
ADVANCES ON ACTION RECOGNITION IN VIDEOS USING AN INTEREST POINT
DETECTOR BASED ON MULTIBAND SPATIO-TEMPORAL ENERGIES

Kevis Maninis, Petros Koutras and Petros Maragos

School of E.C.E., National Technical University of Athens, Greece
Email: {pkoutras, maragos}@cs.ntua.gr

ABSTRACT

This paper proposes a new visual framework for action recogni-
tion in videos, that consists of an energy detector coupled with a
carefully designed multiband energy based filterbank. The track-
ing of video energy is performed using perceptually inspired 3D
Gabor filters combined with ideas from Dominant Energy Analy-
sis. Within this framework, we utilize different alternatives such as
non-linear energy operators where actions are implicitly considered
as manifestations of spatio-temporal oscillations in the dynamic vi-
sual stream. Texture and motion decomposition of actions through
multiband filtering is the basis of our approach. This new energy-
based saliency measure of action videos leads to the extraction of
local spatio-temporal interest points that give promising results for
the task of action recognition. Such interest points are processed
further in order to formulate a robust representation of an action in
a video. Theoretical formulation is supported by evaluation in two
popular action databases, in which our method seems to outperform
the state of the art.

Index Terms— Human action recognition, spatio-temporal in-
terest point detectors, multiband Gabor filtering, dominant energy
analysis, energy tracking in videos.

1. INTRODUCTION
The task of human action recognition through local space-time fea-
tures has recently become very popular in computer vision. Local
features give a more compact representation of the video, aiming at
keeping only the useful information for action recognition. Video
representations in terms of such features exhibit efficiency in distin-
guishing among action classes, while bypassing the need for pre-
cise background subtraction or tracking. Local image and video
features have been successfully used for many tasks such as ob-
ject and scene recognition [23] as well as human action recogni-
tion [9,12,24,32]. Local spatio-temporal features are able to capture
characteristic shape and motion in video. They can focus on specific
events independently of their shifts and scales, as well as background
clutter and multiple motions in the scene. The feature extraction pro-
cess usually includes two discrete steps. The first deals with spatio-
temporal interest point detection, that is usually performed directly
on the videos, using a detector which maximizes a specific saliency
function as in [9, 17, 37]. The second step includes the computa-
tion of local descriptors which employ video measurements such as
gradients, optical flow and energy to encode local appearance and
motion information in a neighbourhood of the detected points.

Laptev and Lindenberg in [22] introduce the Harris3D detec-
tor, an extension of the Harris edge detector [13] in 3 dimensions.
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Dollár et al. [9] argued against detection criteria such as spatiotem-
poral edges and suggested a detector relying on Gaussian smooth-
ing in the spatial dimensions and a pair of Gabor filters in quadra-
ture [1, 20] applied to the temporal dimension. Georgakis et al. [12]
introduced the DCA3D detector, which is based on multichannel fil-
tering via Gabor filters and Dominant Component Analysis. First,
the filtering process takes place in the 2 spatial dimensions and then
the dominant component volume is filtered by temporal filters to lead
to the final energy volume and the selection of interest points.Wang
et al. [35] introduced dense trajectories and motion boundary his-
tograms to deal with the task of action recognition. They further
extended their ideas by estimating and cancelling the camera motion
from optical flow computations leading to higher performances.

Many different local descriptors have been proposed in the past
few years [4,19,23,24,33,37]. Descriptors are used to represent each
feature by measurements in their neighbourhood area. An overview
of detectors and descriptors can be found in Wang et al. [36].

The above methods, followed by the Bag-of-Features (BoF) ap-
proach [24, 29, 32, 34] and classification with Support Vector Ma-
chines (SVMs), have lead to high accuracy results in many appli-
cations. Bettadapura et al. [2] proposed a variation of BoF that
takes advantage of the temporal information given in an action video,
named Augmented Bag-of-Words.

Several different methods for the task of action recognition have
been proposed in [3, 30, 31, 38, 39]. Evaluations in several action
datasets with different experimental setups have been performed us-
ing different approaches through the literature.

