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MRL-Filters: A General Class of Nonlinear Systems
and Their Optimal Design for Image Processing

Lúcio F. C. Pessoa,Student Member, IEEE,and Petros Maragos,Fellow, IEEE

Abstract—In this paper, the class of morphological/rank/linear
(MRL)-filters is presented as a general nonlinear tool for image
processing. They consist of a linear combination between a
morphological/rank filter and a linear filter. A gradient steepest
descent method is proposed to optimally design these filters, using
the averaged least mean squares (LMS) algorithm. The filter
design is viewed as a learning process, and convergence issues
are theoretically and experimentally investigated. A systematic
approach is proposed to overcome the problem of nondifferen-
tiability of the nonlinear filter component and to improve the
numerical robustness of the training algorithm, which results
in simple training equations. Image processing applications in
system identification and image restoration are also presented,
illustrating the simplicity of training MRL-filters and their effec-
tiveness for image/signal processing.

Index Terms—Adaptive filtering, image restoration, LMS al-
gorithm, nonlinear systems, optimal filter design, system identi-
fication.

I. INTRODUCTION

NONLINEAR filters have become very important tools
in signal processing, and especially in image analysis

and computer vision. Linear filters can often distort important
image features, such as edges. In contrast, there are many
classes of nonlinear filters that are more suitable for image
analysis than linear filters because they preserve edges or
directly relate to important geometrical aspects of images such
as their shape and size information. A broad and useful class
of nonlinear systems with these possible properties is based
on the framework of mathematical morphology [7], [15].

Discrete increasing morphological systems and rank or stack
filters are closely related, since they can all be represented as
maxima of morphological erosions [7], [8]. Despite the wide
application of those nonlinear systems, very few ideas exist
for their optimal design. The current four main approaches are
as follows:
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1) designing morphological filters1 as a finite union of
erosions [6] based on the morphological basis represen-
tation theory [7];

2) designing stack filters via threshold decomposition and
linear programming [3];

3) designing morphological networks using voting logic
and rank tracing learning [16];

4) designing morphological/rank filters via a gradient-based
adaptive optimization [13], [14].

Approach 1 is limited to binary increasing systems. Ap-
proach 2 is limited to increasing systems processing non-
negative quantized signals. Approach 3 needs a long time to
train and convergence is very complex. In contrast, approach
4 is more general, since it applies to both increasing and
nonincreasing systems and to both binary and real-valued
signals. One of the successful applications of this gradient-
based approach was the optimal design of min–max classifiers
[17], which are closely connected to morphological systems.
Our work in this paper is related only to approach 4.

For various signal processing applications, it is sometimes
useful to mix in the same system both nonlinear and linear
filtering strategies. Thus, hybrid systems, composed by linear
and nonlinear subsystems, have frequently been proposed in
the research literature. For instance, L-filters [1] are linear
combinations of the order statistics of the input signal; a
possible generalization of this structure is the class of L-
filters [9]. Finite impulse response (FIR)-median hybrid filters
[4] are median operations of a fixed number of linear FIR
filters applied to the input signal. The corresponding adaptive
schemes [5], [10], [12] suggested the potential of adaptive
hybrid systems for image processing applications.

A common characteristic in all these nonlinear hybrid filters
is their ability to deal with various types of non-Gaussian
noise. It is well known that linear filters can optimally suppress
additive Gaussian noise. In contrast, if the signal is corrupted
by additive Laplacian noise, then a median filtering is the
best way to deal with it. If the noise is impulsive, then
morphological systems can be very effective in reducing it.
Hence, a simple natural choice to deal with combinations
of Gaussian and non-Gaussian noises is to define a hybrid
system that combines the behaviors of both a linear and
a nonlinear filter. Given the applicability of hybrid mor-

1The term “morphological filter” is recently used in the area of lattice-based
mathematical morphology for increasing and idempotent lattice operators;
however, we use this term herein to imply a general morphological operator
in analogy to the terminology “rank or linear filter.”
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Fig. 1. Structure of the MRL-filter.

phological/rank/linear (MRL) systems and the relatively few
existing ideas to design their nonlinear part, in this paper we
present a general class of nonlinear systems that contains as
special cases morphological, rank, and linear operators, and we
develop an efficient method for its adaptive optimal design.
MRL-filters are this class of systems, consisting of a linear
combination between a morphological/rank filter and a linear
FIR filter (see Fig. 1). Their nonlinear component is based on
a rank function, from which the basic morphological operators
of erosion and dilation can be obtained as special cases.

