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Abstract. Lattice control can unify nonlinear control systems where the basic vector and
signal superpositions or transformations are based on the lattice supremum and infimum.
In this paper we introduce a special case of lattice control that can model fuzzy dynamical
systems in state space. Vector and signal transformations are represented as lattice dila-
tions or erosions. The state and output responses are computed via supremal convolutions
based on fuzzy norms. Causality and stability issues are studied. Finally, solutions to the
controllability and observability problem are found using lattice adjunctions.
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1. Lattice Model for Max and Min Control

In [7, 8, 6] a unified model was proposed based on lattice theory for large classes
of nonlinear control systems, such as discrete event dynamical systems, recur-
sive morphological filters, and fuzzy dynamical systems. Lattice morphology
[9, 3] is ideally suited to studying such systems because all vector and signal op-
erations and mappings involved can be expressed as morphological operators,
and solutions to important control issues such as responses, stability and con-
trollability are obtained using simple lattice-theoretic morphological concepts.
In this paper we examine a special case of lattice control systems applicable to
fuzzy dynamical systems.

In classical linear control the state vectors, the input/output signals, and
the system matrices take values from the field of reals equipped with standard
addition and multiplication. In lattice control we take the set V of scalars to be
a complete sublattice of R and equip it with the standard real number ordering
≤ and four binary operations:
(A). A generalized ‘addition’, which will be the supremum ∨ on reals.
(A′). A ‘dual addition’, which will be the infimum ∧ on reals.
(M). A commutative generalized ‘multiplication’ � under which: (i) V is
a monoid (i.e., semigroup possessing an identity) with identity Vid and null
element Vinf =

∧
V, and (ii) � is a scalar dilation, i.e., distributes over any
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by the Greek Secretariat for Research and Technology under Grants EΠET − 98ΓT26 and
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supremum.
(M′). A commutative ‘dual multiplication’ �′ under which: (i) V is a monoid
with identity Vid

′ and null element Vsup =
∨

V, and (ii) �′ is a scalar erosion,
i.e., distributes over any infimum.

We group the above requirements into three assumptions:
(LCA1). (V,∨,∧) is a complete infinitely-distributive lattice.
(LCA2). (V, �) is a commutative monoid, and � is a dilation.
(LCA3). (V, �′) is a commutative monoid, and �′ is an erosion.

Under the above assumptions (V,∨,∧, �, �′) becomes a commutative com-
plete lattice-ordered double monoid (CLODUM). This will be the most general
and minimally required algebraic structure we consider for the set of scalars.
In our model, all the vectors/matrices/signals take values from V, and their
‘addition’ is done via pointwise sup or inf. The most important abstraction
is ‘multiplication’ of two matrices.1 Thus, the generalized max-� ‘product’ of
a matrix Q = [qij ] ∈ V

m×� with a matrix R = [rij ] ∈ V
�×n yields a matrix

P = [pij ] ∈ V
m×n defined by:

P = Q � R , pij =
�∨

k=1

qik�rkj (1)

The state equations of the max control model are:

x(k + 1) = A � x(k) ∨ B � u(k)
y(k) = C � x(k) ∨ D � u(k) (2)

where k is a discrete time index. We assume a n-dimensional state vector
x = [x1, x2, ..., xn]t ∈ V

n, a p-dimensional input u ∈ V
p, and an r-dimensional

output y ∈ V
r. Therefore, the four matrices have the following sizes: A ∈

V
n×n,B ∈ V

n×p,C ∈ V
r×n, and D ∈ V

r×p. By replacing ∨ with ∧ and
� with a dual matrix ‘product’ � ′ , where a row and a column vector are

‘multiplied’ via a min-�′ operation, we obtain a dual model that describes the
state-space dynamics of min control systems.

By specifying the scalar ‘multiplication’ � and its dual �′, we obtain a large
variety of classes of nonlinear dynamical systems that are described by the
above unified lattice control model. Two such choices are:

(1) Max-Sum Control where V = R and � = +. Such systems (with spe-
cial choices of A,B,C,D) have been used in [1, 4, 8] to model the dynamics
of certain classes of discrete event dynamical systems (DEDS) as applied to
material flow in manufacturing systems and related scheduling problems. The
underlying nonlinear matrix operations are the basis of the minimax algebra
[2], which has found numerous applications in DEDS and operations research.
In typical applications of DEDS, the states xi(k) may represent the start-up
or completion time of the k-th cycle of machine i, the input u represents avail-
ability times of parts, y represents exit times, and the elements of the matrices
A,B,C,D represent service/delay times or activity durations. Further, the

1 Notation: If M = [mij ] is a matrix, its (i, j)th element is also denoted as {M}ij = mij .
Similarly, if x = [xi] is a vector, its ith element is denoted as {x}i or simply xi.
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max-sum control model can also capture the dynamics of recursive morpholog-
ical filters described by max-sum difference equations [8].