In this paper we propose a new visual framework for action
recognition. We employ physiologically inspired 3D Gabor filters
that cover both the spatial and the temporal frequency domain in or-
der to detect spatio-temporal energies. In this approach we use the
3D extension of non-linear Teager-Kaiser Energy Operator (TKEO)
[18,25] together with ideas from Dominant Energy Analysis in order
to select the energy value for each voxel of the videos. This novel
spatio-temporal interest point detector tracks energy of both texture
and motion through biologically plausible Gabor filters, which are
applied simultaneously in space and time. The resulting multiband
energies are processed further to formulate dominant energy repre-
sentations that lead to local features which successfully deal with the
task of action recognition.

The remainder of this paper is organized as follows. In Section
2, we present the spatio-temporal energy detector. In Section 3 we
describe the process of interest point extraction and classification of
the videos. The experimental framework is provided in Section 4
and finally Section 5 concludes this paper.

2. SPATIO-TEMPORAL ENERGY DETECTOR: THE
GABOR3D ALGORITHM

Our energy-based model for spatio-temporal interest point detection
for action classification uses biologically plausible spatio-temporal
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filters, like oriented 3D Gabor filters, in order to extract visual fea-
tures which are considered to describe actions efficiently. The over-
all processing for interest point detection is shown in Fig. 1. In a first
phase the initial RGB video volume is transformed into grayscale.
Then follows the main process step, called Spatio-Temporal Energy
Analysis (STEA), which is applied directly to the grayscale video
volume. The last stage includes the interest point extraction process,
in which the 3D local maxima of the resulting energy volume are
considered as the interest points of the input video.

Fig. 1: Spatio-temporal interest point detection with the Gabor3D algorithm
of a sample video of Boxing action of KTH Action Dataset. The input video
is processed by the Gabor filterbank and the video energy is computed. The
interest points are selected as the thresholded local maxima of the 3D energy
volume.

Spatio-Temporal 3D Gabor Filtering
The first step of STEA is the filtering process of the video volume.
Among the filtering approaches that have been proposed based on
psychophysical experiments, the two with the widest acceptance are
the Gabor filters and the Gaussian Derivatives (GD). We choose to
use oriented Gabor filters in a spatio-temporal version, due to their
biological plausibility and their uncertainty-based optimality [6,11].
In addition, for high order derivatives the GD filters are approxima-
tions of the Gabor filters [21].

GD filters combined with their Hilbert transform (quadrature
pair) are widely used in many spatial and spatio-temporal tasks [7,
8, 28], mainly because they can be implemented in an efficient way
since they are steerable [10]. Gabor filters, on the other hand, are not
strictly steerable mathematically, but as Heeger [15,16] showed they
can become separable, which means that a high dimensional Gabor
filter can be built from 1D Gabor impulses responses.

So, we apply quadrature pairs of 3D (spatio-temporal) Gabor
filters with identical central frequencies and bandwidth. These filters
can arise from 1D Gabor filters [11] in a similar way as Daugman
proposed 2D Oriented Gabor Filters [5]. An 1D complex Gabor filter
consists of a complex sine wave modulated by a Gaussian window.
Its impulse response with unity norm has the form:

g(t) =
1

√
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exp
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)
exp(jωt0 t) = gc(t) + jgs(t) (1)

The above complex filter can be split into one odd(sin)-phase (gs(t))
and one even(cos)-phase (gc(t)) filters, which form a quadrature
pair filter. Almost all Gabor filters are bandpass filters whose cen-
ter frequency coincides with their modulating frequency ωt0 ; the
only exception where they become lowpass filters is when ωt0 = 0,
which makes them Gaussians. Thus, we can cover the whole spatio-
temporal 3D spectral domain with Gabor filters whose frequency re-
sponses are centered around specific frequencies.

The 3D Gabor extension (as for example used for optical flow
in [16]) yields an even (cos) 3D Gabor filter whose impulse response
is:
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where ωx0 , ωy0 , ωt0 are the spatial and temporal angular center fre-
quencies and σx, σy, σt are the standard deviations of the 3D Gaus-
sian envelope. Similarly for the impulse response of odd (sin) filter
which we denote by gs(x, y, t).

