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a b s t r a c t 

High quality expressive speech synthesis has been a long-standing goal towards natural human-computer 

interaction. Generating a talking head which is both realistic and expressive appears to be a consider- 

able challenge, due to both the high complexity in the acoustic and visual streams and the large non- 

discrete number of emotional states we would like the talking head to be able to express. In order to 

cover all the desired emotions, a significant amount of data is required, which poses an additional time- 

consuming data collection challenge. In this paper we attempt to address the aforementioned problems 

in an audio-visual context. Towards this goal, we propose two deep neural network (DNN) architectures 

for Video-realistic Expressive Audio-Visual Text-To-Speech synthesis (EAVTTS) and evaluate them by com- 

paring them directly both to traditional hidden Markov model (HMM) based EAVTTS, as well as a con- 

catenative unit selection EAVTTS approach, both on the realism and the expressiveness of the generated 

talking head. Next, we investigate adaptation and interpolation techniques to address the problem of 

covering the large emotional space. We use HMM interpolation in order to generate different levels of in- 

tensity for an emotion, as well as investigate whether it is possible to generate speech with intermediate 

speaking styles between two emotions. In addition, we employ HMM adaptation to adapt an HMM-based 

system to another emotion using only a limited amount of adaptation data from the target emotion. We 

performed an extensive experimental evaluation on a medium sized audio-visual corpus covering three 

emotions, namely anger, sadness and happiness, as well as neutral reading style. Our results show that 

DNN-based models outperform HMMs and unit selection on both the realism and expressiveness of the 

generated talking heads, while in terms of adaptation we can successfully adapt an audio-visual HMM 

set trained on a neutral speaking style database to a target emotion. Finally, we show that HMM interpo- 

lation can indeed generate different levels of intensity for EAVTTS by interpolating an emotion with the 

neutral reading style, as well as in some cases, generate audio-visual speech with intermediate expres- 

sions between two emotions. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Human-computer interaction (HCI) has exploded in the latest

ecades and, virtual or physical, intelligent agents 1 have become
∗ Corresponding author. 

E-mail addresses: filby@central.ntua.gr (P.P. Filntisis), nkatsam@cs.ntua.gr (A. 

atsamanis), ptsiak@innoetics.com (P. Tsiakoulis), maragos@cs.ntua.gr (P. Maragos). 
1 An agent is anything that can be viewed as perceiving its environment 

hrough sensors, and acting upon that environment through effectors ( Russell and 

orvig, 1995 ). Example of a physical agent is a robot, while of a virtual agent is an 

vatar. 
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n integral part of a person’s everyday life. These agents take part

n a variety of applications, either of small significance such as

veryday human tasks, or of great significance such as teaching

ssistants for pedagogical purposes ( Johnson et al., 20 0 0 ). Artifi-

ial Intelligence (AI) aims to maximize the naturalness of human-

omputer interactions so that the human forgets that he is in-

eracting with a computer. Taking into account the fact that the

ain mode of human communication is speech, we understand

hat speech synthesis constitutes a vital part of AI for human-

omputer communication. Speech synthesis does not include only

he generation of a human-like voice; speech is multimodal in na-

ure ( McGurk and MacDonald, 1976; Ekman, 1984 ) and important

http://dx.doi.org/10.1016/j.specom.2017.08.011
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information is included in the visual stream of information (i.e.,

the human face, and more generally the human head and its move-

ments) along with the acoustic stream. It has been shown that the

inclusion of a visual stream of information increases the intelligi-

bility of speech, especially under noise, even when the face is a

virtual talking head ( Sumby and Pollack, 1954; Ouni et al., 2007 ). 

Achieving a high degree of naturalness in HCI is highly corre-

lated with the ability of the agent to express emotions. Agents

capable of expressiveness are more believable and life-like, thus

have a stronger appeal to their interlocutor ( Bates, 1994 ). In ad-

dition, expressive behavior itself contains important information

( Ambady and Rosenthal, 1992 ) and affects the emotional state of

the other party ( Hatfield et al., 1993; Keltner and Haidt, 1999 ) and,

consequently, its decision making ( Schwarz, 20 0 0; Bechara, 2004 ). 

Strongly correlated with speech, emotion is conveyed multi-

modally ( Darwin, 1871; Richard et al., 2002 ), so the agent must be

capable of expressing emotion multimodally as well. It is also rea-

sonable to assume that emotions should be expressed through all

the information channels simultaneously; otherwise it is possible

that the receptor of the signals might become confused in regards

to the emotional state of the agent, since neurological studies have

shown that the perception of the acoustic and the visual streams

affect each other ( Skipper et al., 2007 ). Under the same assump-

tion it is also desirable that the levels of expressiveness of both in-

formation channels are correlated - i.e., a full blown facial expres-

sion of anger is accompanied with a full blown vocal expression of

anger. 

Audio-Visual Text-To-Speech synthesis (AVTTS) explores the

generation of audio-visual speech signals ( Mattheyses and Ver-

helst, 2015 ) (i.e., a talking head), and video-realistic AVTTS, more

specifically, explores the generation of talking heads that highly re-

semble a human being as if a camera was recording it. Although

naturalness in video-realistic AVTTS systems has increased greatly,

the addition of expressions has proven to be a challenging task

( Anderson et al., 2013; Schröder, 2009 ) due to the large variability

they introduce, especially in extreme expressions such as expres-

sions of anger or happiness, in both acoustic and visual modeling.

This large complexity increases the probability of introducing arti-

facts in the generated face and causing the “uncanny valley” effect

( Seyama and Nagayama, 2007; Mori et al., 2012 ). 

Motivated by the above, in this paper we study and im-

prove video-realistic expressive audio-visual text-to-speech synthe-

sis (EAVTTS), by tackling several challenges that arise when consid-

ering the addition of expressiveness. 

When considering synthesis of expressive speech we would ide-

ally desire that the agent is able to express itself in the same

ways a human can, in order to achieve the maximum level of

naturalness. Studies on the nature of emotions have claimed both

that some emotions can be defined as the combinations of oth-

ers ( Plutchik, 2001; Plutchik and Kellerman, 1980; Plutchik, 1980 ),

and that each emotion has different levels of intensity which are

expressed with variations between each other ( Ekman, 1984; Ek-

man et al., 1980; Hess et al., 1997 ). We believe that these studies

can be proven useful when considering the problem of the num-

ber of emotional states the agent must be able to express. If we

consider that the expression of emotions can also be defined as

combinations of other emotions, we could instruct the agent to

express more complex expressions, and speech with intermediate

style between different emotions, through mixtures of emotions

that it “knows” how to perform. In the same manner, consider-

ing that expressions vary with the intensity of the emotion, if we

see the different intensity levels of an emotion as a combination

of the emotion with the neutral expression/voice, we can express

emotions in different continuous intensity levels. 

Closely correlated with the number of emotional states and in-

tensity levels we would like to be able to synthesize, is the ability
f an EAVTTS system to adapt to a target emotion, given some ex-

mples of it. 

Considering the two desired abilities we just stated, we argue

hat Unit Selection (US) synthesis is not suitable for extensions

o expressive speech. US synthesis is more natural than paramet-

ic synthesis (under the assumption of a large enough training

et) because the imperfect reconstruction of speech from param-

ters is avoided, however, immense data needs to be collected for

ariations in speaking style ( Black, 2003 ). Parametric synthesis on

he other hand, appears to be suitable for the task in hand due

o its flexibility that arises from the statistical modeling process

 Zen et al., 2009 ), which allows modification of voice characteris-

ics and speaking style. The same conclusion holds for EAVTTS as

ell; US suffers from low flexibility in changing facial expressions,

hile a parametric model allows us to do so. 