The contributions of this paper are:

1) extension and improvements (both theoretical and nu-
merical) of the design algorithm proposed in [13] and
[14] by using new tools such as the “rank indicator vec-
tor” for analysis and “smoothed impulses” to circumvent
the nondifferentiability of rank operations;

2) theoretical conditions, with proofs, for convergence of
the MRL-filter design procedure;

3) applications to image processing.

After some notation and definitions in Section II, a design
methodology for MRL-filters is presented in Section III, where
the filter design is viewed as a learning process, and the
averaged least mean squares (LMS) algorithm is employed to
adjust the filter parameters. Convergence considerations of the
training process are discussed in Section IV, where important
convergence conditions are proved. In Section V, we present
designs of MRL-filters for problems of system identification
and image restoration.

II. PRELIMINARIES

Definition 1—Rank Function:Given a vector
in , by sorting its components in

decreasing order, , and picking
the th element of the sorted list, we define theth rank
function of by

Definition 2—MRL-Filter: Let in
represent the values of the one-dimensional (1-D) or

two-dimensional (2-D) sampled input signal (after some enu-
meration of the signal samples) inside an-point moving
window and let be the output value from the filter. Then,
the MRL-filter is defined as the shift-invariant system whose

local signal transformation rule is given by

(1)

where , , and “ ” denotes transposition.
Thus, the MRL-filter is a linear combination between a

morphological/rank filter and a linear filter. The vector
corresponds to the coefficients of the linear

FIR filter, and the vector represents
the coefficients of the morphological/rank filter. We call
the “structuring element” because for and the
rank filter becomes the morphological dilation and erosion
by a structuring function equal to within its support. For

, we use to generalize the standard unweighted
rank operations to filters with weights, as done in [7]. The
median is obtained when . Besides these two
sets of weights, the rank and the mixing parameter will
also be included in the training process for the filter design.
If , the MRL-filter becomes a convex combination
of its components, so that when we increase the contribution
of one component, the other one tends to decrease. For every
point of the signal, we can easily see from (1) that we need

additions, multiplications and an -point sorting
operation.

Fig. 2 illustrates the usefulness of the hybrid structure of the
MRL-filter for dealing with signals corrupted by non-Gaussian
noise. In this example, a sinusoidal signal is corrupted either
by a multivalued impulse noise2 or by a combination of
an additive Gaussian white noise and a multivalued impulse
noise. Using the design procedure presented in this paper, we
observed that the adaptive MRL-filter could outperform the
usual flat median filter, in terms of peak-to-peak signal-to-
noise ratio (PSNR), by more than 5 dB.

Due to the use of a gradient-based adaptive algorithm,
derivatives of rank functions will be needed. Since these
functions are not differentiable in the common sense, we
will propose a simple design alternative using “rank indicator
vectors” and “smoothed impulses,” defined next.

Definition 3—Unit Sample Function:We define the unit
sample function , , as

if
otherwise.

Applying to all components of a vector , yields a
vector unit sample function

Definition 4—Rank Indicator Vector:Given a vector
in , and a rank , the

th rank indicator vector of is defined by

2The multivalued impulse noise is a generalization of the salt and pepper
noise (two-valued impulse noise), where a noisy sample has a value that is
uniformly distributed between the extreme values of the signal.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) Signal corrupted by a 24% multivalued impulse noise (PSNR= 14.5 dB). (b) Signal (a) restored by a 25-point flat median filter (PSNR=
52.8 dB). (c) Signal (a) restored by a 25-point adaptive MRL-filter (PSNR= 57.5 dB). (d) Signal corrupted by a hybrid 20 dB additive Gaussian white
noise and 24% multivalued impulse noise (PSNR= 11.9 dB). (e) Signal (d) restored by a 25-point flat median filter (PSNR= 30.1 dB). (f) Signal (d)
restored by a 25-point adaptive MRL-filter (PSNR= 38.6 dB).

where . Thus, the rank indicator vector
marks the locations in where the value occurs; it also
has unit area.