(2) Max-Tnorm Control: There are many types of nonlinear control systems
where the elements of the state, input and output vectors represent fuzzy set
memberships [12], possibilities, or probabilities. Examples include fuzzy con-
trol systems, probabilistic automata, fuzzy classifiers, as well as certain types
of neural nets with nonlinear combinations of inputs; surveys of such fuzzy sys-
tems can be found in [5]. Fuzzy state-space models can be useful for qualitative
modeling of problems with large number of states where quantitative modeling
is impossible. The dynamics of large classes of such systems can be described
via the lattice control model by restricting the set of scalars to be V = [0, 1]

and using a fuzzy intersection norm (a.k.a. ‘triangular-norm’) T (a, b)
�
= a�b as

the scalar ‘multiplication’. This paper deals with this special case of lattice
control.

2. Max-Tnorm Control

A fuzzy intersection norm, in short a Tnorm, is a binary operation T :
[0, 1] → [0, 1] that satisfies the following conditions [5]: For all a, b, c ∈ [0, 1]

F1. T (a, 1) = a and T (a, 0) = 0 (boundary conditions).
F2. T (a, T (b, c)) = T (T (a, b), c) (associativity).
F3. T (a, b) = T (b, a) (commutativity).
F4. b ≤ c =⇒ T (a, b) ≤ T (a, c) (increasing).

For the Tnorm to satisfy the general algebraic conditions we require from the
set of scalars, it must also satisfy the following:

F5. T is a continuous function.
Conditions F1-F3 make ([0, 1], T ) a commutative monoid with identity Vid = 1
and null Vinf = 0. Conditions F4-F5 suffice to make T a scalar dilation with
respect to any argument, as proven next.

Proposition 1 . Let T be a continuous fuzzy intersection norm. Then, the
operator x �→ T (x, a), for any arbitrary fixed a ∈ [0, 1], is a dilation.

Proof: Consider a (finite or infinite) collection {xj : j ∈ J} of points in [0, 1]
with x =

∨
j∈J xj . Since [0, 1] is compact, we can find an increasing subse-

quence {xk = xjk
}, such that xk ≤ xk+1 and x =

∨
k xk = limk→∞ xk. Since

T is increasing, T (xk, a) is also an increasing sequence that converges to its
supremum

∨
k T (xk, a). Further,

∨
k T (xk, a) ≤ ∨j T (xj , a) ≤ T (x, a). Finally,

since T is continuous, we have
∨

k T (xk, a) = limk→∞ T (xk, a) = T (x, a). This
yields

T (
∨
j

xj , a) =
∨
j

T (xj , a)

which proves that T is a scalar dilation. �

As a ‘dual multiplication’ we may use a fuzzy union norm T ′(a, b)
�
= a�′b,

where T ′ satisfies F2-F5 and a dual boundary condition:
F1′. T ′(a, 0) = a and T ′(a, 1) = 1 (dual boundary conditions).
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Clearly, ([0, 1], T ′) is a commutative monoid, and T ′ is an erosion. Choos-
ing in the lattice control model the above set of scalars and ‘multiplications’
among them creates the case of max-T and min-T ′ control systems, obtained
by replacing in the general state equations of lattice control the general matrix
‘product’ � and its dual � ′ with the following max-T and min-T ′ versions:

P = Q�T R , pij =
∨
k

T (qik, rkj) (3)

P = Q�′
T R , pij =

∧
k

T ′(qik, rkj) (4)

The most obvious choice for the T norm and its dual norm T ′ are the min and
max, respectively. But there are also numerous other choices [5].

3. Vector and Signal Lattice Operators

The space of vectors and the space of signals with values from the lattice V

are special cases of function lattices. The underlying set of these lattices is
the set L = V

E of all functions mapping an arbitrary nonempty set E into V.
In particular, if E = {1, 2, ..., n}, then L becomes the set of all n-dimensional
vectors (n-tuples) [x1, ..., xn]t with elements from V. If E = Z, then L becomes
the set of all discrete-time signals with values from V. The set L becomes a
complete infinitely distributive lattice if we define on it the standard pointwise
partial ordering ≤, supremum ∨, and infimum ∧ induced by V.