The frequency response of an even (cos) Gabor filter consists
of two Gaussian ellipsoids symmetrically placed at frequencies
(ωx0 , ωy0 , ωt0) and (−ωx0 ,−ωy0 ,−ωt0). Figure 2 shows isosur-
faces of the 3D spatio-temporal filterbank as well as a top view of a
filterbank slice designed at some temporal frequency ωt0 . Note that
the symmetric lobes of each filter appear at the plane defined by the
temporal frequency −ωt0 in contrast with the 2D case. So, if we
want to cover the spatial frequency plane at each temporal frequency
we must include in our filterbank both positive and negative tempo-
ral frequencies. Further, the bandwidth of each filter varies with the
spatial scale and temporal frequency.

For the spatio-temporal filterbank we used N = 400 Gabor
filters (isotropic in the spatial components) which are arranged in
five spatial scales, eight spatial orientations and ten temporal fre-
quencies. The spatial scales and orientations are selected to cover
a squared 2D frequency plane in a similar way to the design by
Havlicek et al. [14]. Then both center frequencies and Gaussian
bandwidths are divided by the spatial sampling frequencies in or-
der to get discrete filters with normalized frequency parameters that
can be directly applied at every image size. We note that this process
can lead to anisotropic spatial Gabor filters for non-square images,
although the original design includes isotropic filters.

We use ten temporal Gabor filters, five at positive and five at neg-
ative center frequencies due to the 3D spectrum symmetries. These
are linearly spaced to span the normalized frequency axis and each
filter’s half-peak octave bandwidth is 0.75 octaves. Figure 2 shows
spatio-temporal views of our design. Note that including both pos-
itive and negative frequencies does not increase the filtering com-
plexity because, due to Gabor filters’ separability, no additional con-
volutions are needed but only changing the signs at (3)-(4).

Reducing the complexity of the 3D filtering process
The 3D filtering is a time consuming process due to the complexity
of all required 3D convolutions. However, Gabor filters are sepa-
rable [15, 16], which means that we can filter each dimension sepa-
rately using an impulse response having the form (1). In this way, we
apply only 1D convolutions instead of 3D, which increases the effi-
ciency of the computations. Then the 3D output can be easily com-
posed from 1D filtering outputs by using simple trigonometric prop-
erties in two steps (first 2D and then 3D). First, we compose the 2D
spatial output from the impulse responses gc(x), gs(x), gc(y), gs(y)
for both the even- and odd-phase filter:
y
2D
c (x, y, t) = (V (x, y, t) ∗ gc(x)) ∗ gc(y) − (V (x, y, t) ∗ gs(x)) ∗ gs(y)

y
2D
s (x, y, t) = (V (x, y, t) ∗ gs(x)) ∗ gc(y) + (V (x, y, t) ∗ gc(x)) ∗ gs(y)

where V is the grayscale video volume. Then the 3D output corre-
sponding to spatio-temporal filtering can be obtained by convolving
the above 2D output with the 1D temporal impulse responses:

y3Dc (x, y, t) = y2Dc (x, y, t) ∗ gc(t)− y2Ds (x, y, t) ∗ gs(t) (3)

y3Ds (x, y, t) = y2Dc (x, y, t) ∗ gs(t) + y2Ds (x, y, t) ∗ gc(t) (4)

For an image of size n×n×n and a convolution kernel ofm×m×m
the complexity is reduced from O(n3 ·m3) that is required for 3D
convolutions to O(3n3 ·m) that is required for three separable 1D
convolutions. Color is also a factor that can be ignored without seri-
ous loss of information for the action recognition task. The conver-
sion of a colored video to grayscale is a process that reduces its size
to 1/3 of its original size.
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The number of Gabor filters used for extracting the energy maps
can be adjusted to reduce further the time consumed by the filter-
ing process. Experimental results presented in Section 4 show that
using a reduced version of filterbank in space (Fig. 2b) instead of
the filterbank proposed by Havlicek et al. [14] (Fig. 2a) results in
approximately the same recognition accuracy.

(a) Full filterbank at ωt0
and −ωt0

(top view).
(b) Reduced filterbank at ωt0

and
−ωt0

(top view).

(c) Spatio-Temporal Filterbank at 5
different spatial scales, 1 of 8 orienta-
tion and 5 temporal frequencies of the
full filterbank.

(d) Spatio-Temporal Filterbank at 5
different spatial scales, 8 spatial orien-
tations and 3 of 5 temporal frequencies
of the full filterbank.

