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Measuring the Fractal Dimension of Signals:
Morphological Covers and Iterative
Optimization

Petros Maragos, Senior Member, IEEE, and Fang-Kuo Sun, Senior Member, IEEE

Abstract—Fractals can model many classes of time-series
data. The fractal dimension is an important characteristic of
fractals that contains information about their geometrical
structure at multiple scales. The covering methods are a class
of efficient approaches to measure the fractal dimension of an
arbitrary fractal signal by creating multiscale covers around
the signal’s graph. In this paper we develop a general method
that uses multiscale morphological operations with varying
structuring elements to unify and extend the theory and digital
implementations of covering methods. It is theoretically estab-
lished that, for the fractal dimension computation, covering
one-dimensional signals with planar sets is equivalent to mor-
phologically transforming the signal by one-dimensional func-
tions, which reduces the computational complexity from quad-
ratic in the signal’s length to linear. Then a morphological
covering algorithm is developed and applied to discrete-time
signals synthesized from Weierstrass functions, fractal inter-
polation functions, and fractional Brownian motion. F urther,
for deterministic parametric fractals depending on a single pa-
rameter related to their dimension, we develop an optimization
method that starts from an initial estimate and iteratively con-
verges to the true fractal dimension by searching in the param-
eter space and minimizing a distance between the original sig-
nal and all such signals from the same class. Experimental
results are also provided to demonstrate the good performance
of the developed methods.

I. INTRODUCTION

FRACTALS are mathematical sets with a high degree
of geometrical complexity that can model many nat-
ural phenomena, as Mandelbrot’s pioneering work [19]
has demonstrated. Examples include physical objects such
as clouds, mountains, trees, and coastlines [19], [42], as
well as image intensity signals that emanate from certain
types of fractal surfaces [34]. Although the fractal images
are the most popularized class of fractals, there are also
numerous natural processes described by time-series mea-
surements (e.g., noises with power spectrum o 1/ lw|?;
econometric and demographic data; and pitch variations
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in music signals) that are fractals [19], [42]. The one-
dimensional signals representing these measurements are
fractals in the sense that their graph is a fractal set. Thus,
modeling fractal signals is of great interest in signal pro-
cessing.

A very important characteristic of fractals useful for
their description and classification is their fractal dimen-
sion D. Intuitively, D measures the degree of their bound-
ary fragmentation or irregularity over multiple scales. It
makes meaningful the measurement of metric aspects of
fractal curves, such as their length. Specifically, given a
measure unit like a ‘‘yardstick’” of length e, the length
L(e) of a curve at scale € is equal to the number of yard-
sticks that can fit sequentially along the curve times e. For
a fractal curve, L(e) increases within limit when e de-
creases and follows the (generally approximate) power law

-b ase = 0. (N

In this paper we deal with the problem of measuring the
fractal dimension of real-valued ‘‘topologically one-di-
mensional”’ signals; i.e., signals with one argument,
which for simplicity will be referred to as time . We start
in Section II with a brief survey of existing methods, some
of which are general, whereas others apply only to special
classes of parametric fractals. Section III focuses on the
covering methods, a class of general and efficient ap-
proaches to compute the fractal dimension of arbitrary
fractals. We unify and extend many of the current digital
implementations (i.e., [8] and the one-dimensional ana-
logs of [32], [37], [33]) of covering methods by using
multiscale morphological erosions and dilation with vary-
ing structuring elements. (The erosions and dilations are
the basic operators of morphological signal analysis [35],
[24].) In addition, we prove a main theoretical result
(Theorems 1 and 2 in Section III-A) that provides the the-
oretical framework underlying all these digital implemen-
tations. We shall refer to these unified algorithms as the
morphological covering method. Although it was theoret-
ically known before [7], [19], [35], [41], [8] that covering
the graph of one-dimensional continuous-time signals by
disks or similar planar sets can yield the fractal dimension
of the signal’s graph, all these approaches (except for the
variation method in [8]) involved two-dimensional pro-
cessing of the signal at multiple scales. Thus, for a N-
sample N-level digital signal, these set-cover methods re-

L(e) = (constant) - ¢
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quire a O(N?) computational complexity at each scale. In
contrast, our theoretical results establish the fact that cov-
ering the signal’s graph with properly chosen one-dimen-
sional functions yields identical results but it involves one-
dimensional processing of the signal. Hence, our ap-
proach reduces the original set-cover complexity from
quadratic to linear, since for a N-sample signal the func-
tion-cover method has complexity O(N) at each scale. In
Section III-B we also describe a morphological covering
algorithm for estimating the fractal dimension of discrete-
time signals and apply it to three classes of fractal signals.
Overall, the morphological approach is conceptually use-
ful as a unifying theme and has several practical advan-
tages. Specifically, it can be implemented very efficiently
by using one-dimensional morphological filtering and can
yield results that are invariant with respect to shifting the
signal’s domain and/or affine scaling of its dynamic range.
The latter advantage makes the morphological covering
method more robust than the box counting method in the
digital case.

The morphological covering method applies to arbi-
trary signals; e.g., in [23] it was applied to measuring the
short-time fractal dimension of speech signals. In this pa-
per, for numerical comparisons, we test its performance
by applying it to synthetic fractal signals depending on a
few parameters that uniquely determine their fractal di-
mension. There are numerous classes of such parametric
fractal signals and related algorithms for their synthesis.
The three classes of parametric fractals used in this paper
are the deterministic Weierstrass cosine functions
(WCF’s) [13], [19], [4], the deterministic fractal inter-
polation functions (FIF’s) [1], [2], [16], and the random
functions of fractional Brownian motion (FBM) [21],
[19], all defined in Section II-B. These fractals have been
used in a variety of applications. Specifically, there are
many natural phenomena that can be modeled using such
parametric fractals; e.g., see [19], [29]. In addition, the
FBM and FIF’s have proven to be valuable in computer
synthesis of images of natural scenes [42], [2].

Although the performance of the morphological cov-
ering method is good for many cases, it can be further
improved in the case of some parametric fractals. Specif-
ically, in Section IV we present the second main contri-
bution of this paper, which is both a very effective method
(i.e., it yields practically zero estimation errors) to esti-
mate fractal dimension and a new way of looking at this
problem. It is somewhat restricted since it applies only to
deterministic parametric fractals depending on a sin-
gle parameter that is in one-to-one correspondence with
their fractal dimension, but the large number of such
parametric classes and their practical applicability moti-
vates well our new method. Our basic idea is as follows:
So far researchers start from an original fractal signal of
true fractal dimension D, use various approaches to derive
an estimate D* of D, and are content if the estimation
error |D — D*| is small. This criterion, however, does
not reveal anything about how ‘‘close’” the original frac-
tal signal fis to some other fractal signal of true dimen-

sion D*. In our approach, from an initial morphological
estimate D*, we synthesize the corresponding fractal
function f*. Then by searching in the parameter space D,
we solve a nonlinear optimization problem, where a dis-
tance is iteratively minimized between the original f and
each new iteratively synthesized f*. The process termi-
nates when we reach a minimum. We have theoretically
proven the existence of such a global minimum for both
the Weierstrass and fractal interpolation functions by us-
ing two types of distances: standard /, metrics and a signal
distance developed from the Hausdorff set metric. We call
the above approach the iterative optimization method and
demonstrate its excellent performance both theoretically
and experimentaily.