As an example, if the vector ,
then its fourth rank indicator vector is

. Some of the properties of the rank
indicator vector are summarized below.

Proposition 1: Let , , and
. Then

a) (unit area);
b) (inner-product representation);
c) , where .
d) If is fixed, then is a piecewise-constant function of

with exactly possible different values. Further,
for all points with unequal components,

, there is a neighborhood around them such
that

inside which is constant, i.e., .

Proof: See the Appendix.
Observe from Proposition 1b that the proposed MRL-filter

structure is an efficient and compact way to represent a bank
of linear filters. In fact, using our inner-product representation,
we can write the MRL-filter as

which from Proposition 1d represents a bank of linear
filters.

Proposition 2: Let . For fixed, if is constant
in a neighborhood of some, then the th rank function
is differentiable at and

At points in whose neighborhood is not constant, the rank
function is not differentiable.

Proof: See the Appendix.
At points where the function is not differentiable,

a possibledesign choiceis to assign the vector as a one-
sided value of the discontinuous . Further, since the
rank indicator vector will be used to estimate derivatives and
it is based on the discontinuous unit sample function, a simple
approach to avoid abrupt changes and achieve numerical
robustness is to replace the unit sample function by smoothed
impulses, , that depend on a scale parameter and
have at least the following required properties:

(symmetry)

as

as (2)

Functions like or sech are natural
choices for . Similar to , the vector form of the
smoothed unit sample function is

Thus, Proposition 1b and the above considerations lead to the
following definition.
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Definition 5—Smoothed Rank Function:If is a
smoothed impulse satisfying (2), then the smoothedth rank
function is defined as

where

In Definition 5, is an approximation for the rank indicator
vector . Using ideas of fuzzy set theory, can also be
interpreted as a membership function vector. For instance, if

, sech , and ,
then

whereas . Some properties of
and are given in the following proposition.

Proposition 3: If and , then for
all and :

a) (unit area);
b) ;
c) ;
d) ;
e) .

Proof: See the Appendix.
Fig. 3 shows the smoothed rank function for different values

of , when , ,
, and sech . Observe the smoothness

of for , that illustrates the usefulness of smoothing
impulses to circumvent the nondifferentiability of .

III. A DAPTIVE DESIGN

From the filter definition (1), we see that our design goal
is to specify a set of parameters, , , and in such a
way that some design requirement is met. However, instead
of using the integer rank parameterdirectly in the training
equations, we work with a real variableimplicitly defined
via the following rescaling3

(3)

where is the dimension of the input signal vectorinside
the moving window. The relation betweenand the output
will be defined later. In this way, the weight vector to be used
in the filter design task is defined by

(4)

but any of its components may be fixed during the process.
Our framework for adaptive design is related to adaptive

filtering, where the design is viewed as a learning process and
the filter parameters are iteratively adapted until convergence is
achieved. The usual approach to adaptively adjust the vector,
and therefore design the filter, is to define a cost function ,
estimate its gradient , and update by the iterative

3b�c denotes the usual truncation operation, so thatb� + 0:5c is the usual
rounding operation.

(recursive) formula

(5)

so that the value of the cost function tends to decrease at
each step. The positive constant is usually called the step
size and regulates the tradeoff between stability and speed of
convergence of the iterative procedure. The iteration (5) starts
with an initial guess and is terminated when some desired
condition is reached. This approach is commonly known as
the method of steepest descent.

As cost function , for the th update of the weight
vector, we use

(6)

where is a memory parameter, and the instan-
taneous error

(7)

is the difference between the desired output signal and the
actual filter output for the training sample. The memory
parameter controls the smoothness of the updating process.
If we are processing noiseless signals, it is sometimes better to
simply set (minimum computational complexity). On
the other hand, if we are processing noisy signals, we should
use and sufficiently large to reduce the noise influence
during the training process. Further, it is possible to make a
training process convergent by using a larger value of.

Hence, the resulting adaptation algorithm, called the aver-
aged LMS algorithm [2], is

(8)

where . From (1) and (4)

(9)

According to Proposition 2 and our design choice, we set

(10)

The final unknown is , which will be one more
design choice. Notice from (1) and (3) that . If all the
elements of are identical, then the rank does
not play any role, so that whenever this happens. On
the other hand, if only one element ofis equal to , then
variations in the rank can drastically modify the output; in
this case should assume a maximum value. Thus, a possible
simple choice for is

(11)

where is the dimension of .