Pointwise ‘multiplication’ of a lattice element F ∈ L = V
E by a scalar

a ∈ V yields elementary dilations on L that are called translations τ a(F )(x)
�
= T (F (x), a), x ∈ E. An operator ψ on L is called translation invariant
iff it commutes with any translation, i.e., ψτ = τψ for all τ . All the above
concepts apply as well for the dual translations τ ′

a(F )(x)
�
=T ′(F (x), a), which

are elementary erosions on L.
More general dilations and erosions on the function lattice L = V

E can
be decomposed into suprema and infima of scalar dilations and erosions on V,
respectively.

Proposition 2 ([3]). Let V be a complete lattice and E an arbitrary nonempty
set. The pair (ε, δ) is an adjunction on the function lattice V

E iff for every
x, y ∈ E there exists an adjunction (εx,y, δx,y) on V such that

δ(F )(y) =
∨

x∈E

δx,y(F (x)) , ε(G)(x) =
∧

y∈E

εy,x(G(y)) (5)

If we define the impulse functions q and their duals q′

qz,v(x) =
{
v, x = z
0, x �= z

, q′
z,v(x) =

{
v, x = z
1, x �= z

(6)

we can enable the decomposition (5) by defining the scalar dilations to be

δx,y(v) = δ(qx,v)(y), v ∈ V (7)

and εy,x to be the adjoint erosion of δx,y.



PROC. INT’L SYMP. ON MATH. MORPHOLOGY 2000 65

3.1. Vector Lattice

Consider now the vector space L = V
n, equipped with the partial ordering

x ≤ y, which means xi ≤ yi ∀i, the supremum x ∨ y = [xi ∨ yi] and the
infimum x ∧ y = [xi ∧ yi] between any vectors x,y ∈ L. Then, (L,∨,∧) is
a complete infinitely distributive lattice. Elementary vector dilations are the
vector translations τ a(x) = [T (xi, a)] and their duals τ ′

a(x) = [T ′(xi, a)]. By
defining as ‘impulse functions’ the unit vectors e and their duals e′

ei
�
= [0, ..., 0, 1, 0, ..., 0]t, e′

i
�
= [1, ..., 1, 0, 1, ..., 1]t

each vector x = [x1, ..., xn]t can be represented as a max of translated impulse
vectors or as a min of dual-translated dual impulse vectors

x =
n∨

i=1

τxi
(ei) =

n∧
i=1

τ ′
xi

(e′
i) (8)

More general forms of vector dilation (δM ) and erosion (εM ) are, respectively,
the max-T and min-T ′ ‘product’ of a matrix M with an input vector:

δM (x)
�
=M�T x, εM (x)

�
=M�′

T x (9)

A vector operator ψ on L is (dual-)translation invariant iff it commutes with
any vector (dual-)translation.

Theorem 1 ([6]). (a) Any translation invariant dilation δ on the vector lattice
L = [0, 1]n can be represented as a matrix-based dilation δM where M = [mij ]
with mij = {δ(ej)}i, and vice-versa.
(b) Any dual-translation invariant erosion ε on L can be represented as a
matrix-based erosion εM ′ where M′ = [m′

ij ] with m′
ij = {ε(e′

j)}i, and vice-
versa.

Given a vector dilation δ(y) = M�T y with M = [Mij ], what is its adjoint
erosion ε? The scalar adjoint erosion stems from a binary operation ξ :
[0, 1]2 → [0, 1] defined by

ξ(w, a)
�
= sup{v : T (v, a) ≤ w} (10)

For example, the adjoints of the minimum and product Tnorms are:

T (v, a) = min(v, a) =⇒ ξ(w, a) =
1 + w

2
+
(

1 − w

2

)
sign(w − a) (11)

T (v, a) = av =⇒ ξ(w, a) = min(
w

a
, 1) (12)

where sign(r) = 1 if r ≥ 0 and −1 else. If we consider the scalar dilations
δij(v) = {δ(ei,v)}j = T (v,mji) then their adjoint scalar erosions are εji(w) =
ξ(w,mji). Thus, according to the decomposition (5), the adjoint vector erosion
is

ε(x) = Mt
�ξ x, {Mt

�ξ x}i
�
=
∧
j

ξ(xj ,mji) (13)

where (·)t denotes matrix transposition.
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3.2. Signal Lattice

Consider the set V
Z of all discrete-time signals f : Z → V with values form V.

