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ABSTRACT

To estimate the amplitude envelope and instantaneous fre-
quency of an AM-FM signal we develop a novel approach
that uses nonlinear combinations of instantaneous signal
outputs from an energy-tracking operator to separate 1ts
output energy product into i1ts amplitude modulation and
frequency modulation components. This energy separa-
tion algorithm is then applied to search for modulations in
speech resonances, which we model using AM-FM signals.
Our theoretical and experimental results demonstrate that
the energy separation algorithm, due to its low computa-
ticnal complexity and nstantaneously-adapting nature, is
very useful in detecting modulation patterns in speech and
other time-varying signals.

1. INTRODUCTION

Oscillatory signals that have both an amplitude-modulation
(AM) and a frequency-modulation (FM) structure are en-
countered 1n almost all communication systems. We have

used such real-valned AM-FM signals

r(t) = a(t) cos[¢(t)] = a(t) cos(w.t + wm/'; g(7)dr + 8)

to model time-varying amplitude and frequency patterns in
speech resonances [6]. Note that z(?) is a cosine of carrier
frequency w. with a time-varying amplhtude signal a(?) and
a time-varying tnstantaneous angular frequency signal

wit) 2 L (1) = we + wma(®)
t
where |¢(t)] € 1, wm € [0,w.] is the maximum frequency
deviation, and 8 is a constant phase offset.
In this paper we develop an eflicient approach to esti-
mating the time-varying amplitude envelope |a(?)| and in-
stantaneous frequency w;(?) of an arbitrary AM-FM signal,
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based on the energy-tracking operator

=02 (£0) - 20E20 = BOF - 2(0:)

where £ = dz /dt, and its discrete-time counterpart

Ualz(n)] = 2%(n) — z(n — )z(n + 1)

for discrete-time signals £(n), n = 0,+1,42,.... These en-
ergy operators were developed by Teager [1, 2] in his work
on modeling speech production and were first introduced
by Kaiser [3, 4. When ¥. is applied to signals produced
by simple harmonic oscillators, it can track the oscillator’s
energy (per half unit mass), which is equal to the squared
product of the oscillation amplitude and frequency. The en-
ergy operators are also very useful for analyzing oscillatory
signals with time-varying amplitude and frequency. Specif-
ically, we have shown [5, 6] that ¥, applied to an AM-FM
signal can approximately estimate the squared product of
the amplitude a and instantaneous frequency w; signals; 1.e.,

U la(t) cus(/ wi(r)dr + 8)] = [a(t)wi(1)] (1)

assuming that the signals ¢ and w, do not vary too fast (time
rate of change of value) or too greatly (range of value) in
time compared to the carrier frequency w..

In Section 2 we develop an elegant approach for separat-
ing the amplitude from the frequency signal in the ocutput
energy product of ¥.. We call this the energy separation al-
gorithm because an oscillator’s energy depends on the prod-
uct of amplitude and frequency and because energy-tracking
operators are used. In Section 3 we develop separation al-
gorithms for discrete-time signals. Section 4 discusses the
application of these algorithms to track amplitude and fre-
quency modulations in speech resonances, 1.e., signals re-
sulting from bandpass filtering speech vowels around their
formants.

2. ENERGY SEPARATION

First we present some closed-formula solutions for exact es-
timation of the constant amplitude and frequency of a co-
sine and then show that the same equations approximately
apply to an AM-FM signal with time-varying amplitude
and frequency. To simplfy notation, we henceforth drop
the subscripts from the continuous and discrete energy op-
erator symbols and use ¥ for both.
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CosINE: Consider a cosine z{1) with constant amplitude
A and frequency w. > 0 and its derivative

z(t) = Acos(wct +8) ; (1) = —Awsin(w.t + 8)
Then applying ¥ yields
V[s(t)] = A%wZ ; U[z(1)] = A%w)

Hence the constant frequency and the absolute amplitude
of the cosine can be obtained from the equations

o \/\P[:e(t)] 14 = =)
j V[z(t)] VE®)]

AM-FM SiGNALS: Let z(t) = a(t) cos[¢(t)] be an AM-
F'M signal. Its denivative 1s

(1) = a(t) cos[p(t)] — a(t)wi(t) sin[4(2)]
\T \Tf

To make (1) a valid approximation and the analysis of
W(x), ¥(z) tractable, we henceforth assume that

(CA1): a and ¢ are bandhmited with highest frequencies
wg and wy respectively, and wq, ws € w..