970 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 7, JULY 1998

(a) (b)

(c) (d)

Fig. 3. Smoothed rank function with (a)� = 0, (b) � = 1, (c) � = 5, and (d)� = 10.

Finally, to improve the numerical robustness of the training
algorithm, we will frequently replace the unit sample function
by smoothed impulses [obeying (2)], in which case an appro-
priate smoothing parameter should be selected. A natural
choice of a smoothed impulse is ,

. The choice of this nonlinearity will affect only the
gradient estimation step in the design procedure (8). We should
use small values of such that is close enough to .
In practical applications, with sufficiently small values of,
this transform is image independent. A possible systematic
way to select the smoothing parameterwhen we choose

could be for ,
so that, for some desired and , . For
example, if then . But independent of
this, the proposed training algorithm works properly even with

(no smoothing). A formal support for this is given in
the next section.

Observe the simplicity of the design methodology just
proposed, where the main design choices are defined in
(3), (10), and (11). Since rank functions are not differen-
tiable, optimality of their gradient estimates is not a well
defined problem. The fundamental issue, instead, is how to
circumvent the nondifferentiability using robust and systematic
techniques. Our method, based on three design choices and a
final smoothing of unit sample functions, is an efficient and
simple alternative for doing that. The design choice (10) is the
natural estimate to due to Propositions 2 and 3b (see
Fig. 3 for a practical motivation). The design choice (11) is
based on heuristic arguments, which is conveniently expressed
in terms of unit sample functions. The design choice (3) is just

a simple way to map from a variable to an integer
rank . For example, if , then

, corresponding to a minimum operation; if ,
then , corresponding to a maximum operation; if ,
then , corresponding to a median operation.
The evaluation of represents the major
computation during the gradient estimates of the nonlinear
filter component.

IV. CONVERGENCE CONDITIONS

Some theoretical conditions for convergence of the training
process (8) are presented in this section. The goal is to
find upper bounds to the step size , such that (8) can
converge if . For the sake of simplicity, we
assume the framework of system identification with noiseless
signals, and consider the training process of only one element
of at a time, while the others are optimally fixed. This
means that given the original and transformed signals, and
three parameters (sets) of the original
used to transform the input signal, we will use (8) to track
only the fourth unknown parameter (set) of in a noiseless
environment. If the training process (8) is convergent, then

, where is some error norm.
By analyzing the behavior of , under the above
assumptions, we have found the following conditions for
convergence.

Proposition 4: A necessary condition for
in the training process (8) with any bounded initial

condition , given that , , and
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, , is

Proof: See the Appendix.
Observe the interesting fact that the above condition for

training the coefficients of the morphological/rank part of the
filter is not dependent on the input data. On the other hand,
this is not the case for the linear part of the filter, as will be
seen later. The theoretical upper boundmay be too large for
practical implementations; thus, in some applications a smaller
practical upper bound may often suffice for convergence.

Proposition 5: A sufficient condition for
and in the training

process (8) with any bounded initial condition , given that
, , and , , is

where .
Proof: See the Appendix.

The theoretical upper bound may be too small, but
guarantees convergence. Due to the discrete nature of the rank
parameter , very fast convergence will usually be observed.
Notice that, although the actual final objective in this case is
to track the optimal integer rank , its corresponding from
(3) real parameter is not unique; i.e.,

Proposition 6: A necessary condition for
in the training process (8) with any bounded initial

condition , given that , , and
, , is

where .
Proof: See the Appendix.

Notice that, contrary to the case of the morphological/rank
part of the filter, the input data has a crucial influence on
the maximum step size in the case of its linear part. The
condition in Proposition 6 will frequently require quite small
values of step size, therefore contributing to slow convergence
rates. In this sense, designing the nonlinear component of the
MRL-filter is generally more effective than designing its linear
component. This fact is demonstrated in Section V.

Proposition 7: A necessary condition for
in the training process (8) with any bounded initial

condition , given that , , and
, is

where .