II. PRELIMINARIES

In this section we review several ‘‘fractal dimensions,”’
which are more or less capable of quantifying the degree
of fragmentation of curves. We also define three classes
of parametric fractals. General discussions on these topics
can be found in [19], [2], [9].

A. General Methods
Let X be a nonempty compact subset of the real plane

1) Hausdorff Dimension [14], [5], [6]: An e-cover of
X is any countable set collection X (¢) = {X;: i =1, 2,

-} such that X € U, X; and 0 < diam (X;) < e for all
i, where diam (X)) is the largest distance between any two
points of X;. The é-dimensional Hausdorff measure of X
is defined as

35 (X) = lim <inf {}3 [diam (X,-)]“’}). %))
e—0 XKe) i

There is a critical real number D = 0 such that 3C;(X)
= 0 for § > Dy whereas 3C;(X) = oo for 6 < Dy. This
critical Dy, is the Hausdorff dimension of X. Mandelbrot
[19] defines formally the fractal dimension of X as equal
to Dy. Further, he calls a set fractal if Dy strictly exceeds
its topological dimension Dr.

Two other dimensions, closely related to Dy, are the
Minkowski-Bouligand dimension Dy, and the box dimen-
sion Dg, which are identical in the continuous case. In
general, we have

0<D;y<Dy<Dy=Dp=<2.

To simplify the discussion on these two dimensions, we
henceforth restrict our attention only to sets X & 2 that
are continuous planar curves; hence, 1 < Dy < Dy =
2.

2) Minkowski-Bouligand Dimension [30], [7]: This is
based conceptually on Minkowski’s idea of finding the
length of irregular curves: Dilate them with disks of ra-
dius € by forming the union of these disks centered at all
points of X and thus create a ‘*‘Minkowski cover.”” (Some
[71, [19] attribute this cover construction also to Cantor.)
Find the area A (¢) of the dilated set at all scales €, and set



110 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 1. JANUARY 1993

its length equal to lim, .o L(e), where L(e) = A(e)/2e.
See also [35, ch. 5] for a related discussion. If X is a
fractal, then L behaves as in (1). Specifically, let

N(A) £ sup { p: lim A(e)e™” = 0} 3)
e 0
~ lim 024© @)
-0 log e

be the infinitesimal order' of A. Bouligand defined the di-
mension Dy, as follows:

Dy =2 — N(4) (5)
= lim <2 _ log 4] [A(E)]>‘ ©6)
e=0 log (e)

3) Box Counting Dimension [7]: Partition the plane
with a grid of squares of side € and count the number N(e)
of squares that intersect the curve. Then the box dimen-
sion is obtained by replacing the Minkowski cover area in
(6) with the box cover area €N (e); it is equal to Dy =
lim ., log [N(€)] /log (1 /¢). Although Dy = D,, in the
continuous case, they obviously correspond to two differ-
ent algorithms (with different performances) in the dis-
crete case. In general, D), can be more robustly estimated
than Dy, which suffers from uncertainties due to the grid
translation or its spacing. This is further explained in Sec-
tion III-B.

4) Entropy Dimension [17]: This dimension is defined
as Dy = lim, ., 1og [Nuir ()] /log (1/€), where Ny (e)
is the smallest number of disks with radii e required to
cover X. (It is also called the ‘‘capacity’” dimension in
[10].) In [2], [9] it is shown that Dy = Dj.

In general, Dy # Dy = Dy [20], [28], [2], [9]. How-
ever, in this paper we focus on the Minkowski-Bouligand
dimension Dy, which we shall henceforth call ‘‘fractal
dimension’’ D because: i) it is closely related to Dy and
hence able to quantify the fractal aspects of a signal; ii)
it coincides (in the continuous case) with D, in many cases
of practical interest; iii) it is much easier to compute than
Dy; iv) it is more robust to compute than Dp; v) it will be
applied to discrete-time signals where most approaches
can yield only approximate results.

B. Parametric Fractals

In this section we briefly describe the three classes of
parametric fractal test signals on which we shall evaluate
the various methods.

1) Weierstrass Cosine Function: The Weierstrass co-
sine function (WCF) [13], [19], [4] is defined as

Wy () = kgo v ¥eos 2myf), O0<H<1 (7)

where ¥ > 1. It is continuous but nowhere differentiable.
Its fractal dimension is D = 2 — H. If y is integer, then

'For example, if X is a linear segment of length /, then A(e) = 2/e + e
and A = 1.

it is periodic with period one. In our experiments, we syn-
thesized discrete-time signals from WCEF’s by sampling ¢
€ [0, 1] at N + 1 equidistant points, using a fixed y = 5,
and truncating the infinite series so that the summation is
done only for 0 < k < k,,,.> This causes a truncation
error
kmax —H(kmax + 1)

Wa() — 2y cos @my'n| = —o . (3
k=0 1 — v
Fig. 1(a) shows three sampled WCFs whose fragmenta-
tion increases with their dimension D.

2) Fracral Interpolation Functions: First, we summa-
rize basic ideas from the theory of fractal interpolation
functions [1], [2], [16]. Given is a set of data points {(x,,
yOeERk=0,1,2, - , K > 1} on the plane, where
X -1 < x; for all k. In the complete metric space Q of all
continuous functions g: [xq, x¢] = R such that q(xy) =
Yo and g (xg) = yy define the function mapping ¥ by

Y(gQR) = ¢ <x ; bk> + Viq <x ; bk) + 4y,

k k

X € [xe_y, x] 9

where k = 1,2, - -+ | K, the V; € (—1, 1) are free pa-
rameters, and the 4K parameters ay, by, ¢, d; are uniquely
determined by

apxy + bk = Xg— 1 A Xy + bk = Xi (10)

Vivk + cxg + di = y.

an

Under the action of ¥ the graph of the input function g is
mapped to the graph of the output ¥ (g) via affine map-
pings (x, y) = (ax + b, Vy + cx + d), which include
contractions and shifts of the domain and range of q. ¥
is a contraction mapping in Q and has a unique fixed point
which is a continuous function F: [x,, x¢,] = R that inter-
polates the given data; i.e., F(x;) = y,fork =0, 1, - - - ,
K. F is called a fractal interpolation function (FIF),> be-
cause quite often the fractal dimension D of its graph ex-
ceeds 1. Specifically, [2], [121, if ZE_, |Vi] > 1 and (x,,
¥i) are not all collinear, then D is the unique real solution
of

Vivo + cxo + di = yi_y,

K
kZl [Vl ' = 1. (12)
Otherwise, D = 1. Thus by choosing the vertical scaling
ratios V;’s we can synthesize a fractal interpolation func-
tion of any desired fractal dimension. F can be synthe-
sized by iterating ¥ on any initial function g in Q; i.e., F
lim,, . o, ¥°"(q) where ¥*"(g) = ¥ [¥°"~D(g)].

Given a finite-length discrete-time signal £, [k], k = O,
1, + -+, K, an algorithm was described in [23] to frac-

*The ky,, was determined by requiring that 27y* < 10'2, because larger
k caused an argument for the cosine that exceeded the (Sun4) computer’s
double precision.