Taking into account our previous introduction, in this paper we

o a much needed thorough exploration of video-realistic AVTTS

nd propose methods to tackle the previously stated challenges

nd achieve the desired EAVTTS abilities: high complexity, contin-

ous and complex emotional states, and adaptiveness. 

Motivated by the recent advances in speech synthesis with deep

earning ( Ling et al., 2015 ), we propose two different deep neu-

al network (DNN) pipelines for EAVTTS and examine the level at

hich these architectures are able to model the special character-

stics and the full extent of expressive speech in an audio-visual

ontext. This examination is achieved through direct comparison

ith the traditional parametric approach of HMM-based EAVTTS,

s well as a concatenative unit selection EAVTTS system, both on

he realism as well as on the expressiveness of the generated talk-

ng head, when the systems are trained on a corpus featuring ex-

ressive audio-visual speech. 

As far as HMM-based EAVTTS is concerned, we also assess the

evel of emotional strength acquired by an HMM-based AVTTS sys-

em that has been adapted to another emotion, by directly com-

aring with an HMM-based AVTTS system that has been trained

n the full corpus of the respective emotion. We also employ HMM

odel interpolation in order to generate audio-visual speech with

ifferent intensity levels of expressiveness and more complexity. To

ur knowledge, there has not yet been a study to show the results

f HMM adaptation and interpolation for HMM-based AVTTS. 

Our final contribution is a new medium-sized corpus featuring

xpressive audio-visual speech in three emotions: anger, happiness,

nd sadness, plus neutral reading style (which we will refer to as

he neutral emotion from now on), from one speaker and for the

reek language. 

The remainder of the paper is organized as follows: In the next

ection we present the background and related works on paramet-

ic video-realistic AVTTS and EAVTTS. In Section 3 we present the

roposed DNN-based expressive audio-visual speech synthesizers

nd in Section 4 we present a traditional HMM-based expressive

udio-visual speech synthesis system along with the methods of

daptation and interpolation we employ. Next, we briefly describe

he unit selection EAVTTS system we built for comparing with our

arametric approaches and in Section 6 we present the CVSP-EAV

CVSP Expressive Audio-Visual Speech) corpus, which we collected

or evaluating our approaches. Section 7 presents our experimen-

al results and the last section our conclusive remarks and future

ork directions. 

. Background/related work 

Audio-visual speech synthesis (AVTTS) can be divided into two

istinguishable categories based on the way the talking head is

ynthesized ( Bailly et al., 2003 ). The first category includes 2D/3D

raphical models typically constructed by a mesh of polygons and

ertices, and the creation of facial expressions involves the move-
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(a) Cao et al. (2005) (b) Ezzat et al. (2002) (c) Anderson et al. (2013) (d) Xie et al. (2014) (e) Fan et al. (2015)

Fig. 1. Various examples of video-realistic talking heads. 
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ent of the mesh. Examples of model-based visual or audio-

isual speech synthesis include ( Schabus et al., 2014; Salvi et al.,

009; Sifakis et al., 2006; Beskow, 1996; Le Goff and Benoît, 1996;

elachaud et al., 1996 ). 

The second category of image-based AVTTS is driven by a train-

ng set of image sequences. Based on frontal recordings of a speak-

ng person, snapshots of the person speaking arbitrary utterances

ot found in the recordings are generated. This category of image-

ased or video-realistic AVTTS can be further divided in unit selec-

ion and parametric methods. 

Unit selection methods typically use raw or slightly modified

mages (and waveforms for audio) in the training set in order to

onstruct the target audio-visual sequence ( Cosatto et al., 20 0 0;

attheyses et al., 2008; Huang et al., 2002 ). In these architectures,

ypically the cost that is minimized by the unit selection module

nvolves both acoustic and visual features. 

Parametric methods involve the training of a statistical model

ontrolled by a small number of parameters that can be used

o reconstruct photo-realistic frames. Examples of parametric vi-

ual models in this category involve Active Appearance Mod-

ls ( Cootes et al., 2001 ), Eigenfaces ( Turk and Pentland, 1991 )

nd Multidimensional Morphable Models (MMMs) ( Jones and Pog-

io, 1998 ). 

A first example of parametric video-realistic audio-visual speech

ynthesis which is based on HMMs and uses the same pipeline

s HMM-based text-to-speech synthesis (TTS) ( Zen et al., 2007b )

s in Tamura et al. (1999) and Sako et al. (20 0 0) , where hu-

an lips recordings are modeled through a technique similar

o eigenfaces (eigenlips in this case), and the eigenlips weights

re added to the observation vector along with the acoustic pa-

ameters (mel-cepstral coefficients and fundamental frequency).

zzat et al. (2002) employs MMMs and combines them with

 custom trajectory synthesis technique for generating video-

ealistic speech. In Xie et al. (2014) and Xie and Liu (2007) ,

 lower-face Active Appearance Model combined with HMMs

and their variations) is used to generate full-face audio-visual

peech by employing Poisson image stitching ( Pérez et al., 2003 ).

an et al. (2015) also used a similar technique for full-face video-

ealistic generation and successfully employed a Bidirectional Long

hort Term Memory network in order to predict the weights of

 lower-face Active Appearance Model, from a small number of

inguistic features. Hybrid methods where the selection of images

rom the corpus is driven by HMM modeling have also been pro-

osed ( Wang et al., 2010; Mattheyses et al., 2011 ). 

In the field of expressive AVTTS (EAVTTS) with 2D/3D models,

ome direct approaches have included the modeling of human fa-

ial expressions with a set of parameters (most commonly FAPs

 facial animation parameters ( Pandzic and Forchheimer, 2003 )),

nd then using these parameters to drive a graphics based 3D

odel ( Wu et al., 2006; Deng et al., 2006; Li et al., 2016 ).

mage-based unit selection methods for generating video-realistic

xpressive speech have been presented in Cao et al. (2005) ,

elenchón et al. (2009) and Liu and Ostermann (2011) . 
D
Parametric video-realistic EAVTTS has not seen many studies.

n example of an expressive video-realistic talking head using

ctive Appearance Models and HMM modeling was presented in

nderson et al. (2013) and Wan et al. (2013) , where AAM modeling

f the face was also extended to alleviate local facial deformations

uch as blinking, and remove the facial pose. This system used

luster adaptive training of HMMs in order to model expressions of

ifferent emotions, as well as generate combinations of emotions.

n Shaw and Theobald (2016) , modeling of emotional expressions is

chieved using AAMs and Independent Component Analysis (ICA).

urthermore, ICA is employed to generate mixtures of expressions.

ig. 1 shows various examples of video-realistic talking heads from

revious works. 

While studies on parametric video-realistic EAVTTS and ma-

ipulation of expressions are scarce, tools are available to adapt

 trained HMM-based acoustic speech synthesis system to a new

peaking style or speaker, using a small amount of adaptation

ata. Such adaptation methods include maximum-likelihood lin-

ar regression (MLLR) ( Leggetter and Woodland, 1995; Tamura

t al., 2001 ), maximum a posteriori adaptation (MAP) ( Digalakis

nd Neumeyer, 1996; Masuko et al., 1997 ), and their variations

e.g., constrained MLLR (CMLLR) ( Gales, 1998 ) and Constrained

tructural Maximum a Posteriori Linear Regression (CSMAPLR)

 Yamagishi et al., 2009 )). HMM adaptation has already been em-

loyed successfully in Yamagishi et al. (2004) for adapting an

coustic neutral HMM-based system to the emotions of joy and

adness. However, the results of HMM adaptation when consider-

ng HMM-based AVTTS have not yet been studied. 