Proof: See the Appendix.
The mixing parameter will play an important role when

Gaussian and/or non-Gaussian signals are present in the sys-
tem. Depending on which one is more representative, the
mixing parameter should be adjusted accordingly.

The validity of the above theoretical restrictions on the step
sizes for convergence will also be experimentally demonstrated
in the applications.

V. APPLICATIONS IN IMAGE PROCESSING

In this section, we verify the proper operation of the training
process (8) and illustrate the use of MRL-filters in problems
of image processing such as system identification and image
restoration.

As proposed in [13], the images are scanned twice during
the training process, following a zig zag path from top to
bottom, and then from bottom to top. To define the local input
vector at each pixel, a square window centered around it
with size , , is defined such that

is the corresponding square matrix transformed to a vector
via column-by-column indexing. The vectorsand should
be interpreted the same way.

Following our design methodology, a plot of an error
measurement versus iteration number is provided. This plot
is usually called a learning curve. Moreover, for numerical
robustness, the unit sample function is approximated by

, with . The SNR’s reported
in all experiments are the PSNR’s, equal to

PSNR
Signal peak-to-peak range

Var(error signal)

We normalized the image pixel values to be in the range [0, 1].

A. Experiment 1: System Identification

The goal here is to experimentally demonstrate convergence
or divergence behaviors of the training process (8), using
the assumptions of Section IV. Thus, we explore the system
identification problem of tracking one element of , given
that we know the original and transformed images, and the
other three elements of . In this way, the input signal
is the original image, and the desired signal is the image
transformed by the corresponding MRL-filter defined via.
We considered both cases of noiseless and noisy system
identification, with and without ( ) averaging
of the error sequence in the cost function. The noisy case
was generated by adding a uniformly distributed noise with a
PSNR 45 dB. The plotted learning error was the percent
normalized max absolute error

Our criterion for stopping the iterations was , where
the threshold depended on the parameter type and the
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TABLE I
RESULTS OF EXPERIMENT 1. THEORETICAL UPPER BOUNDS

FOR THE STEP SIZE � (PROPOSITIONS4–7) WITH THE

CORRESPONDINGCASES OF CONVERGENCE ORDIVERGENCE

noise level. For the case of tracking the optimal rank, we
actually plotted using the integer rank instead of the
real parameter .

Table I contains the parameters of the MRL-filter used
for system identification, the corresponding theoretical upper
bounds for the step size , and parts of the simulation
results. The training images and the resulting learning curves
are shown in Figs. 4 and 5. As a main conclusion from
this experiment, whose results are typical of many other
similar experiments we have performed, in a supervised system
identification task our design algorithm converges fast to
the real parameters of the MRL-filter within small error
distances. Observe also that the learning curves of the rank
parameter presented almost no dependence on small additive

perturbations, so that the same thresholdcould be employed
in both noiseless and noisy cases. In contrast, larger thresholds

had to be used with the other filter parameters in the noisy
cases; as expected, the additive filter parameterwas the most
sensitive to additive perturbations (largest). Furthermore,
the rates of convergence for the parameters, , and were
in general much faster than for the parameter. Hence, it is
faster to design the morphological/rank part than the linear
part of the MRL-filter using the LMS approach.

B. Experiment 2: Image Restoration

The goal here it to restore an image corrupted by non-
Gaussian noise. Hence, the input signal is a noisy image, and
the desired signal is the original (noiseless) image. The noisy
image for training the filter was generated by first corrupting
the original image with a 47 dB additive Gaussian white
noise, and then with a 10% multivalued impulse noise. After
the MRL-filter is designed, another noisy image (with similar
type of perturbation) is used for testing. The optimal filter
parameters were estimated after scanning the image twice
during the training process. We used the training algorithm
(8) with and , and started the process with an
unbiased combination between a flat median and the identity,
i.e.,

The final trained parameters of the filter were

which represents a biased combination between a nonflat
median filter and a linear FIR filter, where some elements
of and present more influence in the filtering process.

Fig. 6 shows the results of using the designed MRL-filter
with a test image, and its comparison with a flat median
filter of the same window size. The noisy image used for
training is not included there because the (noisy) images
used for training and testing are simply different realizations
of the same perturbation process. Observe that the MRL-
filter outperformed the median filter by about 3 dB. Spatial
error plots are also included, where lighter areas indicate
higher errors, and they clearly show that the MRL-filter better
preserves the image structure.