Equipped with pointwise sup ∨ and inf ∧, this becomes a complete infinitely
distributive lattice L with partial order the pointwise signal relation ≤. The
signal translations are the operators τ i,v(f)(k) = T (f(k− i), v), where (i, v) ∈
Z × R and f(k) is an arbitrary input signal. A signal operator on L is called
translation invariant iff it commutes with any such translation. Consider now
two elementary signals, called the impulse q and the dual impulse q′:

q(k)
�
=
{

1, k = 0
0, k �= 0 , q′(k)

�
=
{

0, k = 0
1, k �= 0

Then every signal f can be represented as a sup of translated impulses or as
inf of dual-translated dual impulses:

f(k) =
∨
i

T [f(i), q(k − i)] =
∧
i

T ′[f(i), q′(k − i)]

General signal dilation and erosion can result, respectively, from the sup-T
convolution ©T and the inf-T ′ convolution ©′

T of two signals f and g defined
by

f©T g(k)
�
=
∨
i

T [f(i), g(k − i)], f©′
T g(k)

�
=
∧
i

T ′[f(i), g(k − i)] (14)

The following theorem characterizes all translation invariant signal dilation or
erosion systems as nonlinear convolutions of the above type.

Theorem 2 ([6]). (a) An operator ∆ on the signal lattice [0, 1]Z is a transla-
tion invariant dilation iff it can be represented as the sup-T convolution of the
input signal with the system’s impulse response h = ∆(q).

(b) An operator E on the signal lattice [0, 1]Z is a dual-translation invariant
erosion iff it can be represented as the inf-T ′ convolution of the input signal with
the system’s dual impulse response h′ = E(q′).

Given a signal dilation ∆(f) = f©Th and its representation via scalar
dilations as

∆(f)(�) =
∨

k∈Z

∆k,�(f(k)), ∆k,�(v) = T [v, h(�− k)]

it follows from the decomposition (5) that its adjoint signal erosion is

E(g)(k) =
∧

�∈Z

ξ[g(�), h(�− k)] (15)
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4. State and Output Responses

The basic state-space model of a max-T control system can now be represented
via matrix-based dilations:

x(k + 1) = δA[x(k)] ∨ δB [u(k)]
y(k) = δC [x(k)] ∨ δD[u(k)] (16)

Solving the state equations by using induction on k yields the state response:

x(k) = A(k)
�T x(0) ∨

(∨k−1

i=0
A(k−1−i)

�T B�T u(i)
)

= δk
A[x(0)] ∨

(∨k−1

i=0
δk−1−i

A δB [u(i)]
) (17)

where A(k) denotes the k-fold max-T matrix ‘product’ of A with itself for k ≥ 1
and A(0) = In where In is the n× n identity matrix.

The above result yields in turn the output response:

y(k) = δCδk
A[x(0)]︸ ︷︷ ︸

‘zero’-input resp.

∨
(∨k−1

i=0
δCδk−1−i

A δB [u(i)]
)

∨ δD[u(k)]︸ ︷︷ ︸
yzs(k)

�
= ‘zero’-state resp.

(18)

Thus, the output response is found to consist of two parts: (i) the ‘zero’-input
response which is due only to the initial conditions x(0) and assumes an input
equal to 0, and (ii) the ‘zero’-state response which is due only to the input x(0)
and assumes initial conditions equal to 0.

For single-input single-output systems the mapping u(k) �→ yzs(k) can be
viewed as a translation invariant dilation system ∆. Hence, the ‘zero’-state
response can be found as the sup-T convolution of the input with the system’s
impulse response h = ∆(q):

yzs(k) = ∆(u)(k) =
∨
�

T [u(�), h(k − �)] (19)

Assuming the system is initially at rest, its impulse response is found to be

h(k) =




0, k < 0
D, k = 0
C�T A(k−1)

�T B, k > 0
(20)

The last two results can be easily extended to multi-input multi-output systems.

5. Causality, Stability

A max-T control system initially at rest can be viewed as a translation invariant
dilation system ∆ mapping the input u to the output y. (Assume for brevity
single-input single-output systems.) Let h = ∆(q) be the impulse response of
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∆. A useful bound for signals f(k) processed by such systems is their global
supremum

||f ||∨ �
=
∨

k∈Z

f(k)

which can be viewed as a semi-norm. Such systems are called bounded-input
bounded-output (BIBO) stable iff a bounded input yields a bounded output,
i.e., if ||u||∨ < 1 =⇒ ||y||∨ < 1. The following theorem provides us with sim-
ple algebraic criteria for checking the causality and stability of max-T control
systems based on their impulse response.

Theorem 3 ([6]). Consider a max-Tnorm control system ∆ initially at rest
and let h = ∆(q) be its impulse response. (a) The system is causal iff h(k) = 0
for all k < 0. (b) The system is BIBO stable iff ||h||∨ < 1.