Similarly, HMM interpolation has been proposed for HMM-

ased acoustic speech synthesis, by building different systems

or each different speaking style/speaker and then interpolating

he Gaussian output distributions of the models using arbitrary

eights ( Yoshimura et al., 20 0 0; Yamagishi et al., 2004; Tachibana

t al., 2005 ). As with HMM adaptation, HMM interpolation has

et to be applied to AVTTS, but it has successfully been employed

gain in Yamagishi et al. (2004) for interpolation between HMM

ets trained on different emotions. 

. DNN-based expressive audio-visual speech synthesis 

In our two proposed DNN-based architectures for expressive

udio-visual speech synthesis, each emotion is modeled separately,

y a different DNN-based audio-visual synthesizer (we will use the

erm EAVTTS system when considering the full system that mod-

ls all emotions, while the term AVTTS system denotes the sub-

ystems). These sub-synthesizers (or subsystems) follow one of the

wo architectures that can be seen in Figs. 2 and 3 . Acoustic, visual,

nd linguistic features are extracted from an audio-visual corpus

nd then used in order to train the neural network subsystems of

ach architecture. We will first describe the features that we em-

loy for audio-visual modeling, and then describe the two different

NN AVTTS models that are the components of the two different

NN-based EAVTTS architectures. 
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Fig. 2. DNN-based audio-visual speech synthesis with joint modeling of acoustic and visual features. 
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Fig. 3. DNN-based audio-visual speech synthesis with separate modeling of acoustic and visual features. 
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3.1. Features for DNN-based audio-visual speech synthesis 

Acoustic Features. Speech is modeled by mel-frequency cepstral

coefficients (MFCCs), the logarithmic fundamental frequency, and

band-aperiodicity coefficients using STRAIGHT analysis ( Kawahara

et al., 1999, 2001 ). To reconstruct the waveform from the spectral

and prosodic features, the STRAIGHT vocoder is used. 

Visual Features. To obtain a low dimensional parametric model of

the face for all of the different emotions, we employ an Active Ap-

pearance Model (AAM) ( Cootes et al., 2001; Matthews and Baker,

2004 ). We model the whole face and not only the lower part since

emotional expressions include the upper facial half as well. 

In active appearance modeling, a face (and more generally the

object modeled) consists of the shape and the texture. The shape

is represented by a vector s , the elements of which are the coor-

dinates of M vertices that make up the mesh of the face. For a

particular snapshot (frame), the shape is expressed as the mean

shape s̄ (that is the mean of the coordinates of the vertices of sev-

eral frames after a Procrustes analysis is applied to them), plus a

linear combination of n eigenvectors (called eigenshapes) s i that

are found via employing a Principal Component Analysis (PCA) to

the training meshes: 

s = s̄ + 

n ∑ 

i =1 

p i s i (1)

where p i is the weight applied to the eigenshape s i . 

The texture of the face is modeled in the same way as the

shape, after normalizing the shape of each training mesh using an
ffine transformation or another method such as thin plate splines:

 ( x ) = Ā ( x ) + 

n ∑ 

i =1 

λi A i ( x ) (2)

here A ( x ) is texture defined over the pixels x that lie in the mesh

f the mean shape s̄ , Ā ( x ) is the mean texture, A i ( x ) are the eigen-

ectors found via PCA (called eigentextures) and λi is the weight

pplied to the eigentexture A i ( x ). 

Upon obtaining the weights of the eigenshapes and the eigen-

ectors of a snapshot of the face, the image can be reconstructed

y warping the texture A ( x ) from the mean shape s 0 to the com-

uted shape s based on a warp W ( x ; p ), where p is the vector of

he shape weights p i . 

During the fitting of an active appearance model to a new

rame of the modeled object, if we denote as I ( x ) the texture of

he frame defined over the pixels x , we seek to minimize the eu-

lidean norm (called the reconstruction error): 

 = ‖ 

I( W ( x ; p ) ) − A ( x ) ‖ 

2 
2 (3)

here I ( W ( x ; p )) is the warped back image texture and A ( x ) is the

ynthesized texture. 

Building an AAM for a large database depicting different ex-

ressions (and extreme ones that arise during emotions such as

appiness or anger) appears to be a challenging task. Due to the

arge variations introduced, minimization of the reconstruction er-

or usually results in undesirable results. For this reason, we in-

orporate prior constraints ( Papandreou and Maragos, 2008 ) during

he fitting, as a means of increasing the robustness of the model. 
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In a model including prior constraints, the error minimized is:

 p = ‖ 

I ( W ( x ; p ) ) − A ( x ) ‖ 

2 
2 + Q ( q ) (4) 

here Q ( q ) is a quadratic penalty corresponding to a prior Gaus-

ian distribution with mean q . More information on the prior con-

traints can be found in Papandreou and Maragos (2008) . 

.2. Architectures for DNN-based audio-visual speech synthesis 

The two DNN-based AVTTS synthesizers of each EAVTTS archi-

ecture differ in the fact that in Fig. 2 , the neural network maps

inguistic features to acoustic and visual features at the same time,

hilst in Fig. 3 , this mapping is done separately for the acoustic

nd visual features by two different neural networks. The linguistic

eatures contain information about the lexicological context of the

urrent phoneme and can consist of either answers to binary ques-

ions (e.g., “is the current phoneme a vowel?”) or numerical values

e.g., the number of syllables in a word). Within-phone positional

eatures such as position of the acoustic/visual frame within the

tate of the phone (in an HMM context), phone and state dura-

ion, and state position within the phone ( Zen et al., 2013; Wu

t al., 2016 ) are also included. The output (acoustic, visual or joint

udio-visual) features also include dynamic features (first and sec-

nd derivatives of static features). 

In both AVTTS synthesizers, a neural network (not shown in the

gures) is employed for predicting the duration of speech. In the

etwork responsible for duration modeling, an input vector con-

aining frame-level linguistic features is mapped to durations of ei-

her the phoneme considered, or the phoneme states (in an HMM

ontext). 

During the training phase, linguistic features extracted from the

atabase, along with acoustic and visual features, are used to train

he networks. The mapping from linguistic features to acoustic, vi-

ual or joint audio-visual features constitutes a regression problem,

nd the following mean squared error function is minimized by

he network with a Backpropagation procedure ( Williams and Hin-

on, 1986 ): 

SE = 

1 

N 

N ∑ 

i =1 

(
ˆ y i − y i 

)2 
(5) 

here N is the number of output features, ˆ y i is the i th predicted

eature and y i is the real outcome. 

In the synthesis stage, after analyzing the text to be synthe-

ized and extracting its linguistic feature representation, the neural

etworks predict the output acoustic, visual, or joint audio-visual

eatures. The outputs of the neural networks are considered to be

he mean vector of the acoustic and visual features while the co-

ariances are pre-calculated from the training data. The Maximum-

ikelihood Parameter Generation algorithm ( Tokuda et al., 20 0 0 )

s then used in order to produce smooth trajectories of acoustic

nd visual features. This step is imperative in order to alleviate the

act that DNNs do not have memory or take into account adjacent

rames during training ( Zen, 2015 ). Postfiltering in the cepstral do-

ain ( Yoshimura et al., 2005 ) is applied to acoustic features. 

In general, DNN-based synthesis (both audio and audio-visual)

ossesses important advantageous properties as opposed to HMM-

ased synthesis ( Zen et al., 2013; Watts et al., 2016; Qian et al.,

014 ): 

1. Deep layered architectures can represent highly complex func-

tion transformations compactly. 

2. In DNN-based AVTTS, contrary to HMM-based AVTTS where

predictions take place on a state level, predictions take place

on an acoustic frame level. 
3. Decision trees are incapable of modeling complex dependencies

between input features whereas DNNs can compactly model

these dependences. Furthermore, decision trees perform a hard

split of the linguistic space which results in inferior generaliza-

tion to DNN-based modeling where the weights of the network

are trained using the whole training set. 