For the type of noise used in this experiment, we must have
at least part of the original (noiseless) image, otherwise we
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(a) (b)

Fig. 4. Images of Experiment 1. (a) Original image (211� 301). (b) Image (a) transformed by the MRL-filter indicated in Table I.

would not be able to provide a good estimate to the optimal
filter parameters during the training process (8). In order to
validate this point, we repeated Experiment 2 using 100100
subimages of the training image (only 17% of the pixels), and
the resulting MRL-filter still outperformed the median filter by
about 2.3 dB (that is, 0.5 dB smaller than the result obtained
when using full images). There are situations, however, where
we can use only the noisy image together with some filter
constraints and design the filter that is closest to the identity
[13], [14]. But this approach is only appropriate for certain
types of impulse noise.

An exhaustive comparison of different filter structures in
problems of system identification and noise cancellation is
beyond the scope of this paper. Nevertheless, Experiment 2
was extended with the adaptive design of a 33 L-filter
[1] under the same conditions. Starting the L-filter with a flat
median, even after scanning the image four times during the
training process, the resulting L-filter was just 0.2 dB better
than the (flat) median filter.

VI. CONCLUSIONS

A new hybrid nonlinear and linear filter was introduced
in this paper and termed theMRL-filter. It consists of a
linear combination between a morphological/rank filter and
a linear filter. The main motivation for its definition was the
need to have a system capable of dealing with combinations
of Gaussian and non-Gaussian noises in signals but also
presenting characteristics of a morphological system in some
cases.

The nonlinear component of the MRL-filter is defined by a
morphological structuring element (vector of additive weight
coefficients) and a rank parameter. The linear component is
defined by a vector of multiplicative weight coefficients. A
mixing parameter is then employed to control the contribution
of each component.

An adaptive scheme was then proposed to design this
filter, and some new ideas were developed to overcome the
problem of nondifferentiability of rank functions. Together
with some design choices, the resulting adaptation algorithm
was very simple and based on the averaged LMS algorithm.

Furthermore, each subset of weight coefficients could be
designed individually.

Convergence issues were discussed, and theoretical upper
bounds for the step size were proposed, such that the
corresponding adaptation algorithms could lead to convergent
behavior if . An interesting result was that the step
bound for designing the weights for the morphological/rank
part does not depend on the input data. Mathematical proofs
were provided for the convergence conditions.

Finally, some applications to system identification and im-
age restoration were illustrated. Our results agreed with the
above stated theoretical developments and pointed out the
fact that designing morphological/rank filters is more efficient
than designing linear FIR filters via the LMS approach, in the
sense of faster convergence to the desired filter coefficients.
Furthermore, the MRL-filters could outperform the standard
flat median filter (in terms of SNR’s) in restoring noisy signals.
Our results using MRL-filters are encouraging and demon-
strate the effectiveness of these filters for certain image/signal
processing tasks.

Comparing our design methodology for the nonlinear filter
component with the approach in [13] and [14], some exten-
sions and improvements can be pointed out: Theoretical proofs
of convergence are provided; no Dirac delta function is used;
the notion of “rank indicator vector” and “smoothed impulses”
are introduced. Our approach is simpler, more intuitive, and
numerically more robust.

Although we defined MRL-filters as a shift-invariant sys-
tem, we can directly use the proposed design procedure to
extend the idea for a shift-variant (adaptive) system. This
approach can be useful when the image/signal presents strong
nonstationary spatial/temporal characteristics. We are currently
investigating the application of MRL-filters as processing
nodes in a general class of multilayer networks used for pattern
recognition [11].