*In [2], [27] more general FIF's are also discussed using hidden vari-
ables. In this paper we do not deal with these more general FIF's.
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Fig. 1. (a) Signals from sampling WCF’s over [0, 1] with y = 5 and var-
ious D. (b) Signals from sampling FIF's that interpolate the sequence 0, 1,
4,2, 5, 3 with various D. (c) FBM signals obtained via a 512-point inverse
FFT on random spectra with average magnitude o |w|® 2. (All three
signals in each class have N = 500 and are scaled to have the same ampli-
tude range.)

tally interpolate f, by an integer factor M by sampling a
FIF whose fractal dimension can be controlled via a sin-
gle parameter. Specifically, we start from the K + 1 data
pairs (x; = kM, y, = f,[k]) with xy = MK = N, seta, =
1/K, by = x;_,, and select a constant V;, = Ve (—1, 1),
where

V| =kKkP"% 1<D<2. (13)

Then there is a unique fractal interpolation function Fp:
[0, N] = R with fractal dimension D, which interpolates

the given data, i.e., Fp(kM) = f,[k]. In our experiments
we synthesize Fp, by iterating ¥ starting from some initial
q € Q until the maximum absolute error between succes-
sive iterations becomes very small, i.e., smaller than
107'°. If ¥ = 0, Fp is the piecewise-linear interpolant of
the data. The graph of F), has fractal dimension D = 2 +
log (|V])/log (K)if 1 > |V| > 1/K,and D = 1if |V|
< 1/K. Based on F, we can up-sample f, to a 1: M in-
terpolated signal Fp(n), n = 0, 1, - - -, N. The larger
|V, the larger D, and the more fragmented Fp,. Fig. 1(b)
shows examples of FIF’s that interpolate a fixed data se-
quence of K + 1 = 6 points by a factor M = 100 using
positive ratios V = 5P 72,

3) Fractional Brownian Motion: The fractional
Brownian motion (FBM) [21], [19] By (¢) with parameter
0 < H < 1 is a time-varying random function with sta-
tionary, Gaussian-distributed, and statistically self-affine
increments; the latter means that [By(t + T) — By (9] is
statistically indistinguishable from r#[B(¢t + rT) — B(1)]
for any T and any r > 0. The fractal dimension D of By (f)
is D = 2 — H. Their power spectrum® is Spgy (@) &
1/]w|**'. Hence, an efficient algorithm [42] to synthe-
size an FBM is to create a random sampled spectrum
whose average magnitude is 1/|w|®*%° and its random
phase is uniformly distributed over [0, 27]. In our exper-
iments we synthesized and then transformed this spectrum
via an inverse FFT to obtain an FBM sequence from which
we retained the first N + 1 samples. Fig. 1(c) shows syn-
thesized FBM sequences of varying D. The larger D (the
smaller H), the more fragmented these fractal signals
look.

In addition to the FFT method, there are several other
methods to synthesize FBM signals [22], [42]. One rig-
orous approach discussed in [18] involves Cholesky de-
composition of the correlation matrix of discrete frac-
tional Gaussian noise (i.e., sequence of increments of
FBM) and synthesizing the FBM as a running average of
the fractional noise. This approach, however, is compu-
tationally more complex than the FFT approach.

C. Special Methods for FBM

Some special methods to measure D for FBM signals
include: i) Fitting a straight line to the data (log Sgpm (@),
log w) and measuring the slope yields D. This is perhaps
the most popular method because of the simplicity of
computing spectra using FFT. The power spectrum esti-
mation part of this approach has been improved in various
ways which include using Gabor filters (for two-dimen-
sional FBM) in [39] and wavelet decomposition of 1 /|w|?
processes in noise [43]. ii) The statistical self-affinity of
FBM yields a power scaling law for many of its moments;
linear regression on these data can measure D [34]. iii)
Maximum likelihood methods for estimating the H of

4Strictly speaking, the power spectrum of the nonstationary FBM is not
well defined. However, for w # 0, we can approximately interpret Spgy(w)
as proportional to the average power of FBM within a narrow frequency
band around w [19].
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fractional Gaussian noise have been developed in [18] and
[40].

III. MorPHOLOGICAL COVERING METHOD
A. Morphological Covers

In this paper we deal only with finite-length signals (),
0 < ¢t < T, in which case the curve X of the previous
discussion becomes the graph I'(f) = {, f): 0 <t
=< T} of f. If (x, y) are the Cartesian coordinates of the
plane B, the time 7 axis will henceforth coincide with the
x axis, whereas the signal amplitude f(r) assumes values
on the y axis. In this section we shall focus on a gener-
alized version of the Minkowski cover method. Bouligand
[7] showed that D), can be obtained by also replacing the
disks or the boxes in the previous covers with arbitrarily
shaped compact sets that possess a nonzero minimum and
maximum distance from their center to their boundary. A
very similar method appeared recently in Tricot et al. [41]
and Dubuc er al. [8].

We formalize Bouligand’s idea using morphological
operations as follows: Given a compact planar set B <
F?, form positive homothetics eB = {eb: b € B}, and
define the cover Cg(e) as the union of all vector translates
€B + z = {eb + z; b € B} of eB centered at points z of
the graph I'(f). In the formalism of mathematical mor-
phology, this cover can be obtained from the set dilation
@ of I'(f) by the set structuring element eB:

Cp(6) ET(f) ® B = U, cp(jyeB + 2

={ + x, f(O + y): ¢ f() e T(f),
(x, ¥) € eB}. (14)

Henceforth we call Cy a morphological cover. The Min-
kowski cover corresponds to using a disk for B.

In [41], [8] the digital implementations of the covering
by disk-like or other (e.g., horizontal line segment) struc-
turing elements were done by viewing I'(f) as a binary
image signal and dilating this binary image. However, this
two-dimensional processing of a one-dimensional signal,
on the one hand is unnecessary, and on the other hand
increases the requirements in storage space and the time
complexity for implementing the covering method. Thus,
for purposes of computational efficiency, it is desirable to
obtain the area of Cy by using one-dimensional operations
on f, i.e., dilations ® and erosions © of f by a function
structuring element g with a compact support G. These
operations (see [35], {38], [24], [25], [11], [15}, [36] for
more details and their properties) are defined as

(feo - sup {f() + gt~ 0}, ret (15

(fegw= inf {fO +gx—n}, rel (16

where G = {—x: x € G} is the reflection of G and G +
t = {x + 1; x € G} is the translation of G by 7. Also, we

set f(r) = —oo forr ¢ [0, T] and g() = —oo fort ¢ G.
Then, under certain assumptions (discussed later), we

could obtain the cover area by integrating the difference
signal f ® g — f © g. However, since f is defined only
over [0, T] and the morphological cover Cy involves
points 7 from outside this interval, we modify the cover
and the signal operations f @ g, f © g to handle the
boundaries of f properly. Thus, we replace the covers
Cg(e) with their restriction on the vertical strip [0, TT X
(—o0, o), i.e., with the truncated morphological cover

Ci(e) £ T(f) @ Bl N ([0, T] X (=00, ) (17)
whose area is
Ag(e) £ area [C(e)]. (18)

To obtain A from one-dimensional dilations and ero-
sions, we should also modify the definitions (15) and (16)
so that they do not require any values of f outside [0, T].
Thus, we define the support-limited dilation and erosion
of fby g with respect to a support set S € [F:

(fese®W e sup  {f)+gt-xn}, teS§
xe(G+nnNs

(19

(fese & inf  {f)+gkx—0n}, teS.
xe(G+npns

(20)

In what follows we shall find a proper g such that the
integral of the difference signal between the support-lim-
ited dilation and the erosion of f by g is equal to the orig-
inal set-cover area Ag(e) at all scales ¢, if B satisfies cer-
tain constraints. The following theorem provides the main
theoretical result toward this goal and illuminates the in-
dividual steps for constructing such a g.