4. Linguistic features can also hold numerical and not only binary

values. Zen et al. (2013) found out in experimental results that

numerical values perform better and more efficiently. 

. HMM-based expressive audio-visual speech synthesis 

Similarly with our proposed DNN-based EAVTTS systems, the

MM-based EAVTTS architecture models each emotion separately,

hrough multiple HMM AVTTS systems. In this section we will do

n overview of HMM-based audio-visual speech synthesis and then

escribe the methods of adaptation and interpolation that the sys-

em employs in order to adapt to new emotions, and mix known

motions. 

.1. Overview of HMM-based audio-visual speech synthesis 

The architecture of an HMM-based audio-visual speech synthe-

is system is shown in Fig. 4 . Typically, the same pipeline with

MM-based acoustic speech synthesis ( Tokuda et al., 2013 ) is em-

loyed. 

Multi-Space probability Distribution Hidden Semi Markov Mod-

ls (MSD-HSMMs) ( Zen et al., 2007b; Heiga et al., 2007; Yoshimura

t al., 1999 ) are used to model both the acoustic and visual fea-

ures of speech simultaneously, so as to enforce a strong temporal

lignment of the visual and acoustic streams. 

The observation vector also contains dynamic features, in order

o avoid discontinuities that arise from the step-wise sequence that

s generated in the synthesis stage. 

To alleviate the problem of limited training data, a decision

ree based context clustering method is applied ( Odell, 1995 ). Dur-

ng the decision tree clustering approach, using a predefined set

f contextual questions, each node is split into two, by choosing

he question that minimizes the Description Length ( Shinoda and

atanabe, 1997 ) of the data. Upon termination, states that belong

n the same terminal node (leaf) of the tree are merged. 

In the synthesis part, the maximum-likelihood parameter gen-

ration algorithm ( Tokuda et al., 20 0 0 ) is used to generate smooth

rajectories of both the acoustic and visual parameters from the

tatic and dynamic parameters emitted from the HSMMs. Just

ike in the DNN architectures, postfiltering in the cepstral domain

 Yoshimura et al., 2005 ) is applied to acoustic features. 

.2. Adaptation for HMM-based EAVTTS 

In order to tackle the data collection overhead that arises when

onsidering expressive audio-visual speech, we use HMM adapta-

ion to adapt an audio-visual HMM set that is trained on a neutral

raining set, to a target emotion, using adaptation data that de-

ict the emotion. The algorithm we employ is the CSMAPLR (Con-

trained Structural Maximum a Posteriori Linear Regression) adap-

ation method ( Yamagishi et al., 2009, 2007 ). 

The CSMAPLR adaptation method combines the advantages of

oth SMAP ( Shinoda and Lee, 2001 ) and CMLLR ( Gales, 1998 )

ethods, and makes use of linguistic information, through the

egression tree that is used to propagate the prior information

rom the root of the tree, to the lower nodes. In addition, because

he method is employing recursive MAP estimation ( Digalakis and

eumeyer, 1996 ), it is robust when a low amount of adaptation

ata is available ( Lorenzo-Trueba et al., 2015 ). After the CSMAPLR

daptation, an additional MAP adaptation is applied. 
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Fig. 4. HMM-based audio-visual speech synthesis system architecture. 
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In the CSMAPLR adaptation, the mean μ and the covariance

matrix � of a Gaussian state-output or state-duration distribution,

are transformed simultaneously through the transformation matrix

Z and the transformation bias ε: 

μ̄ = Z μ + ε (6)

�̄ = Z � Z T

 (7)

4.3. Interpolation for HMM-based EAVTTS 

Interpolation between emotions not only allows us to obtain

emotions with various intensity levels and form more complex

speaking styles and expressions, but also offers us the ability to

control more formally the resulting expressions through the use of

the interpolation weights, as opposed to adaptation methods. 
In Yoshimura et al. (20 0 0) interpolation of HMM models trained

n different datasets is done via maximization of the KL diver-

ence between the output Gaussian distributions of the models.

amagishi et al. (2004) follow a simpler approach (interpolation

etween observations) for the interpolation of the HMM models,

hich we adopt as well for the interpolation of HMM sets trained

n our four emotional training sets. 

If we denote the output Gaussian distribution of an HMM state

s N ( μ, �) where μ and � is the mean vector and covariance ma-

rix of the distribution respectively, it becomes apparent that for

MM-based speech synthesis, the problem of interpolating emo-

ions corresponds to interpolation of Gaussian distributions for re-

pective HMM states across systems trained on a different training

et which represent a speaking style. 

The mean and variance of the interpolated pdf N ( μ, �) is: 

= 

K ∑ 

i =1 

αi μi (8)

= 

K ∑ 

i =1 

α2 
i �i (9)

here K is the number of the different pdfs that will be interpo-

ated and a i is the weight corresponding to the i th pdf. This inter-

olation is applied to the duration models as well. It is noted that

he weights are chosen so that: 

K 
 

i =1 

| αi | = 1 (10)

To deal with the fact that HMM sets trained on different

atasets have a different tying structure, the interpolation of the

dfs is done on the synthesis level, after constructing a sentence

MM from each HMM set for the specific label to be synthesized.

ig. 5 depicts this approach. 

. Unit selection audio-visual speech synthesis 

In this section, we describe the unit selection video-realistic

AVTTS system, which employs multiple US AVTTS subsystems

o model each different emotion. The subsystems are based on

he unit selection acoustic speech synthesis system described in
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Fig. 6. Unit selection based audio-visual speech synthesis. 
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2 Fine-tuning the unit selection weights requires extensive listening/visual exper- 

iments which is outside the scope of this work. 
aptis et al. (2016) and Chalamandaris et al. (2013) and were mod-

fied to include the visual modality as well. We did that in order to

ave a direct comparison of a concatenative EAVTTS system against

ur parametric systems. The system utilizes its own front end (as

pposed to our previous methods) and its architecture is shown in

ig. 6 . 

The subsystems follow a typical concatenative unit selection ar-

hitecture, split into two components: 

The NLP (natural language processing) component which is re-

ponsible for extracting all relevant information from the input text

nd transforming it into an intermediate format. This component

omprises of the following modules: a word- and sentence- tok-

nization module, a text normalizer, a letter-to-sound module and

 prosody generator. 

The DSP (digital signal processing) component consists of the

nit selection module, the signal manipulation module that gener-

tes the speech waveform, and the image reconstruction module,

hich is essentially the same module used in the previously de-
cribed methods that reconstructs the image sequence and joins it

ith the speech waveform. 

The unit selection module of the system optimizes a cost func-

ion that consists of two terms: the target cost, which is the cost

f similarity of phonetic and prosodic context between two units,

nd the join cost, affected by pitch continuity, spectral similarity,

nd visual similarity. The visual similarity is integrated into the

nit selection cost function as two additional terms in the join

ost function; one for each of the visual feature vectors, namely

he shape and texture feature vectors. The Euclidean norm is used

s the distance between the shape and texture vectors. The mod-

fied join cost function is a weighted sum of the auditory com-

onents, i.e. the pitch and spectral cost functions, and the visual

omponents, i.e. shape and texture. The weights are chosen so that

ll components have equal range, i.e. assigning equal importance

o both modalities. 2 

The final waveform of speech is generated using a custom Time

omain Pitch Asynchronous Overlap Add (TD-PSOLA) method to

oncatenate the units selected by the unit selection module. 

The final image sequence is generated, by concatenating the vi-

ual parameters (eigenshape and eigentexture weights) that cor-

espond to the audio-visual units selected by the unit selection

odule. During this concatenation we do not employ a smoothing

echnique. 

