall false alarm error norm. The
proposed modulation features, although sporadically behaved
worse compared to the reference detector, consistently de-
creased the overall error by 7.5% on Aurora 2 and 9.5% on
Aurora 3 sets under varying noise levels and conditions while
demonstrating a robust degradation response.

Labeling of speech events was approached through detec-
tion of speech modulations, tracking through multiple frequency
bands their dominant structures, and measuring slowly-varying
amplitude and frequency information. Modulation features were
systematically verified to improve noisy speech detection on
different benchmarks. Development of “smarter” detection al-
gorithms based on these signal representations may lead to in-
creased accuracy in speech boundary localization. Incorporation
of these detectors in speech recognition and noise suppression
schemes will dictate performance in terms of applications. As a
side effect, the developed signal analysis methods and time-do-
main features may be further applied apart from detection, to
speech analysis, recognition, segmentation, phoneme classifi-
cation, or event detection.
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