Theorem 1: Let f: S — R be a continuous function,
where S = [0, T]. Let B € T2 be a compact set that is
also single connected (i.e., connected with no holes) and
symmetric with respect to both the x and the y axes of the
plane.’ For each scale ¢ = 0, the ‘‘upper and lower en-
velope’” of the morphological cover Cf(e) are defined,
respectively, as the signals

U.(x) £ sup { y: (x, y) € C(e)} @l

L.(x) & inf { y: (x, y) € C5(0)}. 2)
Then,
T
Ag(e) = SO [U.(x) — L.(x)] dx. (23)
Further, if we define a function
8§ & sup {y: (x,y) € B} 24)

*It is simple to generalize our results by allowing B to be asymmetric
with respect to the x axis, which would mean that our covers would not be
symmetric above and below the graph of the signal. We could also allow
B to be asymmetric with respect to the y axis, which would mean that g is
not an even function and hence treats differently signal segments in the past
from those in the future of some point. However, both of these general-
izations lack a practical motivation.
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and its e-scaled version by

8. @) £ sup {y: (x, y) € eB}, e=20 (25)

then
Ué(x) :f G;Sge(x)
Le(x) :f Ss ge(x)

Thus, if we define the function-cover area
T

EROE SO [(f &s58) — (fesglldx (27)

=x=T. (26)

then the set-cover and function-cover areas are identical:

Agle) = Ag(e). (28)

Proof: Let G = {x: (x, y) € B}. Since B is symmet-
ric with respect to the y axis, g,(x) = g.(—x) and G =
G. Since B is symmetric with respect to the x axis, g, (x)
= 0 for all x in its domain €G. If I(a) = {b: (a, b) € ¢B}
for any a € €G, then note that sup {b: b € I(a)} = g.(a)
and inf {b: b € I(a)} = —g.(a). To prove (26) we have,
foreach x € S,

Ux)=sup{y:y=f@t) +b,teS,x=1t+a,
(a, b) € B}
= sup { f(x — a) + b:
aeeG N S+ x),bela)
sup { f(t) + g (x — t):xeS‘ﬂ (eG + 1}

(f os58)0).

Likewise we can prove that L, = f ©5g..
Since g.(0) = 0, it can be easily shown that

Ux) =z f) = L.(x),

Let F(e) = {(x, y):0=x =T, L <y =< UWw}
We shall prove that F(e) = CZ(e). First, let (x, y) €
C#%(e). Then, x € Sand (x, y) e T'(f) @ eB. Hence, x =
t+a,and y = f(r) + b for some ¢ € S and (a, b) € €B.
But then, from the definition of U,, it follows that y <
U, (x); likewise, y = L, (x). Therefore, (x, y) € F(e) and
thus Cj(e) S F(e).

Now let (x, y) € F(e). We shall prove that (x, y) €
C}(e). Define the set X = {(a, b):aceG N (S + x), b
el(@}. Then X = eB N [(S + x) X (—o, +o0)] is a
connected set. Define the function ¢ (a, b) = f(x — a) +
b on X. The function ¢ is continuous and has a connected
domain X. The value y lies between the maximum U, (x)
= sup {¢(a, b): (a, b) € X} and the minimum L, (x) =
inf {¢(a, b): (a, b) € X} value of ¢ on X. Hence, from
Bolzano’s intermediate value theorem [3, p. 153], there
is a point (a’, b') in K at which ¢ takes the value y. By
setting t = x — a’ and f(r) = y — b' we have (¢, f(1)) €
I'(f) and (a', b') € eB. Hence (x, y) € C}(¢) and thus
F () S C5(e). Therefore, we proved that & (¢) = CJ (e).
This set equality proves (23). The result Az = A, follows
from (23) and (26). Thus the proof is complete. O

0=x=<T.

Thus, instead of creating the cover of a one-dimen-
sional signal by dilating its graph in the plane by a set B
(which means two-dimensional processing), the original
one-dimensional signal can be filtered with an erosion and
a dilation by a one-dimensional function g. As an exam-
ple, if B = {(x, y): x> + y° =< 1} is the unit-radius disk,

then g(x) = V1 — x?, |x| = 1. Likewise, if B = {(x, y):
|x| + [y| < 1} is the unit thombus, then g (x) = 1 — |x|,

|x| = 1.

In a related work, Tricot et al. [41] and Dubuc et al.
[8] showed that we can find D), by using set covers where
B is the horizontal segment [—1, 1] and that

T

vie) 2 SO [‘SUP {fx + »} — ‘i‘nj {fx + »}] dx

vi=e
29

which is called the ‘‘variation’ of f, is equal to Ag(e) if
B = [—1, 1]. Their result becomes a special case of our
Theorem 1. Specifically, the assumptions of Theorem 1
allow for B to be equal to intervals [—w, w], in which
case g(t) = O fort € B and g(r) = —oo for ¢t ¢ B. Thus
the horizontal structuring element case corresponds to se-
lecting a function g shaped like a rectangle and equal-to
Zero on its support.

The following theorem shows that we can find the frac-
tal dimension D, of the signal’s graph by using covers
with functions g.

Theorem 2: Let the function f and set B satisfy all the
assumptions of Theorem 1. If B has any of the following
two additional properties: a) B contains the origin and
possesses a nonzero minimum distance from the origin to
its boundary, or b) B is a horizontal segment [—w, w], w
> 0, then the Minkowski-Bouligand dimension of the
graph of fis equal to

Dy =2 — N(4p) (30)
= lim <2 _ log 4,0} Mg(en). 31)
=0 log ()

Proof: a) Bouligand [7] showed that D,, remains un-
changed if we replace the area A of the cover by disks in
(6) with the area of covers Cp by compact sets B that pos-
sess a nonzero minimum (m) and maximum (M) distance
from the origin to their boundaries. Now the area of Cg(e)
is equal to the area Ap(e) of the truncated cover Ch(e)
plus the term area(eB) because half of eB is added at each
boundary of f. However, A[area(eB)] = 2 because

7 (me)® < area(eB) < 7 (Me)?.

Hence, since N(Ag) = 2 — Dy, < 1, we can ignore the
term area(eB) and use as cover areas in (6) the areas Ap
of the truncated covers. Then, Theorem 1 completes the
proof, since it allows replacing the area of covers by sets
with the area of covers by functions.

b) A proof for the special case B = [~1, 1] appeared
in [41], [8]. Thus, if A, (¢) is the cover area of f by the
set [—1, 1], then N(4;) = 2 — Dy,. For the more general
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case B = [—w, w], note that Ag(e/w) = 4,(e), w > 0.
Then,

log [Ap(e/w)]

A(4)) = lim
(4y) ST Tog (o)
log [A 1
 lAp(e/ W) log (e/w) _
e~0 log (e/w) log (e)
Hence, Dy, = 2 — N(A4p). Then result (28) completes the
proof of b). 0

In practice, assuming that Ay (e) = (constant) - " for

€ very close to 0 yields that

4, (e)
62

1
log =~ Dy * log <—> + constant, ase = 0.
€

(32)

This leads to the following practical algorithm to compute
Dy, in the discrete case.