(CA2): w2 + wmw § €& (we + wm)z.

Further, if we define the order of magnitude of a signal
z to be Oz} = O(zmaz) Where zmaer = max; |z(t)|, then
O(y1) = Oawq) and O(y2) &~ Oaw;). (See [5, 7] for de-
tails and proofs.] Since O{wa) € O(w;), by ignoring y1 we
obtain the approximation

P{i(t)] = Pla(t)wi(t)sin ¢(1)] m a* () wi (1) (2)
By combining (2) and (1) we obtain

Ve] Ve(t)
\/w[m(tn a Y

‘This is the continuous energy separation algorithm (CESA).
At each time instant i1t estimates the instantaneocus fre-
quency and the amplitude envelope by using only the two
instantaneous output values from the energy operator ap-
plied to the signal and its derivative. Although we de-
rived the CESA by assuming bandlimited modulating sig-
nals, there are also other special cases of AM-FM sig-
nals, where the CESA will still yield approximately cor-
rect solutions. Examples include FM /Linear (chirp) signals
Acos(w:t + wmt? /2L + #), 0 <t < L, whose amplitude
and lnear instantaneous frequency can be estimated wia
the CESA provided that {(wm/L) € (w: + wm)*.

For the validity of the CESA 1t 1s assumed that
U(z), ¥(z) > 0. There are large classes of signals satisfying
this condition [7); e.g., all AM-FM signals whose modu-
lation amounts do not exceed 50% and wa,ws < w:/10.
During our discrete simulations of the CESA on noise-free
AM-FM and bandpass filtered speech signals we rarely
encountered negative W{z) values, which appeared to be
due to round-off errors. Note also that at times fo when
U[z(to)] = 0, we have a{to) = 0 if w; is assumed always
positive. At such rare time instants we need additional
information to estimate w;(tg). For example, in our dis-
crete simulations we interpolated wi(to) from its immediate
neighbors.

3. DISCRETE ALGORITHMS

By using the discrete energy operator and approximating
derivatives with differences, we derive two algorithms for

discrete-time AM-FM signals

z(n) = a(n) cos[¢(n)] = a(n) cos{§lcn + O / g(k)dk + 9)
0

to estimate their instantaneous frequency

i(n) = %%(n) = {1 + Qmyg(n)

where 0 < 1, < §2,, {g(n)]| <€ 1, and to estimate their
amplitude envelope. For mathematical tractability, we an-
alyze only two classes of such signals: (i) AM-FM/Cosine
where g(n) = cos(Qyn), and (i) AM-FM/Linear where
¢g{(n) =n/N with n =0,1,.., N. Note that the continuous-
time frequencies we, wm, and w; have been replaced by their
discrete-time counterparts §3., Q.,, and ;. All discrete-
time frequencies are assumed to be in [0, 7].

3.1. DESA-2
As we showed in [3, 6, 7],

¥[a(n) cus(/n Qi(m)dm + 8)] = a*(n)sin?[Qi(n)] (3)

under the assumptions
(DA1): a has bandwidth {2, < €1..