. The CVSP-Expressive Audio-Visual Speech Corpus 

.1. Recording of the corpus 

In order to evaluate the methods described in this study, we

ollected a medium sized corpus featuring expressive audio-visual

peech in Greek for 4 emotions (neutral, anger, sadness and hap-

iness). The database, which we call CVSP-EAV (CVSP - Expres-

ive Audio-Visual) Corpus, was recorded in an anechoic studio at

he Athena Innovation Research Center. A professional actress was

ired to act the aforementioned emotions. The actress was in-

tructed to express the emotions in an extreme and clear manner.

lthough we are aware that humans rarely feel or express emo-

ions in an extreme manner - and as such a talking head express-

ng extreme emotions would feel unrealistic in most HCI cases -

ince we are exploring modeling of emotional speech, it is reason-

ble to take into account the extreme case of each specific emo-

ion. Furthermore, this allows us to correctly evaluate the synthesis

f different intensity levels corresponding to each emotion which

an range from reading style (neutral) to the full-blown expression

f the emotion. 

The actress was seated in from of a high-definition camera

ecording video in 1080p resolution at 29.97 frames per second in

 H.264 format. A high quality microphone was used to capture

he audio with a sampling rate of 44,100 Hz. 

The textual corpus consists of 900 sentences in Greek which

ere selected so that the corpus would have a phonetic distribu-

ion representative of the Greek language. Each sentence was pro-

ounced by the actress 4 times, once for each of the four emo-

ions: anger, sadness, happiness, and neutral, resulting in a total of

600 sentences. 

Fig. 7 depicts a sample image from the recordings for each dif-

erent emotion. 

.2. Processing of the corpus 

Because the recording of all the sentences in the corpus was

ontinuous, in order to split the recorded video and audio in
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(a) Neutral (b) Anger

(c) Happiness (d) Sadness

Fig. 7. Sample images for each of the different emotions present in the CVSP-EAV Corpus. 

Table 1 

Statistics of the post-processed CVSP-EAV corpus. 

Neutral Anger Happiness Sadness 

Sentences 899 898 896 894 

Duration (minutes) 72 71 72 86 

Frames (approx.) 129,0 0 0 129,0 0 0 129,0 0 0 150,0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Facial landmarks used for building the Active Appearance Model. 
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the different sentences the actress pronounced, we employed the

sail-align toolkit ( Katsamanis et al., 2011 ) which contains hidden

Markov models (HMM) for the Greek language, trained in the Lo-

gotypografia database ( Digalakis et al., 2003 ), featuring ∼ 72 h

of speech from 125 speakers. The toolkit employs a three step

speaker adaptation algorithm in order to increase the accuracy of

the alignments. This alignment method was applied to the full

recording of each of our four different emotions, and apart from

obtaining the splits of the recordings at a sentence level, we also

obtained four different speaker dependent HMM sets adapted to

each of the different emotions in the corpus. 

Next, the audio recorded from the high quality microphone was

temporally aligned with the video using the cross-correlation be-

tween the high quality sound and the sound from the camera, and

the frames from the video corresponding to each sentence were

extracted in high quality JPEG format. 

Finally, we force aligned at the phoneme level each sentence

with its transcription, using the previously obtained adapted mod-

els for each different emotion. No further manual correction of the

labels took place. 

Due to recording and clipping problems, a few sentences from

each emotion were discarded. Table 1 shows statistics on the post-

processed corpus. 3 

6.3. Feature extraction 

After processing the corpus, we resampled the audio at 16 kHz,

and extracted 31 mel-frequency cepstral coefficients, the logarith-
3 The CVSP-EAV corpus is available at http://cvsp.cs.ntua.gr/research/eavtts/ . 

 

 

 

ic fundamental frequency, and 25 band-aperiodicity coefficients

ith a frame shift of 5 ms using the STRAIGHT tool for MATLAB. 

For the extraction of the eigenshape and eigentexture weights

or each different frame in the database using the AAM modeling

ethod described in Section 3 , we used the following heuristic ap-

roach in order to minimize the fitting error of Eq. (4) . 

1. We hand labeled a total of 981 frames with 61 facial landmarks

as shown in Fig. 8 . From the 981 frames, 179 correspond to

neutral expressions, 262 to angry expressions, 322 to happy ex-

pressions, and 218 to sad expressions. 

2. For each different emotion in the corpus and its set

of frames, we first use the face detection algorithm of

Mathias et al. (2014) and then use multivariate regression to

map from the detected rectangle to an initial shape that is go-

http://cvsp.cs.ntua.gr/research/eavtts/
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Table 2 

Fitting results in terms of mean reconstruction error for each of the 

emotions in the CVSP-EAV Corpus. 

Neutral Anger Happiness Sadness 

Mean Rec. Error 0.0013 0.0013 0.0015 0.0013 

# discarded 5 11 93 6 
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ing to be used to obtain an initial estimate for the first frame

of each sentence: 

S = A R + b (11) 

where S is the shape corresponding to the detected rectangle R ,

A is the regression matrix and b the intercepts. This results in

four emotion-dependent regression models. 

We also applied the same process to the whole corpus, in or-

der to obtain an emotion-independent regression model. We

found that generally the emotion-dependent regression models

achieved a better shape initialization compared to the emotion-

independent regression model. 

3. We then proceeded to build an AAM using all of the annotated

frames. 

From the found eigenshapes and eigentextures, we keep in both

cases the vectors that account for 95% of the variation, a total

of 9 eigenshapes and 58 eigentextures. 

4. For each different sentence in the corpus, we get the best ini-

tial estimate of the shape of the first frame in a sentence, by

using either an emotion-dependent regression or an emotion-

independent one. We choose by comparing the reconstruction

errors after fitting with each different estimates. For each of

the subsequent frames in the sentence, we use the shape found

previously as an initial estimate. 

In order to automatically exclude sentences where fitting pre-

ented artifacts, as much as possible, from the subsequent training

f the systems, we discarded the sentences where the mean re-

onstruction error was above the threshold of 0.0018 and where

ore than 10 frames in the sentence had a reconstruction error of

ore than 0.0030. The threshold of 0.0018 was found heuristically

o represent excellent fitting and reconstruction. 

Table 2 contains the final mean reconstruction error resulting

rom fitting the Active Appearance Model for each different emo-

ion and excluding the aforementioned sentences. 

It is evident from both the mean reconstruction error as well as

he number of sentences we had to discard, that the most difficult

xpression to fit is the expression of happiness which is expressed

ith strong variations in the human face. We would expect that

he same would hold for the emotion of anger, however the num-

er of discarded sentences for anger is not on the same level as

ith happiness. 

The final visual features extracted for each sentence, were re-

ampled at 200 fps in order to match the previously extracted

coustic features. 

In the end, in order to have a fair comparison across all emo-

ions in the experiments, we kept for training all sentences that

ere common across all emotions, a total of 774 sentences. 

For annotating the frames we used the am-tools software 4 and

or building and fitting the Active Appearance Model we use the

AM-tools toolkit 5 ( Papandreou and Maragos, 2008 ). 
4 https://personalpages.manchester.ac.uk/staff/timothy.f.cootes/software/ 

m _ tools _ doc/index.html. 
5 http://cvsp.cs.ntua.gr/software/AAMtools/. 

t  

a

a

. Experimental results 

.1. Evaluation procedure 

In order to assess the methods described in this paper we de-

igned and developed a web-based questionnaire containing multi-

le types of questions and tests which will be described in the fol-

owing sections. Each questionnaire 6 had a maximum of 102 ran-

om questions distributed to our different evaluations. 