B. Algorithm for Discrete-Time Signals

The goal here is to adapt our discussion in Section III-
A for estimating the fractal dimension of a continuous-
time signal to the case of a discrete-time finite-length sig-
nal f[n], n =0, 1, -+ - | N by using covers at discrete
scales e = 1, 2, 3, * - -, €. Toward this goal we put
another restriction on B, that it must be convex for the
following reason. In =2, if B is convex and ¢ = 0, 1, 2,

-, then eB = B® where B = B ® B--+ oB (e
times). Hence, for B convex and integer e, g, is equal to

g 2geg-- @ g, ie., the e-fold dilation of g with
itself. Then it can be shown that

fesg® =((fosg esg ) o5¢g  (33)

(34)

foesg” =(fesg o558 ") 658.
-
€ times

Hence the quadratic complexity (with respect to the max-
imum scale €,,,) of computing the covers at all scales ¢
can be reduced to linear.

Putting all the above ideas together leads to the follow-
ing algorithm for digitally implementing the morpholog-
ical covering method. This consists of the following steps:

Step 1: Select a set structuring element B to be a dis-
crete version of a continuous set B, that satisfies the as-
sumptions of Theorems 1 and 2a) or 1 and 2b) and is con-
vex. Preferably this set should have a ‘‘radius’’ one in
both x and y directions. (Larger integer radii would yield
cover area measurements over a coarser set of scales.)
_ That is, B should be a convex symmetric subset of the 3
X 3 square set of points from the rectangular grid of pix-
els (n, mh) where (n, m) are integer coordinates and 4 is
the vertical grid spacing. Then g[n], n = —1,0, 1, is a
three-sample function whose graph is the upper envelope
of B. There are only three choices for such a unit-radius
B: the 3 X 3 pixel square, the 5-pixel rhombus, and the
3-pixel horizontal segment.

i) If B is the 3 X 3-pixel square, the corresponding g

is shaped like a rectangle; i.e.,
gl-11=gl0] = g1l =h =0

and g,[n] = —ow forn +# —1, 0, 1.
ii) If B is the 5-pixel rhombus, then g is shaped like a
triangle, defined by

&l-11=glll =0,g[00 =h =0

and g,[n] = —o forn + —1,0, 1.

iii) If B is the 3-pixel horizontal segment, then the cor-
responding g can be viewed as resulting either from g, or
from g, by setting & = 0. In this case g is a rectangular
function equal to zero on its support.

Step 2: Perform recursively the support-limited dila-

35)

(36)

tions and erosions of fby g® at scalese = 1,2, -+ - ,
€max- Thatis,setG = {-1,0,1,},5S={0,1,---,N},
and use (19) and (33), which yield

fosglnl = max {fln+i] +gll}, e=1

€ = 2.

fosg®cth = (fosg®™ o5g, 37

Likewise for the erosions f © g®¢. For n = 0, N, the
local max/min operations take place only over the avail-
able samples. The dashed lines in Fig. 2 show these mul-
tiscale erosions/dilations by the three different functions

8.
Step 3: Compute the cover areas

N
Agle) = X ((fo58°) = (f 058°Nn,

e =1 (38)

’.'.’emaxsg'

Step 4: Fit a straight line using least squares to the
graph of log (4, [€] /(¢)*) versus log (1 /"), fore’ = 2 /N,

4/N, *++, €ha Where € £ 2¢/N is the normalized
scale,
ESe’Se;n. =<1 39)
N d X

and en,, = 2é€m./N. The slope of this line gives us an
approximate estimate of the fractal dimension of f, as im-
plied by (32).

Note that when i = 0, then step 2 of the algorithm can
be done faster; specifically (see also [8] for a more gen-
eral case),

fosgln

max { f[n — 11, f[n], f[n + 11},
e=1
fosg® " n] = max {fogg*[n — 1],
fesg®n+ 1,
€= 2. (40)

The fractal dimension Dy, ( f) of the graph of fresulting
from the morphological covering method (in both the con-
tinuous and discrete case) has the following two attractive
properties.
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Fig. 2. An FBM signal (solid line) with D = 1.5, N = 500, and its ero-
sions/dilations (dashed lines) by g°¢ at scales e = 20, 40. (a) Rectangular
g = g, with h = 0.01. (b) Triangular g = g, with h = 0.01. (c) Rectangular
g with h = 0.

Property 1: If fis shifted with respect to its argument
and/or amplitude, then Dy, ( f) remains unchanged; i.e.,
Dy(f) = Dy (f") where f' (x) = f(x — xo) + b.

Property 2: If h = 0, then Dy, (f) remains invariant
with respect to any affine scaling of the amplitude of f
and/or shifting of its argument; i.e., Dy (f) = Dy (f")
where f'(x) = af(x — xy) + b for arbitrary b, x, and a #
0.

Proof: The above two properties follow from the fact
that morphological erosions and dilations of a signal f by
a function g are invariant with respect to constant shifts
in the argument and/or the amplitude of f. Further, if & =

0, i.e., if g is rectangular and zero on its support, then an
affine scaling f(x) — af(x) will multiply the function-cover
area A, by the factor |a|. This factor does not affect the
limit in (31) because lim, ¢ log (ja| /¢) = 0. Similarly,
the factor |a| will only add a constant log (|a{) in the log-
log relation of (32) which does not affect its slope. [l

The morphological covering and the box counting
method give identical fractal dimension for continuous-
time signals f. However, in the discrete case they corre-
spond to different algorithms with different performances.
In the discrete case, it is because of Properties 1 and 2
that the morphological covering method is more robust
than the box counting method. The latter is affected by
arbitrary shifts of the argument of f, by adding constant
offsets to f, and (more seriously) by scaling its amplitude
range, because all these affect the number of grid boxes
intersected by the graph of f. In addition, as noted in [20],
the box counting dimension (as well as the morphological
method using covers with two-dimensional discrete sets)
greatly depends on the relationship between the grid spac-
ing and the dynamic range of f. However, the morpho-
logical covering method using covers with one-dimen-
sional functions g can become completely independent
from affine scalings of the signal’s range if we choose &
=0.

Among previous approaches, the one-dimensional ver-
sion of the work in [32], [37], and [33] corresponds to the
morphological covering method using g, with 2z = 1. The
‘‘horizontal structuring element method’’ in [41], [8] cor-
responds to using & = 0. For ‘‘real-world’’ signals with
some fractal structure, the assumption of having the same
fractal dimension at all scales may not be true, since the
assumption of the same structure existing over all scales
is more of a mathematical idealization. Hence, as in [32],
many researchers follow the heuristic approach of esti-
mating a profile of local fractal dimension, which for each
e is equal to the slope of a line segment fitted via least
squares to the log-log plot of (32) over a moving window
of a few scales (typically less than ten). In this paper,
however, since we are dealing with synthetic signals of a
known fractal dimension that is supposed to be constant
over all scales, we only compute a single global fractal
dimension.

In the rest of this section we explore various numerical
issues related with the morphological discrete covering
algorithm, its complexity, and its performance on signals
synthesized from WCF’s, FIF’s, and FBM.