APPENDIX A
PROOF OF PROPOSITION 1

a) Direct consequence of Definition 4.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5. Learning curves of Experiment 1. (a)–(h) Learning curves of the filter parameters (from top to bottom), for noiseless (M = 1) and noisy (M = 10)
signals (from left to right). The solid and dashed lines correspond, respectively, to the small and large values of the step size�.

b) If , by Definition 4 From Definition 3 it follows that

if
otherwise
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Experiment 2. (a) Original texture image (240� 250). (b) Test image: image (a) corrupted by a hybrid 47 dB additive Gaussian white noise and
10% multivalued impulse noise (PSNR= 19.3 dB). (c) Image (b) restored by a flat 3� 3 median filter (PSNR= 25.7 dB). (d) Image (b) restored by the
designed 3� 3 MRL-filter (PSNR= 28.5 dB). (e) Spatial error map of the flat median filter. (f) Spatial error map of the MRL-filter.

where is the number of inputs that are equal to the
output . Therefore

c) Direct consequence of a) and b).

d) For a fixed rank , the number of inputs that are equal
to the output varies from 1 to. Hence, the total number
of all possible different values of in is
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Now consider in such
that , and any such that

. Then, and have
the same ordering, and hence .

APPENDIX B
PROOF OF PROPOSITION 2

From Proposition 1b and d, if is constant in a
neighborhood of , then in that
region, so that

Otherwise, is not differentiable.

APPENDIX C
PROOF OF PROPOSITION 3

a) Direct consequence of Definition 5.
b) Since as , then from Definition 5

it follows directly that as .
c) Direct consequence of b), Definition 5, and Proposition

1b.
d) Since as , then from Definition 5 it

follows directly that

as

e) Direct consequence of d and Definition 5.

APPENDIX D
PROOF OF PROPOSITION 4

Assume convergence in the training of. Since , , and
are optimally fixed, , then from (8)–(10) the training

process of the th element of is

(D.1)

where is the th element of . Let be
the desired vector, and consider the subsequences
and of training samples such that

(D.2)

and

(D.3)

The iteration (D.1) is convergent if as . For
a convergent process, we must have :

, because otherwise we contradict our assumption
of convergence. Using the training samples , then
from (1), (D.2), and (D.3)

(D.4)

so that if . By substituting
(D.4) in (D.1), subtracting from both sides of the resulting

equation and taking the absolute value, it follows that for

(D.5)

where

But for a convergent process as ,
so that from (D.5) a necessary condition for convergence is

. Furthermore, from (D.3)
, so that the least upper bound for the

step size is obtained if

(D.6)

The same result can be similarly derived for every element
of . Therefore the restriction (D.6) is a necessary condition for

as for any bounded initial condition
.

APPENDIX E
PROOF OF PROPOSITION 5

Since , , and are optimally fixed, , then from (8),
(9), and (11) the training process of the parameteris

(E.1)

From (3), the corresponding training process of the rank
parameter is

(E.2)

where

(E.3)

Whenever , the desired rank, then the updating
process stops [ ], so that ,
thereafter. If , nothing needs to be done. Otherwise,
either or . Since the sequence
is bounded, a sufficient condition for and

as for any bounded initial
condition is that is either monotone decreasing or
monotone increasing. But this condition is guaranteed if

(E.4)

From (E.1) and (E.3) we can write

(E.5)
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where

(E.6)

and

(E.7)

Since , then ,
such that subtracting from (E.5) and taking the absolute
value, results

(E.8)

Hence, from (E.4), (E.6), and (E.8), a sufficient condition for
convergence is

(E.9)

On the other hand, from (11) and (E.7),

(E.10)

Besides this, from (1) and (7)

(E.11)

where .
Substituting (E.11) in (E.10), then from (E.9) the least upper
bound for the step size is obtained if

such that convergence is guaranteed.

APPENDIX F
PROOF OF PROPOSITION 6

Since , , and are optimally fixed, , then from (8)
and (9) the training process of the vectoris

(F.1)

If this iteration is convergent, then as . Choose
any sample , and let be the desired vector. From (1)

(F.2)

so that if , given that .
For the same sample, computing the error at iteration ,
using (F.1) and taking the absolute value, results that for

(F.3)

where

From (F.3), a necessary condition for convergence is

or equivalently

(F.4)

APPENDIX G
PROOF OF PROPOSITION 7

Since , , and are optimally fixed, then from (8) and (9)
the training process of the parameteris

(G.1)

If this iteration is convergent, then as . Choose
any sample , and let be the desired mixing parameter

. From (1)

(G.2)

so that if , given that .
For the same sample, computing the error at iteration ,
using (G.1) and taking the absolute value, results that for

(G.3)

where

From (G.3), a necessary condition for convergence is

or equivalently

(G.4)
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