.2. Evaluation of realism and expressiveness of the EAVTTS methods 

Our evaluation of the EAVTTS methods described in this paper: 

1. HMM-based EAVTTS (HMM) 

2. DNN-based EAVTTS with joint modeling of acoustic and visual

features (DNN-J) 

3. DNN-based EAVTTS with separate modeling of acoustic and vi-

sual features (DNN-S) 

4. Unit selection EAVTTS (US) 

ims at comparing the methods both on the realism and expres-

iveness of the synthesized talking head. Furthermore, in order to

ain more insight, we do not compare the methods only on the

udio-visual realism, but also on the realism that is achieved by

ach different modality. “Realism” denotes the similarity of the

alking head (or acoustic speech in case of the evaluation of the

ifferent modalities), to a human uttering the same sentence. This

ncapsulates both naturalness as well as intelligibility. 

For each method, and for each of the four emotional training

ets (neutral, anger, happiness, sadness) of the CVSP-EAV corpus

e trained a subsystem (which we call from now on an emotion-

ndependent AVTTS system). This means that, e.g., the full HMM-

ased EAVTTS system consists of 4 subsystems - one for each emo-

ion. 48 test sentences, taken from the corpus, were generated

rom each subsystem. As a result 4 × 48 = 192 sentences were gen-

rated from each full EAVTTS method. 

The HMM-based subsystems were built using the HTS toolkit

 Zen et al., 2007a ). Five state, context-dependent MSD-HSMMs

ith left-to-right topology were trained and tied using a decision-

ree clustering technique, using a similar set of questions with

okuda et al. (2002) , but adapted for the Greek language. We use

9 different phonemes for the Greek language including silence. 

Training of the DNN-based subsystems was implemented using

he Merlin speech synthesis toolkit ( Wu et al., 2016; Ronanki et al.,

016 ). The input vector to the neural networks was broken down

o 494 linguistic features from the almost ∼ 1500 questions used

or context clustering in the HMM-based systems, by exploiting the

act that non-binary linguistic features can be used as an input in

he neural networks. 

All networks (both networks that predict duration and net-

orks that predict features) consisted of six hidden fully connected

ayers of 1024 neurons each. For training the networks with Back-

ropagation we use a batch size of 256 and a learning rate of

.002. We train for a maximum of 25 epochs unless the error on

he validation set (from the 774 sentences used to train each sub-

ystem, we used 10 as a validation set) increases in more than

 consecutive epochs after epoch 15. It is important to note at

his stage that the architecture that employs separate modeling of

coustic and visual features, uses double the number of parame-

ers than the architecture that employs joint modeling of acoustic
nd visual features. 

6 The questionnaire along with numerous videos of the talking head can be found 

t http://cvsp.cs.ntua.gr/research/eavtts/ . 

https://personalpages.manchester.ac.uk/staff/timothy.f.cootes/software/am_tools_doc/index.html
http://cvsp.cs.ntua.gr/software/AAMtools/
http://cvsp.cs.ntua.gr/research/eavtts/
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Table 3 

Results (%) of subjective pairwise preference tests on audio-visual 

speech realism. Bold font indicates significant preference at p < 0.01 

level. 

DNN-S DNN-J HMM US N/P 

25.0 22.22 – – 52.78 

51.11 – 15.56 – 33.33 

75.56 – – 18.89 5.55 

– 43.33 22.22 – 34.44 

– 72.22 – 22.78 5.0 

– – 63.89 27.78 8.33 

Fig. 9. Boxplot of the MOS test results on the audio-visual realism of the differ- 

ent EAVTTS methods. Bold line represents the median, x represents the mean, the 

boxes extend between the 1st and 3rd quantile, whiskers extend to the lowest and 

highest datum within 1.5 times the inter-quantile range of the 1st and 3rd quartile 

respectively, and outliers are represented with circles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Significant differences between systems, from the MOS test results, on the 

audio-visual realism of the generated talking head, at levels p < 0.05 and 

p < 0.01. A blank cell denotes no significant difference. 

DNN-S DNN-J HMM US 

DNN-S – p < 0.01 p < 0.01 

DNN-J – – p < 0.05 p < 0.01 

HMM – – – p < 0.01 

US – – – –

Fig. 10. Results of the MOS test broken down for each different emotion. Bold line 

represents the median, x represents the mean, the boxes extend between the 1st 

and 3rd quantile, whiskers extend to the lowest and highest datum within 1.5 times 

the inter-quantile range of the 1st and 3rd quartile respectively, and outliers are 

represented with circles. 
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Table 5 

Results (%) of subjective pairwise preference tests on visual speech 

realism. Bold font indicates significant preference at p < 0.01 level. 

DNN-S DNN-J HMM US N/P 

28.33 27.5 – – 44.17 

40.0 – 28.33 – 31.67 

84.17 – – 10.83 5.0 

– 38.33 30.83 – 30.83 

– 85.0 – 8.33 6.67 

– – 76.67 15.0 8.33 
The unit selection subsystems were built by modifying an ex-

isting unit selection acoustic speech synthesis system, as described

in Section 5 . 

7.2.1. Evaluation of audio-visual realism 

To evaluate the realism of the talking head (both acoustic and

visual) generated from each of the different methods, respon-

dents of the web-based questionnaire were presented with pairs of

videos depicting the video-realistic talking head uttering the same

sentence and in the same emotion, generated by two of the previ-

ously described four methods, and were asked to choose the most

realistic video in terms of both acoustic and visual streams (with a

“no preference” option available as well). The sentences were cho-

sen randomly from the 192 sentences that were generated from

each system. We also made sure that all emotions appear in the

same rate. The result is a total 6 pairwise preference tests (for all

different combinations of the 4 methods), with 180 pairs evaluated

for each method pair (45 pairs for each emotion). The results of the

preference tests are presented in Table 3 . 

Our statistical analysis of preference tests employs a sign test

(ignoring ties), with Holm–Bonferroni correction over all statistical

tests of this section - 30 in total. 

From the table we can see that both DNN architectures are

preferred significantly at the p < 0.01 level over the HMM and US

methods, while HMM is also preferred significantly over US at the

p < 0.01 level. Among the two DNN architectures we see that the

preference scores are very close and there is not a significant dif-

ference. 

We generally observe a strong bias for the parametric ap-

proaches over the unit selection approach; a reasonable outcome

considering that the size of each emotional training set is relatively

low for unit selection synthesis combined with generation of un-

seen sentences. 
A second evaluation of the audio-visual realism of the different

ethods was also performed, via a mean opinion score test (MOS).

he respondents were presented with random videos of the talking

ead from each method and were asked to evaluate the realism of

he talking head on a scale of 1 (poor realism) to 5 (perfect re-

lism). Before the evaluation the respondents were also presented

ith samples from the original recordings and were instructed that

hey correspond to perfect realism. Each method was evaluated

00 times (50 for each emotion) and the results are shown in

ig. 9 . 

To check for significant differences between the systems we

erform pairwise Mann–Whitney U tests (with the same Holm–

onferroni correction as before) due to the fact that Likert-type

cales are inherently ordinal scales ( Clark et al., 2007 ). The results

re shown in Table 4 . 

We can see that there is almost complete accordance of the re-

ults of the MOS test with the results obtained from the pairwise

reference tests. 

In Fig. 10 we also show the MOS test results for each different

motion. 

.2.2. Evaluation of visual realism 

Similarly with the evaluation of audio-visual realism, we con-

ucted 6 more pairwise preference tests in which respondents

ere presented with random pairs of muted videos and were
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Table 6 

Results (%) of subjective pairwise preference tests on acoustic 

speech realism. Bold font indicates significant preference at p < 0.01 

level. 

DNN-S DNN-J HMM US N/P 

40.0 9.17 – – 50.83 

65.83 – 7.5 – 26.67 

79.17 – – 14.17 6.67 

– 41.67 26.67 – 31.67 

– 55.83 – 32.5 11.67 

– – 64.17 26.67 9.17 

Table 7 

Results (%) of subjective pairwise preference tests on audio-visual 

speech expressiveness. Bold font indicates significant preference at 

p < 0.01 level. 