Table I compares the computational complexity of the
discrete covering algorithm between the cases when g is
zero on its support (2 = 0) versus a nonzero g (h > 0).
Thus, if we assume that additions and min/max compar-
isons have roughly the same complexity and if N, ey,
>> 1, then the covering algorithm using 2~ > 0 has a
complexity O(8Ne,,), whereas using A = 0 requires a
complexity O(4Ne,,,) which is 50% smaller. Note that
the above algorithm which uses function-cover areas 4,
has a linear complexity O (Ney,,) with respect to the sig-
nal’s length, whereas using set-cover areas with two-di-
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TABLE I
COMPLEXITY OF MORPHOLOGICAL COVERING ALGORITHM
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TABLE II
MorPHOLOGICAL COVERING METHOD ON WCEF’s

Height of g h>0 h=0

True D Estimated Error
Additions for cover 1.2 1.227 2.27%
area A, N + 1) €y CN + 1) €mes 1.3 1.327 2.06%
Additions for 1.4 1.424 1.71%
erosions/dilations 2(N + 1D epay 0 1.5 1.515 1.03%
Min/Max comparisons 1.6 1.606 0.39%
for erosions/dilations 4Ne .. 2N — Dépa + 2N + 2 1.7 1.701 0.03%
1.8 1.797 0.14%
mensional sets has a quadratic complexity O (NZe,,,); fur- TABLE III
ther, both approaches give the same dimension, as MORPHOLOGICAL COVERING METHOD oN FIF's
Theorem 1 implies. Trae D Estimated E
Although the shape of the structuring function g is not i stimate T
very crucial, its height k2, however, plays an important 1.2 1.204 0.31%
role. Although & does not affect the morphological cov- }i i-ggz ?'?;Z/Z
ering method in the continuous case, in the discrete case 1.5 1.478 1457
large /& will sample the plot of (32) very coarsely and pro- 1.6 1.576 1.53%
duce poor results. Thus small & are preferred for finer 1.7 1.678 1.29%
1.8 1.782 1.01%

multiscale covering area distributions. However, the
smaller 4 is, the more computations are needed to span a
given signal’s range. A good practical rule is to set 4 ap-
proximately equal to the signal’s dynamic range divided
by the number of its samples. This rule attempts to con-
sider the quantization grid in the domain and range of the
function as square as possible. We experimentally ob-
served in [26] that this rule performs very similarly to the
case b = 0, although it gives slightly lower estimates of
D. Since, however, for the case # = 0, the erosions/di-
lations by g can be performed faster and the resulting di-
mension is invariant to affine scalings of the signal’s
range, we henceforth set 4 = 0 in all our experiments.

The maximum scale €, and in general the scale inter-
val [1, en..] over which we attempt to fit a line to the log-
log plot of (32) is an important parameter. We have ex-
perimentally found that the ¢,,,, required for a good esti-
mation of D may exhibit considerable variations and de-
pends on the dimension D, on the signal’s length N, and
on the specific class of fractal signals. A heuristic rule for
determining e, that we used based on experimental ob-
servations is the following:

= MaxScale (D, N)

. D - 1.2)N E
min {max <T, 10>, ZJ' 41)

€max

Thus, to apply the morphological covering method to a
signal, we have adopted a two-pass procedure which we
use in all experiments in this paper. Specifically, we first
apply the covering method with ¢ = 10, i.e., a very small
scale interval and obtain some estimate D, of the fractal
dimension. Then we reapply the covering method on the
same signal by using e,,, = MaxScale (D, N) and we
obtain a second estimate which we consider as the final
estimate D* of D.

Tables II and IIT show the estimated dimension D* and
the percent estimation error 100 - |[D — D*| /D using the

above two-pass covering method on signals with N + 1
= 501 samples synthesized from sampling WCF’s and
FIF’s of various D. The WCF’s were defined for r € [0,
IT with v = 5. The FIF’s interpolated the 6-point data
sequence 0, 1, 4, 2, 5, 3 using positive scaling ratios V
=572 The experimental -results from Tables II and I1I
indicate that, for these two classes of fractal signals, the
morphological covering method performs very well in es-
timating dimensions D € [1.2, 1.8] with an error of less
than 3%. By varying the signals’ length N e 100, 2000]
we have also observed similar performance of this method
as in varying their dimension. Over 27 different combi-
nations of (D, N) the average percent estimation error of
the morphological covering method was 2%-3% for both
WCF’s and FIF’s.

Table IV shows the results from applying the (two-pass)
morphological covering method as well as the power
spectrum method on FBM signals. For each method and
for each true D, the table reports the sample mean D* of
the estimates, the standard deviation, and the percent
mean estimation error 100 - |D — D*| /D, by averaging
results over 100 random FBM realizations. All FBM sig-
nals had N + 1 = 512 samples and were synthesized us-
ing a 512-point FFT. For the power spectrum method, the
dimension D was estimated from the slope of a line fitted
to the power spectrum of the FBM over the frequency
interval (0, 7). In addition to the (no noise) case of clean
FBM signals, Table IV also reports how the estimates
from the two methods are affected by adding white Gauss-
ian noise to the FBM realizations at various signal-to-ra-
tio ratios (SNR’s). The experimental results from Table
IV indicate that the morphological covering method per-
forms well on FBM signals without noise in estimating
dimensions D € [1.2, 1.6] with a relative error less than
5%. For this range of D, the power spectrum yields a
larger estimation error than the covering method. How-
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TABLE IV
MORPHOLOGICAL COVERING AND POWER SPECTRUM METHODS oN FBM

Morphological Covering Power Spectrum
True D Mean St. Dev. Error Mean St. Dev. Error
No Noise .
1.2 1.249 0.051 4.1% 1.252 0.078 4.3%
1.3 1.326 0.065 2.0% 1.368 0.073 5.3%
1.4 1.393 0.057 0.5% 1.437 0.069 2.7%
1.5 1.474 0.058 1.7% 1.544 0.063 2.9%
1.6 1.553 0.046 29% 1.653 0.072 3.3%
1.7 1.599 0.048 5.9% 1.753 0.079 3.1%
1.8 1.646 0.033 8.6% 1.825 0.072 1.4%
SNR = 30 dB
1.2 1.276 0.050 6.3% 1.493 0.083 24.4%
1.3 1.343 0.062 33% 1.520 0.060 16.9%
1.4 1.425 0.057 1.8% 1.563 0.054 11.6%
1.5 1.482 0.050 1.2% 1.622 0.067 8.1%
1.6 1.540 0.046 3.7% 1.681 0.058 5.0%
1.7 1.599 0.039 59% 1.773 0.060 4.3%
1.8 1.644 0.036 8.7% 1.842 0.064 2.3%
SNR = 20 dB
1.2 1.403 0.040 16.9% 1.769 0.101 47.4%
1.3 1.432 0.043 10.2% 1.758 0.075 352%
1.4 1.480 0.039 5.7% 1.752 0.065 252%
1.5 1.512 0.041 0.8% 1.753 0.064 16.9%
1.6 1.558 0.040 26% 1.783 0.054 11.4%
1.7 1.609 0.037 5.4% 1.842 0.054 8.3%
1.8 1.649 0.034 8.4% 1.891 0.057 5.0%
SNR = 10dB
1.2 1.600 0.024 33.4% 2.075 0.080 72.9%
1.3 1.602 0.026 23.3% 2.065 0.073 58.9%
1.4 1.616 0.024 15.4% 2.041 0.068 45.8%
1.5 1.621 0.025 8.0% 2.007 0.066 33.8%
1.6 1.638 0.023 2.4% 2.006 0.056 25.4%
1.7 1.663 0.026 22% 2.014 0.047 18.5%
1.8 1.685 0.025 6.4% 2.027 0.052 12.6%
ever, for higher dimensions D e (1.6, 1.8] the covering TABLE V