6. Controllability, Observability

A max-T control system is controllable if the following system of nonlinear
equations can be solved and provide the vector u = [u(0), u(1), ..., u(N − 1)]t

of input values required to drive the system from the initial state x(0) to any
desired state x(N) in N steps:

x(N)=


 x1(N)

...
xn(N)




︸ ︷︷ ︸
x

=A(N)
�T x(0) ∨


[A(N−1)

�T B, · · · ,B]︸ ︷︷ ︸
C

�T


 u(0)

...
u(N − 1)




︸ ︷︷ ︸
u




(21)
Assuming that the input is dominating the initial conditions, i.e., the second
term C �T u is not smaller than the first term A(N)

�T x(0) of the right hand
side, which is true if x(0) = 0, we can rewrite the above as

C �T u = x (22)

Equations of the form (22) have been studied in [10, 11] in the context
of fuzzy relations. The next lemma provides a sufficient condition for their
solvability. Let Nn = {1, 2, ..., n}.

Lemma 1 ([10, 11]). Equation (22) has a solution if for any i ∈ Nn there
exists j ∈ Nn such that {C}ij = 1 and {C}kj = 0 ∀ k �= i.

In general, the set of solutions of (22) forms a sup-semilattice. The greatest
solution is given by

u = Ct �ξ x (23)

where ξ is the adjoint scalar erosion of the dilation T defined in (10). In certain
applications the conditions of Lemma 1 can be restrictive. An important aspect
in such cases is finding the reachable set R, i.e., the set of state vectors x for
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which (22) is solvable. Let us first recall some definitions given in [11]. With
the aid of ξ and a related binary operation

ζ(a, b)
�
=
{

0, a < b
inf{x : T (a, x) = b}, a ≥ b

(24)

we define the following three solution matrices:

{Γ̂}ij
�
= ξ({Ct}ij , xj), {Γ}ij

�
= ζ({Ct}ij , xj), {Γ̌}ij

�
= ζmin

(∧
k

{Γ̂}ik, {Γ}ij

)

where ζmin corresponds to the case where T is the min norm. Given the above
matrices, the greatest solution is the row-wise infimum of Γ̂, the mean solution
is the row-wise supremum of Γ̌, and the minimal solutions also result from
Γ̌. Note that the greatest solution that results from the solution matrix Γ̂ is
identical to the one provided by the adjoint vector erosion in (23).

The reachable set R can be found via the following Lemma:

Lemma 2 ([10, 11]). The state vector x belongs to the reachable set R iff for
any i ∈ Nn such that xi �= 0 the ith column of Γ̌ is not equal to 0.

Hence, if a desired state x belongs to R, the control u given by (23) drives the
system to this state x.

If x does not belong to R, then it may be sufficient to solve an approximate
controllability problem that has some optimality aspects. Specifically, consider
the problem of finding an optimal input vector u as solution to the following
optimization problem:

Minimize ||x − C �T u|| subject to C �T u ≤ x (25)

where the norm ||·|| is either the �∞ or the �1 norm. The optimal controllability
solution is actually a lattice erosion u = ε(x) = Ct �ξ x identical to the greatest
solution (23). ε is the adjoint erosion of the dilation δ(y) = C �T y. Its
optimality can be proven simply by noting that (ε, δ) forms a lattice adjunction,
and hence δε is an opening operator. Opening is always anti-extensive, and
hence δ(ε(x)) ≤ x. Therefore, u = ε(x) is the largest solution with δ(u) ≤ x.
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Fig. 1. State trajectories from initial state at k = 0 to a desired state at k = 5.
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Example: Consider a max-T control system with T (a, b) = ab, n = 3 states,
p = 1 input, and

A =


 0.2 0.8 0.1

1 0.3 0.2
0 0.7 1


 , B =


 1

0
0


 , x(0) =


 0

0
0


 , x(N) =


 1

0.7
0.3




This system can drive the initial state x(0) to the desired x(N) in N = 5 steps
by using the following scalar control signal

[u(0), u(1), u(2), u(3), u(4)]t = [0.4286, 0.4286, 0.4286, 0.7, 1.0]t

Figure 1 shows the state trajectories. �

The above ideas on the controllability problem can also be applied to the
observability problem. A max-T control system is observable if we can estimate
the initial state by observing a sequence of output values. This can be done if
the following system of nonlinear equations can be solved:
 y(0)

...
y(n− 1)


 =




C
...

C�T A(n−1)




︸ ︷︷ ︸
O

�T x(0) ∨ [h(n−1), · · · , h(0)]�T


 u(0)

...
u(n− 1)




(26)
This max-T matrix equation can be solved either exactly or approximately by
using the same methods as for the controllability equation.
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