Fig. 2: Isosurfaces of the 3D Spatio-Temporal Filterbank and a top view of
a filterbank slice designed at temporal frequency ωt0 , for the full and the
reduced version. Isosurfaces correspond at 70%-peak bandwidth magnitude
while different colors are used for different temporal frequencies. We can
see that the symmetric lobe of each filter appeared at the plane defined by the
temporal frequency −ωt0 in contrast with the 2D case.

Parameters of the Gabor3D detector for Action Classification
While designing the Gabor3D detector, we had to select among dif-
ferent alternatives of the following parameters: the type of energy to
be used, the type of Gabor filters and the way of handling the output
energy volumes of all filters.

First of all, for the type of energy we had to choose between the
simple square energy and the Teager-Kaiser energy. Square energy
ES(·) is defined as: ES(f(x, y, t)) = f2(x, y, t) where f(x, y, t)
is the output of the filtering process at a pixel (x, y, t). The Teager-
Kaiser Energy Operator (TKEO) [18] Ψ[s(t)] ≡ [s′(t)]2−s(t)s′′(t)
has facilitated the energy representation of signals modeled by non-
stationary sinusoids, with amplitude and frequency modulation
(AM-FM) of the form s(t) = a(t)cos(φ(t)). The estimation of
the Teager-Kaiser energy of a signal presupposes the fact that it is
narrowband [26], which in our case is implemented through band-
pass Gabor filtering. Maragos and Bovik [25] extended TKEO to
signals of higher dimensions. In our approach we make use of the
3D TKEO Φ(·) which is defined as:
Φ(f) ≡ ‖∇f‖2 − f · ∇2f = f2x + f2y + f2t − f · (fxx + fyy + ftt)

where f = f(x, y, t). The discrete Teager-Kaiser energy used in
our experiments is an outcome of the discretization of the spatial
and temporal derivatives and is defined as:

Φd[f [x, y, t]] = 3f
2
[x, y, t] − f [x− 1, y, t] · f [x+ 1, y, t]

− f [x, y − 1, t] · f [x, y + 1, t] − f [x, y, t− 1] · f [x, y, t+ 1]

The motivation for using the TKEO is its ability to track spatio-
temporal energy oscillations and separate them into their amplitude
and frequency components with excellent spatio-temporal resolution
and very small complexity.

The second choice that has to be made concerns the type of
Gabor filters. We have to choose between simple cosine filters
and quadrature filters, supported by [20] and [1]. If fc(x, y, t) and
fs(x, y, t) are the outputs of the video filtered by the cosine and
the sine Gabor filters, the energies resulting from a simple cosine
Gabor filter and a pair of Gabor filters in quadrature respectively are
defined as:

Ecos(x, y, t) = E(fc(x, y, t)) (5)
Equad(x, y, t) = E(fc(x, y, t)) + E(fs(x, y, t)) (6)

where E(·) is defined as the general energy operator. In our case,
(5) and (6) can be defined for both Square and Teager-Kaiser energy
by substituting E(·) with ES(·) and Φ(·), respectively. Filters in
quadrature (or filters in 90◦ phace difference) are used to detect dif-
ferent type of edges. In the case of Gabor functions, this is easy to
implement by simply using the sine and cosine versions of the same
filter and squaring the outputs of those two as described in (6).

As presented in Fig. 1, the energy outputs of all 400 filters are
handled by some operator in order to obtain the final energy map of
each video. We used some ideas from Dominant Energy Analysis
(DEA), as in [12], where the energy of the most dominant channel is
considered as the energy value in each voxel:

Emax(x, y, t) = max
1≤k≤N

Ek(x, y, t) (7)

where Ek(x, y, t) is the energy output of the k-th filter (or filter pair
in case of quadrature filters) and N is the total number of the fil-
ters. We compared the performance of DEA with an other approach
where we compute the average value of all filters as the final energy
representation, which is equivalent to the superposition of all outputs
divided by the number of filters:

Eave(x, y, t) =

N∑
k=1

Ek(x, y, t)/N (8)

We evaluated those parameters to select the combination that leads
to the most suitable interest points for our approach regarding the
task of action classification. Specifically, the evaluation was per-
formed on the KTH Action Dataset [32] due to its simplicity, and
the combination that lead to the highest classification accuracy was
selected for the Gabor3D interest point detector. Finally, we used
Teager-Kaiser Energy, Gabor filters in quadrature and Dominant En-
ergy Analysis since they achieved the highest recognition accuracy.