DNN-S DNN-J HMM US N/P 

23.08 23.08 – – 53.85 

50.64 – 15.38 – 33.97 

70.51 – – 23.07 6.41 

– 42.31 26.28 – 31.41 

– 66.67 – 27.56 5.77 

– – 57.69 36.54 5.77 
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Fig. 11. Subjective evaluation of the level of expressiveness captured by an adapted 

HMM audio-visual speech synthesis system for each different emotion (and total), 

and for a variable number of sentences. Bold line represents the median, x repre- 

sents the mean, the boxes extend between the 1st and 3rd quantile, whiskers ex- 

tend to the lowest and highest datum within 1.5 times the inter-quantile range of 

the 1st and 3rd quartile respectively, and outliers are represented with circles. 
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sked to pick the most realistic video (with a “no preference” op-

ion available). Each method pair was evaluated 120 times (30

airs for each emotion), and the results are presented in Table 5 . 

From the table we can see that statistically significant differ-

nces occur only between parametric approaches versus the unit

election one. The DNN architectures seem again to be preferred

ver HMM, however the result is not statistically significant. 

.2.3. Evaluation of acoustic realism 

For evaluating the acoustic speech generated, human evaluators

ere presented with random pairs of acoustic speech samples and

ere asked to pick the most realistic. Just like in the evaluation of

isual realism, realism of acoustic speech was evaluated 120 times

30 pairs for each emotion) for each different method pair. The re-

ults are presented in Table 6 . 

We can see that all pairwise comparisons are significant at the

 < 0.01 level, apart from the comparisons between DNN-J, HMM

nd DNN-J, US, where, although the DNN-J method is preferred,

e did not observe statistical significance. 

.2.4. Evaluation of expressiveness 

Expressiveness was evaluated in the same manner as audio-

isual realism, were pairs of videos were presented and compared

y human evaluators on their expressiveness. Videos of the neutral

motion were not included. The 6 pairwise preference tests on the

valuation of expressiveness were evaluated 156 (52 pairs for each

motion) times each, and we show the results in Table 7 . 

We see that the DNN-S architecture is significantly preferred

ver the HMM and US methods. The DNN-J architecture is signif-

cantly preferred over US, and although preferred over HMM, it is

ot significant in a statistical meaning. Between HMM and US, the

s  

Table 8 

Classification of emotions in the emotion individual

sen by any respondent are not shown. 

Neutral Happiness Anger 

Neutral 100.0 0 0 

Happiness 0 80 0 

Anger 6.67 0 73.33 

Sadness 6.67 0 0 
ormer is preferred, though the result again is not statistically sig-

ificant. 

A correlation between realism and expressiveness is evident,

ince we can see that the results follow a resembling course with

he evaluation of the audio-visual realism. 

.3. Evaluation of HMM adaptation 

To evaluate our second main focus, we adapted the HMM-based

VTTS subsystem trained on the neutral emotion of Part 7.2, to

ach of the other three emotions in the corpus, using the CSMAPLR

daptation described in Section 4.2 , followed by a MAP adaptation.

e also used a variable number of sentences for each of the above

daptations, namely 5, 10, 20, 50 and 100 sentences each time and

or each of the different number of sentences, and emotions, we

enerated 8 unseen sentences from the test set. 

In the questionnaire, each subject was presented with random

ideos for each different emotion (apart from neutral) and for each

ifferent number of adaptation sentences (a total of 15 videos),

nd were asked to evaluate the expressiveness of the talking head

n an increasing scale of 1–5. We also included for each video, a

ideo generated by the respective emotion individual HMM-based

ystem built in Part 7.2 and advised the evaluators that this sec-

nd video serves as a ground truth for the rating of 5, since we

ake the assumption that the adapted HMM system is capped, as

ar as expressiveness is concerned, by the corresponding emotion-

ndependent HMM AVTTS system. 

For each different emotion and number of adaptation sentences,

0 videos were evaluated (a total of 600 evaluations). Fig. 11 shows

he results of this subjective evaluation, for each different emotion,

nd for each different number of sentences used for adaptation. 

We observe that the median value over all emotions increases

s the number of sentences used for adaptation increase. We also

bserve that the emotion of sadness achieves even for 5 adaptation

entences a large score/median, compared to the other two emo-

ions. This could be explained by the fact that neutral speaking

tyle possesses a similar speaking rate to the sad speaking style,
 HMM systems (% scores). Emotions not cho- 

Sadness Fear Pride Pity Other 

0 0 0 0 0 

0 0 13.33 0 6.67 

6.67 0 0 6.67 6.67 

80.0 6.67 0 6.67 0 
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(a) Neutral

(b) Anger

(c) Happiness

(d) Sadness

Fig. 12. Results of audio-visual synthesis (consecutive frames from the same sentence) from a neutral HMM set (a) and its adaptation to the three emotions of (b) anger, (c) 

happiness, and (d) sadness, using 50 adaptation sentences. 

Table 9 

Emotion classification rate when interpolating two HMM sets; the first one trained on 

an emotional training set depicting the neutral emotion, and the second one trained 

on an emotional training set depicting happiness (% scores, w n : Neutral Weight, w h : 

Happiness Weight). Emotions not chosen by any respondent are not shown. 

Emotions 

( w n , w h ) Neutral Happiness Sadness Pride Disgust Pity Other 

(0.1, 0.9) 0 93.33 0 6.67 0 0 0 

(0.3, 0.7) 13.33 80 6.67 0 0 0 0 

(0.5, 0.5) 53.33 40.00 0 6.67 0 0 0 

(0.7, 0.3) 66.67 0 0.0 0 0 6.67 6.67 6.67 13.33 

(0.9, 0.1) 86.67 0 0 0 0 0 13.33 

Table 10 

Emotion classification rate when interpolating two HMM sets; the first one trained 

on an emotional training set depicting the neutral emotion, and the second one 

trained on an emotional training set depicting anger (% scores, w n : Neutral Weight, 

w a : Anger Weight). Emotions not chosen by any respondent are not shown. 

Emotions 

( w n , w a ) Neutral Anger Sadness Pride Disgust Pity Other 

(0.1, 0.9) 13.33 66.67 0 6.67 6.67 0 6.67 

(0.3, 0.7) 20.00 53.33 0 0 20 0 6.67 

(0.5, 0.5) 46.67 33.33 0 6.67 13.33 0 0 

(0.7, 0.3) 80.00 6.67 0 6.67 0 6.67 0 

(0.9, 0.1) 86.67 0 6.67 6.67 0 0 0 
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as opposed to happiness and anger, where speaking rate is gener-

ally faster. It is important to note that we observe a high degree

of agreement between the evaluators, since in almost all cases the

range of the boxes is only 1 point on the MOS scale. Our general

consensus is that HMM adaptation can be successfully employed

for HMM-based EAVTTS. 

In Fig. 12 we also show 10 consecutive frames from the same

sentence, when adapting the neutral HMM set to one of the other

three emotions using 50 sentences. 
.4. Evaluation of HMM interpolation 

Finally, our final evaluation was on the application of HMM in-

erpolation to the emotion individual HMM-based EAVTTS systems

uilt in the first part of this section. As preparation, for each of

he 6 different HMM set pairs arising when combining the 4 dif-

erent emotions of our corpus, we generated 6 unseen sentences

rom the test set, using 5 sets of interpolation weights: (0.9, 0.1),

0.7, 0.3), (0.5, 0.5), (0.3, 0.7), (0.1, 0.9). We also generated the same

entences by each emotion individual EAVTTS system. 

Next, respondents were presented with the generated videos of

he talking head, and were asked to recognize the emotion de-

icted by choosing from a list containing 11 emotions (neutral,

appiness, anger, sadness, fear, pride, surprise, disgust, pity, shame,

nvy), plus the “other” option. 