(DA2): 8sin®[(Qa + 24)/2] € [sin* ()] maz.
(DA3): (a) Q5 € 1 for AM-FM/Cosine; or
(b) (m/N) < [5in*(£2i))maz for AM-FM/Linear.
In general [5in?(£2:)]mae = 5in°(Qe + Q) if Qe + O <
x/2. Now consider the symmetric difference of z

s(n) = [z(n+ 1) — z(n — 1)]/2

As we showed in [7], s(n) =2 —a(n)sin[Q};(n)]sin[¢(n)], and
(if Q,, <€ 1) its envelope has an effective bandwidth <
Q. + §27. Hence, by (DA1)-(DA3),

Ufs(n)] & o*(n) sin’ [Q(n) (4)

From (3) and (4), we obtain the following formulas for esti-
mating the time-varying frequency and amplitude envelope:

arcsin Viznt]) ~oln—1) ~ {n
(\/ 49[z(n)] ) hiln)
2¥[z(n)]

\/\I’[.r.(n + 1) — z(n — 1)]

This is the DESA-2 algorithm, where ‘2’ implies the ap-
proximation of first-order derivatives by differences between
samples whose time indices differ by 2. The frequency es-
timation part assumes that 0 < :(n) < /2 because the
computer’s implementation of arcsin(uz) function assumes
that ju] < x/2. Thus the DESA-2 can be used to es-
timate instantaneous frequencies < 1/4 the sampling fre-
quency fs. Using 2f, as sampling frequency allows the
DESA-2 to estimate frequencies up to f./2. Note that,
if z(n) = Acos(f}.n + 8}, then the DESA-2 formulas yield
the exact constant frequency and amplitude.

=~ |a(n)|



3.2. DESA-1

An alternative discrete algorithm results if we replace
derivatives with backward and forward differences

y(n)=z(n)~—z(n-1) ; z(n)=z(n+1l)—z(n)=y(n+1)
By working as for the DESA-2, we showed in [7] that

U[y(n)] =~ 4a®(n)sin’[Qi(n — 0.5)/2]sin*[%(n — 0.5)]
PU[z(n)] = 4a°(n)sin’[Qu{n + 0.5)/2]sin’[Qi(n + 0.5)]
By averaging these two results and assuming that the shifts

by +1/2 and —1/2 sample (which correspond to a small
error in §);) approximately cancel cut, we obtain

Viy(n)] + ¥[z(n)]
2

= 4a’(n)sin’[Q:(n)/2] sin’[Qi(n)] (5)

Thus, the action of ¥ on asymmetric differences is partially
‘symmetrized’ by averaging its action on two opposite dif-
ferences. Then combining (3) and (5) yields

_ Yy(n)] + ¥[y(n + 1))
+¥o(n)
arccos[G(n)] = Qi(n)

V{z(n)]
Jl T GE(H) |ﬂ(ﬂ')|

We call this the DESA-1 algorithm, where ‘1’ implies the
approximation of derivatives with a single sample difference.
The frequency estimation part assumes that 0 < ;(n) < .
Thus, the DESA-1 algorithm can estimate instantaneous
frequencies up to 1/2 the sampling frequency.

In [7] we compared the {mean absolute and rms) errors
of the two DESAs in estimating the amplitude and fre-
quency of synthetic AM-FM signals. On the average (for
AM and FM amounts of 5%-50%) both DESAs yielded very
small errors in the order of 1% or less. While the DESA-1
yielded slightly smaller errors than the DESA-2, the lat-
ter 1s shghtly faster and leads to a simpler mathematical
analysis. All the experiments 1n this paper were done us-
ing the DESA-1. Figure 1 demonstrates that the DESA
performs quite well in approximately estimating the time-
varying amplitude and frequency of AM—FM signals despite
the large amounts of modulation.

1

u

4. SPEECH RESONANCE ANALYSIS

By ‘speech resonances’, also called ‘formants’, we loosely
refer to the oscillator systems formed by local cavities of
the vocal tract emphasizing certain frequencies and de-
emnphasizing others duning speech production. Teager’s ex-
perimental work provided evidence that speech resonances
can change rapidly within a single pitch period, possibly
due to the rapidly-varying and separated speech airflow in
the vocal tract [1, 2]. It is also known that time variations
of the elements of simple harmonic oscillators can result
in amplitude or frequency modulation of the simple oscil-
lator’s cosine response. The above evidence motivated in
our work [6, 7] the modeling of a single speech resonance
within a pitch period by an exponentially-damped AM-FM

signal r"a(n) cos[¢(n}], where the instantaneous frequency
2i(n) = Q:42mg(n) models the deviation of a time-varying
formant from its center value §2., r € (0, 1) is related to the
rate of energy dissipation, and the time-varying amplitude
and frequency modulating signals a,¢ are cosines or some
similar oscillatory signals.