3. ACTION CLASSIFICATION WITH INTEREST POINTS
So far we have described the Gabor3D detector until the point where
the energy map is computed. In our approach, the next step is to
extract spatio-temporal interest points. Interest points are a set of
voxels, each defined by (x, y, t) in a neighbourhood of which we
make some measurements. Those interest points are extracted from
the energy map, as the local 3D maxima of the final energy volume,
as shown in Fig. 3. To reduce the false alarms we use non-maxima
suppression. Specifically, a threshold is put to the values of detected
maxima, and values lower than the threshold are ignored.

The interest points resulting from Gabor3D algorithm are used
for the classification of the actions. We have extracted a number
of voxels, that constitute the local regions of interest in a video.
To complete the recognition process we cascade the detected points
with post processing that has three parts: computation of a local de-
scriptor in a neighbourhood around each interest point, construction
of the Bag-of-Features histograms and classification with SVMs.
The block diagram of the entire process can be found in Fig. 4.
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Fig. 3: Spatio-temporal interest point detection in a Hollywood2 video. Interest points are defined as the thresholded 3D local maxima of the energy volume.

Fig. 4: For each interest point a descriptor is computed. Each descriptor is
considered as a visual feature so descriptors resulting from all the interest
points represent a video as the bag of visual features histogram (BoF). At
last, the BoF histogram is classified by an SVM classifier.

4. EXPERIMENTAL RESULTS

For the experimental evaluation of our methods, we conducted action
classification experiments in two databases, the KTH and the Holly-
wood2 datasets. We compare our work to popular methods based on
interest points such as Harris3D [24] and Cuboids [9].

The KTH Action Dataset [32] contains six types of different hu-
man action classes: walking, jogging, running, boxing, waving and
clapping. Each action is performed several times by 25 annotators.
The sequences were recorded in four different scenarios: outdoors,
outdoors with scale variation, outdoors with different clothes and in-
doors. The actions are simple and performed without background
noise. In total, the dataset consists of 2391 video sequences. We
follow the experimental setup of Schüldt et al. [32] to be able to
compare the results to the results reported in [36].

Interest points are detected with Gabor3D algorithm while we
experiment with HOG/HOF [24] and HOG3D [19] descriptors and
classification with χ2-kernel SVMs is performed to the BoF his-
tograms. Our accuracy of 93.5% outperforms the 91.8 % published
in [24] (90.38 % in our experiments) as shown in Table 1. Table 2
shows the confusion matrix of our best result. As expected, the
biggest confusion occurs between Jogging and Running due to the
similarity of the actions. No confusion occurs between hand based
and foot based actions. We should mention that the accuracy ob-
tained by using the reduced version of the filterbank shown in Fig. 2b
is almost the same as the one with the original filterbank of 400 fil-
ters. The reduced version employs a smaller number of 120 Gabor
filters and yields in about 4 times faster execution of the algorithm.

Method Accuracy
Descriptor DCA3D Cuboids Harris3D Gabor3D Gabor3D

(Full) (Reduced)
HOG/HOF 78.8% 88.7 % 91.8% 91.2% -

HOG3D - 90.0 % 89.0% 93.5% 93.4%

Table 1: Mean accuracy of various methods for the KTH Action Dataset.
The reduced Gabor3D algorithm seems to perform as well as the full version
with 400 filters.

Action Walking Jogging Running Boxing Waving Clapping
Walking 1.00 0 0 0 0 0
Jogging 0.03 0.88 0.09 0 0 0
Running 0 0.20 0.80 0 0 0
Boxing 0 0 0 1.00 0 0
Waving 0 0 0 0 0.95 0.05
Clapping 0 0 0 0.02 0 0.98

Table 2: Confusion Matrix of classification experiments on KTH Action
database with Gabor3D algorithm. Mean accuracy is 93.5 %.

In Table 3 we show the average accuracy of our method while
changing the kernel of the SVMs, the type of energy and the way
of handling the output of the filters. The combination of χ2-SVMs,
Teager-Kaiser Energy and Dominant Energy Analysis leads to the
highest accuracy.