As a first evaluation, and to show that our respondents indeed

ecognized the emotion corresponding to each emotion indepen-

ent system built in Part 7.2, in Table 8 we show the results of

motion recognition for the emotion independent systems, where

e can see all emotions achieve a high classification rate, with the

owest being anger with 73.33%. We note that each different inter-
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Table 11 

Emotion classification rate when interpolating two HMM sets; the first one trained on an emotional 

training set depicting the neutral emotion, and the second one trained on an emotional training set 

depicting sadness (% scores, w n : Neutral Weight, w s : Sadness Weight). Emotions not chosen by any 

respondent are not shown. 

Emotions 

( w n , w s ) Neutral Sadness Anger Fear Pride Disgust Pity Envy Other 

(0.1, 0.9) 13.33 73.33 0 6.67 0 0 6.67 0 0 

(0.3, 0.7) 20.00 73.33 0 0 0 0 6.67 0 0 

(0.5, 0.5) 60.00 20.00 0 0 0 13.33 6.67 0 0 

(0.7, 0.3) 73.33 6.67 0 0 6.67 6.67 0 0 6.67 

(0.9, 0.1) 73.33 6.67 6.67 0 0 6.67 0 6.67 0 

Table 12 

Emotion classification rate when interpolating two HMM sets; the first one trained on 

an emotional training set depicting anger, and the second one trained on an emotional 

training set depicting happiness (% scores, w a : Anger Weight, w h : Happiness Weight). 

Emotions not chosen by any respondent are not shown. 

Emotions 

( w a , w h ) Neutral Happiness Anger Pride Disgust Envy Other 

(0.1, 0.9) 0 86.67 0 13.33 0 0 0 

(0.3, 0.7) 6.67 80.00 0 6.67 0 6.67 0 

(0.5, 0.5) 13.33 60.00 0 13.33 6.67 0 6.67 

(0.7, 0.3) 40.00 0 33.33 6.67 6.67 6.67 6.67 

(0.9, 0.1) 0.0 0 86.67 0.0 6.67 0 6.67 

Table 13 

Emotion classification rate when interpolating two HMM sets; the first one trained on an emotional training 

set depicting anger, and the second one trained on an emotional training set depicting sadness (% scores, 

w a : Anger Weight, w s : Sadness Weight). Emotions not chosen by any respondent are not shown. 

Emotions 

( w a , w s ) Neutral Anger Sadness Happiness Fear Disgust Pity Shame Other 

(0.1, 0.9) 6.67 0 80.00 6.67 0 6.67 0 0 0 

(0.3, 0.7) 13.33 0 60 0 0 0 6.67 13.33 6.67 

(0.5, 0.5) 33.33 33.33 13.33 0 6.67 0 6.67 0 6.67 

(0.7, 0.3) 20.00 53.33 6.67 0 0 13.33 0 0 6.67 

(0.9, 0.1) 6.67 66.67 0.0 0 0 20 0 0 6.67 

Table 14 

Emotion classification rate when interpolating two HMM sets; the first one trained on an emotional training set depicting 

sadness, and the second one trained on an emotional training set depicting happiness (% scores, w s : Sadness Weight, w h : 

Happiness Weight). Emotions not chosen by any respondent are not shown. 

Emotions 

( w s , w h ) Neutral Happiness Sadness Anger Fear Pride Disgust Pity Shame Envy Other 

(0.1, 0.9) 6.67 73.33 6.67 0 0 6.67 6.67 0 0 0 0 

(0.3, 0.7) 6.67 26.67 26.67 0 0 0 6.67 0 0 6.67 20.0 

(0.5, 0.5) 20.00 6.67 33.33 0 6.67 6.67 0 13.33 6.67 0 6.67 

(0.7, 0.3) 13.33 0 60.00 6.67 6.67 0 0 6.67 0 0 6.67 

(0.9, 0.1) 0.00 0 100.0 0 0 0 0 0 0 0 0 
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olation pair and emotion-independent system was evaluated 15

imes. 

Subsequently, we present 6 tables that show the emotion clas-

ification rate for each of the emotion pairs and interpolation pairs,

n Tables 9–14 (in the tables we only include the emotions which

ere picked - that is classification rate was above zero at least in

ne row). 

A study of Tables 9–11 , reveals that we can indeed achieve dif-

erent levels of the emotions by their interpolation with the neu-

ral emotion since the emotion recognition results fluctuate mainly

etween the neutral emotion and the emotion under consideration

n each figure. Abrupt changes in the classification scores suggest

hat we need to have an even smaller interpolation step, in order

o control the resulting intensity level. 
In Tables 12–14 we can see the same trend. It is interesting to

ote, that the “neutral” emotion was also chosen many times. This

esult might suggest that the level of expressiveness at a weight

f 0.5 is not strong enough, and when interpolated with another

motion at the same level the confusion causes the viewers to se-

ect the neutral stream. Several other options were also selected.

e can see that for specific pairs, audiovisual speech with inter-

ediate speaking style is generated (Anger-Sadness with respective

eights (0.5, 0.5) and Sadness-Happiness with respective weights

0.3, 0.7)). We believe that a further study with more refined steps

etween the weights is imperative. 

In Fig. 13 we also show 10 consecutive frames from interpo-

ating the HMM sets trained with the emotions of happiness and

nger, for the weights we previously stated. 
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(a) wa = 0.1, wh = 0.9

(b) wa = 0.3, wh = 0.7

(c) wa = 0.5, wh = 0.5

(d) wa = 0.7, wh = 0.3

(e) wa = 0.9, wh = 0.1

Fig. 13. Results of audio-visual synthesis (consecutive frames from the same sentence) from interpolating HMM sets trained on anger and happiness ( w a : anger weight, w h : 

happiness weight). 
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8. Conclusion 

In this paper, we performed a much-needed in-depth study on

video-realistic expressive audio-visual speech synthesis, in order

to improve this area through facing the challenges it poses. To-

wards that goal, we proposed two different architectures for DNN-

based expressive audio-visual speech synthesis and did a direct

comparison with HMM-based and concatenative unit selection ex-

pressive audio-visual speech synthesis systems on the realism of

the produced talking head, and on the emotional strength that

is captured by each system when it is trained on an emotional

corpus. 

Our results show that both DNN-based architectures signifi-

cantly outperform the other two methods in terms of the audio-

visual realism of the synthesized talking head, while the DNN-

based architecture that uses separate modeling of acoustic and

visual features architecture (DNN-S) significantly outperforms the

HMM and US methods in terms of expressiveness as well. In addi-

tion, DNN-S also achieved significantly better results over all other

architectures when considering acoustic speech only. 

The results of the unit selection system were much worse in

comparison with parametric approaches, which is to be expected

when considering not only the fact that our corpus is fairly small

for US synthesis, but also that the number of needed units in-

creases when considering expressive speech. 
In addition, we adopted CSMAPLR adaptation in order to adapt

n HMM system to a target emotion using a small number of adap-

ation sentences, and showed that adaptation can successfully be

pplied to EAVTTS. We also showed the fact that HMM interpo-

ation can be employed in order to achieve different levels of in-

ensity for the emotions of our corpus, but also expressions and

peech with intermediate speaking styles. Our last contribution is

 medium sized audio-visual speech corpus for the Greek language,

eaturing three emotions: anger, happiness, and sadness, plus the

eutral reading style. 

We believe that our study opens multiple directions for future

ork. It would be interesting to compare RNN architectures and

heir variations with our methods, always on an expressive speech

round. Furthermore, since DNN-based architectures outperform

MM-based architectures, it is imperative to research adaptation

nd interpolation of DNN-based EAVTTS systems in order to tackle

he challenges we stated that arise when considering expressive

udio-visual speech. 
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