Figure 2(a) shows a segment s(n) of a speech vowel /E/
sampled at 30 kHz. A speech resonance signal z(n) was
extracted around a formant at f, = 3400 Hz by con-
volving s(n) with a bandpass (abor filter’'s impulse re-
sponse h(t) = exp(—a’t®)cos(2xf.t) properly discretized
and truncated [6] with & = 1000. Fig. 2(b) shows the esti-
mated (via DESA) amplitude signal, where we see a strong
AM modulation and two pulses per pitch period. These
multiple pulses are almost identical to the ‘energy pulses’
[2] observed in ¥[z(n)], which provide evidence that speech
resonances exhibit a structure that cannot originate from
a linear time-invariant resonator model because applying
¥ to its impulse response £(n) = Ar" cos(fl.n + 6) yields
a decaying exponential ¥[{(n)] = A*r®"sin®(£2.) without
any multi-pulse structure. The estimated instantaneous fre-
quency in Fig. 2(c) oscillates around its center value with a
deviation that can reach 200 Hz. It contains some isolated
narrow spikes, which are usually caused either by ampli-
tude valleys or by the onset of a new pitch pulse. We elim-
inate some of these spikes by post-smoothing the frequency
signal via a median filter. Excluding these narrow spikes,
in vowels the instantaneous frequency and amphtude en-
velope profiles follow simple oscillatory, roughly sinusoidal,
patterns. We have seen similar numbers (2-4) of amplitude
pulses and formant frequency oscillations within a pitch pe-
riod in many other of our experiments with signals from
speech vowels. In a few cases of signals from low formants
of vowels we observed only one energy pulse per pitch pe-
riod. This may be partially explained by a large amount of
damping, or by a low amount of modulation for the specific
speaker /sound /formant combination. Usually, we observed
stronger modulations in higher formants.

Qur AM-FM model of a single resonance does not ex-
plicitly take into consideration the facts that actual speech
vowels are quasi-periodic and usually consist of multiple res-
onances. Both of these phenomena may affect the DESA
estimates. The pitch periodicity induces narrow spikes m
the amplitude and (mainly} the frequency signal around
the onset of each pitch pulse [7]. The effect of neighbor-
ing formants that have not been completely rejected by the
bandpass filter is to cause ‘parasitic’ FM and AM modu-
lations, which have a smaller order of magnitude than the
main observed modulations {7].

We have also applied the DESA to synthetic speech vowel
signals produced by linear resonators with constant for-
mants and excited by periodic impulse trains. As Fig. 3
shows, the estimated amphtude envelopes consisted of
exponentially-decaying segments and the estimated instan-
taneous frequency signals were roughly constant, both in-
terrupted by discontinumity jumps close to onsets of pitch
pulses. In contrast to the linear synthetic case, the DESA
has uncovered oscillatory pulses in the amplitude and fre-
quency signals of real speech resonances, which indicates
the existence of modulations.
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Figure 1: {a) AM-FM signal a(n) cos{0.2x(n — 100) + x(n — 100)*> /4000] for n = 0,...,200 and a(n)cos[0.25x(n — 200) —
x(n — 200)% /4000 + ] for n = 201, ...,400, where a(n) = [1 + 0.25 cos(7xn/100)]. (b) Estimated amplitude envelope using
DESA-1. (¢) Estimated instantaneous frequency (as fraction of 7); dotted line shows average value of true i(n}/~.
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Figure 2: (a) Signal from speech vowel. (b) Estimated amplitude envelope of a resonance around 3400 Hz using DESA-1.
(c) Estimated instantaneous frequency, smoothed by an 11-point median filter; dotted line shows center formant value.
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Figure 3: (a) Signal from synthetic speech vowel with one formant at 1500 Hz and pitch frequency of 100 Hz. (b) Estimated
amplitude envelope using DESA-1. (¢) Estimated instantaneous frequency.
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