method almost always underestimates the true D and its
estimation error increases to about 5%-10%, whereas the
power spectrum method overestimates D but with a
smaller error. As we start adding noise the performance
of both methods deteriorates, with D’s less than 1.5 af-
fected much more than D’s above 1.5. In noise, the per-
formance of the power spectrum method deteriorates more
rapidly than that of morphological covering. Especially
for SNR = 10 dB the power spectrum method yields D
estimates which are completely wrong because they often
exceed the allowable range [1, 2]. Finally, the standard
deviation of the morphological covering method appears
to be almost always smaller than that of the power spec-
trum method for almost all D and SNR’s. Regarding all
the above issues, we have also observed similar behavior
of both methods while varying the signals’ length N + 1
e {27, 2%, 2°,2'° 2"} Some conclusions from all these
extensive experimental results are summarized by Table
V., which provides the sample mean percent estimation
error of both the morphological covering and the power
spectrum method, averaged over 7 X 5 combinations of
(D, N) with 100 random FBM realizations each. There
we see that in the absence of noise, both methods yield a
similar average error of about 3%-4%, whereas in the
presence of noise the morphological covering method
yields much smaller error. Thus, overall the morpholog-

AVERAGE PERCENT ERROR IN ESTIMATING THE DIMENSION OF FBM

Morphological Covering Power Spectrum

3.8%
7.7%

3.6%
22.3%

No noise
SNR = 20 dB

ical covering method appears to be a more robust method
to estimate the dimension of an FBM signal for most val-
ues of D, N, and SNR.

Concluding, we emphasize that, since all three classes
of fractal signals are sampled versions of non-band-lim-
ited fractal functions, some degree of fragmentation is ir-
reversibly lost during sampling. Hence, since the true D
refers to the continuous-time signal, the discrete mor-
phological covering algorithm (as well as any other dis-
crete algorithm) can offer only an approximation of D. In
addition, the specific approach used to synthesize the dis-
crete fractal signals (e.g., the FFT for FBM) affects the
relationship between the degree of their fragmentation and
the true D, and hence it may also affect the performance
of the D estimation algorithms.

IV. ITERATIVE OPTIMIZATION METHOD

Assume a class of deterministic fractal signals fp pa-
rameterized by a parameter P that is related to their fractal
dimension through an invertible function D = ¢ (P). For
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example, for WCF’s the parameter P is H and D =  (H)
= 2 — H. For FIF’s that interpolate a N + 1-point se-
quence using a constant scaling ratio ¥ > 0, the param-
eter Pis Vand D = (V) = 2 + log (V) /log (K). Since
P and D are in one-to-one correspondence, we can hence-
forth parameterize the signal using D. Our new approach
to measure the fractal dimension of such a signal f;, con-
sists of the following steps: 1) We use a simple and fast
morphological approach, i.e., the two-pass covering
method with 2 = 0, to come up with an initial estimate
D* of the true D. 2) We compute some distance between
the original fractal signal f, and another signal fp:, which
was synthesized to have dimension exactly D*. 3) By us-
ing simple nonlinear optimization techniques, we search
in the parameter space of D values of the chosen class of
fractals by synthesizing fractals with fractal dimension D*
and computing their distances from the original fractal un-
til this cycle converges to a minimum in the parameter
space. In this way the resulting fractal dimension will cor-
respond to a fractal signal which is also close (with re-
spect to the specific distance) to the original signal. We
call this the iterative optimization method. As distances
we have used the standard /, metrics

o 1/p
(gm | filn] —ﬁml") :

p = ]’ 2’ o ..
max {| f[n] — fnll}.

lp(flsfz) é (42)

p=oo

as well as the Hausdorff metric. The Hausdorff metric was
so far defined only for sets. Here we extend its definition
to signals and provide a morphological algorithm for its
computation. Given two compact sets S, S, their Haus-
dorff distance can be computed as

disty (S, $2) £inf{e =2 0: §, € S, @ B

and $;, € S, @ eB} (43)

where B is a disk of radius e. Let f;, f, be two discrete-
time signals with finite length, and let g be a structuring
function equal either to g, or g, defined in (35), (36) with
h > 0. Then we define the Hausdorff distance between f;
and f; by

Hy(fi. £

Jay

2minfefisfhog® andf, <f, ® g°}

(44)

where e = 0 takes only integer values and f; < f; denotes
the function ordering f; [n] < f,[n] Vn. Note that Hy( f;,
f2) is equal to disty [Ypo(f)), Ypo(f,)], where the set
Ypo(f) = {(t, y) € B y < f(n)} is the hypograph of f
(also known as ‘‘umbra’’ in mathematical morphology)
and the disk-like set B needed for disty (,) is related to g.
It is simple to show that Hy satisfies all formal require-
ments for being a distance metric. Hy compares f; and f,
in terms of their peaks (i.e., graph protrusions). Our mo-

tivation for using this Hausdorft distance is that it is better
suitable than [, distances for certain applications, i.e., for
matching two shapes based on their protrusions and/or in-
dentations {31].

Of course, the effectiveness of the iterative optimiza-
tion method depends on the possible existence of a global
minimum in the distances over the parameter space. Figs.
3 and 4 report a series of experiments whose goal was to
investigate how well the /; and Hausdorff distances can
find a global minimum in comparing a given parametric
fractal with an ensemble of similar fractals whose param-
eter varies over all possible values. Fig. 3 shows the dis-
tances between WCF’s, and Fig. 4 shows the same dis-
tances for FIF’s. These figures illustrate that both the /,
and the Hy distance yield a very clear global minimum
when comparing an original WCF or FIF signal of a fixed
D with similar signals whose D* spans all of the interval
(1, 2). (In Figs. 3 and 4, only the results for D* € (1, 1.9]
are shown because higher D* yields very large distances.)
This global minimum exists independently of D or N.
Resolutions of anywhere between 0.01 and 0.1 suffice to
sample the parameter space of D and still observe a clear
minimum. We have also examined the [, and [, distances,
and they all had similar performance in yielding a clear
global minimum in the distance function for signals pro-
duced by both WCF’s and FIF’s.

- The following theorem establishes the existence of the
observed global minimum for all the above distances.

Theorem 3: Let E(D*) = dist (fp, fp+) be the distance
function between two signals f; and fps from the same
parametric fractal class, one with arbitrary but fixed di-
mension D € (1, 2) and the other with variable dimension
D* € (1, 2), where dist (,) is any of the [, or Hausdorff
distances. Then E has a global minimum at D* = D for
the following types of parametric fractals: a) signals re-
sulting from sampling WCF’s over any time interval, and
b) signals resulting from sampling FIF’s that interpolate
any nonnegative (respectively, nonpositive) finite se-
quence using a positive (respectively, negative) constant
vertical scaling ratio V.