Linear SVMs χ2 SVMs
Max Sum Max Sum

Squared Energy 90.85% 89.34% 92.35% 90.61%

Teager-Kaiser Energy 91.31% 90.73% 93.50% 92.47%

Table 3: Mean Accuracy of the KTH Action Dataset Classification task while
changing the parameters of the detection. χ2 kernels perform better than Lin-
ear kernels, while Dominant Energy Analysis (Max) outperforms Energy Su-
perposition (Sum) and Teager-Kaiser energy gives better results than Squared
energy.

The Hollywood2 Action Database [27] contains 12 action
classes collected from 69 different Hollywood movies: answer-
ing the phone, driving car, eating, fighting, getting out of the car,
hand shaking, hugging, kissing, running, sitting down, sitting up,
and standing up. In our experiments, we used the clean training
dataset for the training process and we evaluated our method in the
test set, as in [36]. In total, there are 1707 action samples divided
into a training set (823 sequences) and a test set (884 sequences).
Train and test sequences are obtained from different movies. The
performance is evaluated as suggested in [27] by computing the
average precision (AP) for each of the action classes and reporting
the mean AP over all classes (mAP).

In Table 4 we compare our method to the results reported in
[36]. Our method seems to give slightly better results than Cuboids
[9] and Harris3D [23] detectors when using the same experimental
setup. As local descriptor we chose HOG3D which showed the best
performance for the KTH Action Dataset. It is necessary to say that
the Hollywood2 database contains actions with noise, background
motion and great variance in scale and the performances of each
subject. So, the precision scores in every method is significantly
lower than the KTH Action Dataset.

Method Cuboids Harris3D Gabor3D
mAP 46.2% 45.2% 47.7%

Table 4: Mean average precision (mAP) of various methods for the Holly-
wood2 database. Comparison to the results reported in [36] with the same
experimental setup. HOG3D is used as local descriptor in our experiments.

5. CONCLUSIONS
We proposed a new video energy tracking method that relies on de-
tection of multiband spatiotemporal modulation components. The
resulting energy volume is used as a basis for sparse space-time fea-
ture extraction in order to classify action videos. Experimental re-
sults show relatively higher results compared to other popular detec-
tors in both KTH and Hollywood2 action databases. As future work,
we would like to focus on improvement of action localization and
extention of our experimental comparisons to more databases.
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[19] A. Kläser, M. Marszalek, and C. Schmid. A spatio-temporal
descriptor based on 3D-Gradients. In Proc. BMVC, 2008.

[20] H. Knutsson and M. T. Andersson. What’s so good about
quadrature filters? In Proc. ICIP, 2003.

[21] J. J. Koenderink and A. van Doorn. Representation of local ge-
ometry in the visual system. Biol. Cybern., 55:367–375, 1987.

[22] I. Laptev and T. Lindeberg. Space-time interest points. In Proc.
ICCV, 2003.

[23] I. Laptev and T. Lindeberg. Local descriptors for spatio-
temporal recognition. In Proc. SCVMA, 2004.

[24] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learn-
ing realistic human actions from movies. In Proc. IEEE Conf.
CVPR, 2008.

[25] P. Maragos and A. C. Bovik. Image demodulation using multi-
dimensional energy separation. J. Opt. Soc. Amer., 12(9):1867–
1876, 1995.

[26] P. Maragos, J. F. Kaiser, and T. F. Quatieri. Energy separa-
tion in signal modulations with application to speech analysis.
IEEE Trans. Signal Processing, 41(10):3024–3051, 1993.

[27] M. Marszalek, I. Laptev, and C. Schmid. Actions in context.
In Proc. IEEE Conf. CVPR, 2009.

[28] D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to detect
natural image boundaries using local brightness, color, and tex-
ture cues. IEEE Trans. PAMI, 26(5):530–549, 2004.

[29] J. C. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learning
of human action categories using spatial-temporal words. Int’l
J. Comp. Vision, 79(3):299–318, 2008.

[30] R. Poppe. A survey on vision-based human action recognition.
Image and Vision Computing, 28(6):976–990, 2010.

[31] S. Sadanand and J. J. Corso. Action bank: A high-level rep-
resentation of activity in video. In Proc. IEEE Conf. CVPR,
2012.
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