Proof: a) Let us index the WCF Wy of (7) in terms
of D, and let the discrete fractal signal f, be a sampled
version of Wy. Then foreach D, = 2 — Hyand D, = 2
— H, we have

D, = D, = Wy () < Wp,(t) Vt @5)

because y ' < 7 for all k = 0. This pointwise
monotonic ordering of Wp(f) with D at each ¢ creates a
similar monotonic ordering in the distances between their
sampled versions fp; i.e.,

DZ < Dl < D = dist (fD’ fD]) < dist (fD’ sz)
D =< D3 = D4 = dist (fD,fD3) dist (fDa fD4) (46)

where dist (,) is any of the /, or Hausdorff distances. For
a fixed D, this creates a global minimum in dist ( fp, fp+)
at D* = D, '

b) Let Fp, and Fp, be two FIF’s, indexed by their frac-
tal dimensions D, D,, that interpolate the same sequence

IA
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Fig. 3. (a) Distances [, (W), Wp.) between three fixed signals W, synthe-
sized by sampling WCF's with D = 1.2, 1.5, 1.8 and variable WCF signals
Wy« whose D* spans the interval [1.01, 1.90] at steps of 0.01. (b) The
same as (a) but using Hausdorff distances with g = g, and & = 0.01. (All
WCEF’s are defined over [0, 1] withy = 5; N = 500.)

{G, yoy:k=0,1, - -+, K} using constant scaling ratios
V, = +KP"%and ¥, = +K?72 Let ¥,, ¥, be their
corresponding contraction mappings (9) defined on Q.
Define the function ¢ € Q to be equal to the piecewise-
linear interpolant of the (x;, y;) data. Assume now that all
¥ = 0, which makes g a nonnegative function, and select
Vi, V, > 0. If D| < D,, it follows from (13) that V| =
V,; then from (9) it follows that ¥,(gq) < ¥,(gq). (We
will arrive at the same conclusion if we assume all y, <
Oand V,, V, < 0, because then q is a nonpositive function
and V,q < V»q.) Since Fp, = lim, ., ¥;"(g),j = 1, 2,
we obtain the final result

D = D, = Fp(t) = Fp,(¥) vt € [xg, x¢}.  (47)

This pointwise monotonic ordering of FIF’s Fj, (¢) with D
at each ¢ creates a monotonic ordering in the distances
between their sampled versions f;, exactly as in (46) for
the WCF case, from which the proof of b) follows. [

Theorem 3 guarantees the convergence of the iterative
optimization method to the true D using any of the /, or
Hausdorff' distances. Tables VI and VII show the esti-
mated dimension using the iterative optimization method
and the percent estimation error for signals stemming from
WCF’s and FIF’s with variable dimension and fixed
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Fig. 4. (a) Distances /, (Fj. F),.) between three fixed signals F), synthe-
sized by sampling FIF's with D = 1.2, 1.5, 1.8 and variable FIF signals
Fp« whose D* spans the interval [1.01, 1.90] at steps of 0.01. (b) The same
as (a) but using Hausdorff distances with g = g, and & = 0.01. (All FIF’s
corres;l))ond to interpolating the sequence 0, 1, 4, 2, 5, 3 with N = 500 and
v=75"7)

TABLE VI
ITERATIVE OPTIMIZATION METHOD ON WCF’s
True D Estimated Error
1.2 1.2003 0.02%
1.3 1.2998 0.01%
1.4 1.4000 0.00%
1.5 1.5004 0.03%
1.6 1.6012 0.07%
1.7 1.6996 0.02%
1.8 1.8004 0.02%
TABLE VII
ITERATIVE OPTIMIZATION METHOD ON FIF’S
True D Estimated Error
1.2 1.1998 0.02%
1.3 1.3004 0.03%
1.4 1.4003 0.02%
1.5 1.5002 0.02%
1.6 1.5996 0.03%
1.7 1.7001 0.01%
1.8 1.7997 0.01%
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length. (The signal parameters are the same as for the Ta-
bles II and IIl.) The iterative optimization was imple-
mented by using the initial estimate from the two-pass
morphological covering method (with 2 = 0), and then
improving it by first proceeding in the D space at steps of
OS = 0.01 and then (when in the neighborhood of the
global minimum) by refining it with optimization steps of
0S/10. The convergence of these iterations was rela-
tively fast, i.e., in the order of 10-30 iterations. The small
number of iterations can be approximately predicted by
considering that the initial estimate from the morpholog-
ical covering method yields an error of approximately no
more than 10%, corresponding to an actual D estimation
error of no more than 0.2; this in turn causes the iterative
optimization method to require about 0.2 /OS = 20 iter-
ations to reach the true value of D. The experimental re-
sults reported in Tables VI and VIII show that the iterative
optimization method gave extremely good estimates of D
with errors of 0.07% or less. Actually the errors are gen-
erally guaranteed to be in the order of OS /10; they can
also be driven down to practically zero by selecting a finer
optimization step at the expense of more iterations. The
/, distance was used, but the Hy distance performed very
similarly. The same conclusions were also reached by ex-
perimenting with signals with variable duration N e [100,
2000] and fixed dimension.

So far we have seen the iterative optimization method
working for deterministic parametric fractals. For random
parametric fractals, such as the FBM signals, the dis-
tances are random variables and we need to compare their
mean value. In an earlier work [26] we found that, if we
use the same seed (for the random generator underlying
the FFT-based synthesis algorithm) for the FBM signal
with fixed D and all the other FBM signals with varying
D*, then their sample mean distance has a global mini-
mum, which enables the iterative optimization method to
work successfully. Note, however, that using the same
seed implies that the collection of FBM signals with dif-
ferent D* is not completely random since the overall shape
of the signals would be preserved and only their fractal
roughness would vary with D*. In the general case, when
we change the seed corresponding to the FBM signals with
varying D*, we found that there is not a clear minimum
in the mean distance and hence the iterative optimization
method does not work successfully in this case.

Finally, we have seen the excellent performance of the
iterative optimization method on deterministic fractals
such as WCF’s and FIF’s under a variety of distances such
as |, and Hausdorff distances. For signals of N samples
the /; distance has O (N) computational complexity. If we
divide the range of the signals into about N cells of spac-
ing h, where h is the height of the structuring function g
used in the computation of Hy, then the Hausdorff dis-
tance Hy has complexity O(N?). However, despite the
fact that the Hy distance has a higher computational com-
plexity than /; while both yield similar results, we think
that the Hausdorff distance is useful for several applica-
tions. For example, it has been found that for shape

matching [31] or for approximating a fractal signal with
a fractal interpolation function [26], Hy is more suitable
than /, distances to compare the shape of two signals in
terms of their overall geometrical structure, which is a
signal attribute that fractal methods attempt to capture.

V. CONCLUSIONS

We have developed a theoretical approach for measur-
ing the fractal dimension of arbitrary continuous-time sig-
nals by using morphological erosion and dilation function
operations to create covers around a signal’s graph at mul-
tiple scales. A related algorithm has also been developed
for discrete-time signals. This morphological covering
approach unifies and extends the theoretical aspects and
digital implementations of several other covering meth-
ods, and it also has some computational advantages. Its
computational complexity is linear with respect to both
the signal’s length and the maximum scale. It has a good
performance, since it has experimentally been found to
yield average estimation errors (averaged over many dif-
ferent signal dimensions and lengths) of about 2%-4% or
less for discrete fractal signals synthesized from Weier-
strass functions, fractal interpolation functions, and frac-
tal Brownian motion.

For deterministic fractal signals (e.g., Weierstrass and
fractal interpolation functions) depending on a single pa-
rameter that uniquely corresponds to their fractal dimen-
sion, we have also developed an optimization method that
starts from an initial estimate and iteratively converges to
the true fractal dimension by minimizing a distance be-
tween the original signal and all such signals from the
same class. This iterative optimization method has an ex-
cellent performance, since it has been both theoretically
and experimentally found to yield practically zero esti-
mation errors using either /, or Hausdorff signal distances.
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