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MRL-Filters: A General Class of Nonlinear Systems
and Their Optimal Design for Image Processing

Lucio F. C. Pessoastudent Member, IEEEANnd Petros Marago&ellow, IEEE

Abstract—in this paper, the class of morphological/rank/linear 1) designing morphological filtetsas a finite union of

(MRL)-filters is presented as a general nonlinear tool for image erosions [6] based on the morphological basis represen-
processing. They consist of a linear combination between a tation theory [7];

morphological/rank filter and a linear filter. A gradient steepest L . . .
descent method is proposed to optimally design these filters, using 2) designing stack filters via threshold decomposition and

the averaged least mean squares (LMS) algorithm. The filter linear programming [3];
design is viewed as a learning process, and convergence issues 3) designing morphological networks using voting logic
are theoretically and experimentally investigated. A systematic and rank tracing learning [16];

approach is proposed to overcome the problem of nondifferen- P ; - ; ANt
tiability of the nonlinear filter component and to improve the 4) designing morphological/rank filters via a gradient-based

numerical robustness of the training algorithm, which results adaptive optimization [13], [14].
in simple training equations. Image processing applications in  Approach 1 is limited to binary increasing systems. Ap-
system identification and image restoration are also presented, proach 2 is limited to increasing systems processing non-
illustrating the simplicity of training MRL-filters and their effec- negative quantized signals. Approach 3 needs a long time to
tiveness for image/signal processing. train and convergence is very complex. In contrast, approach
Index Terms—Adaptive filtering, image restoration, LMS al- 4 is more general, since it applies to both increasing and
?orlt.hm, nonlinear systems, optimal filter design, system identi- nonincreasing systems and to both binary and real-valued
cation. signals. One of the successful applications of this gradient-
based approach was the optimal design of min—max classifiers
[17], which are closely connected to morphological systems.
. INTRODUCTION Our work in this paper is related only to approach 4.
. . For various signal processing applications, it is sometimes
N .ONL.INElAR fllters_ have (kj)ecome_vltlary. ""_‘po”a”t to?"ctlseful to mix in the same system both nonlinear and linear
In signal processing, and especially in Image ana ysl’ﬁ;cering strategies. Thus, hybrid systems, composed by linear
gnd computer vision. Linear filters can often distort important. ' - Snlinear subsystems, have frequently been proposed in
image features,_ such_as edges. In contrast, there are research literature. For instance, L-filters [1] are linear
classes of nonlinear filters that are more suitable for Image inations of the order statistics of the input signal; a
a_nalysis than Iir_1ear filters becau;e they preserve edges Lsible generalization of this structure is the class bf ’L
directly relate to important geometrical aspects of images sug s [9]. Finite impulse response (FIR)-median hybrid filters

as their shape and size information. A broad and useful CI? are median operations of a fixed number of linear FIR
s

of nonlinear systems with these possible properties is ba rs applied to the input signal. The corresponding adaptive

on t_he framework .Of mathematigal morphology [7], [15]. schemes [5], [10], [12] suggested the potential of adaptive
Discrete increasing morphological systems and rank or st rid systems for image processing applications

f|Iter_s are closely relatgd, since they can all be represented a3 ;ommon characteristic in all these nonlinear hybrid filters
maxima of morphologlcal_ erosions [7], [8]. Despng the W'd?s their ability to deal with various types of non-Gaussian
;alpptlr;cqtlont_of tlh((j)se. nor_‘;‘: car Sys‘E[efms, very few |deahs eX|ise. It is well known that linear filters can optimally suppress
ortheir optimal design. The current four main approaches affjitive Gaussian noise. In contrast, if the signal is corrupted

as follows: by additive Laplacian noise, then a median filtering is the
best way to deal with it. If the noise is impulsive, then
morphological systems can be very effective in reducing it.
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_________________________________ . local signal transformation rule — y is given by

y=Aa+ (1 -4,
a=R(z+a)=R.(21+ a1, x2+as, -, Tp+ ay),

Morphological/Rank
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. Linear ey f=x- V = x1by + x2by + -+ 2,0, Q)

- | b 1 e
| - Combination : where € R, a, b € R™, and “” denotes transposition.
! Lincar ;T | Thus, the MRL-filter is a linear combination between a
: Filter | morphological/rank filter and a linear filter. The vecto=
el ] (by, by, ---, by,) corresponds to the coefficients of the linear

FIR filter, and the vectom = (aq, ag, -~ -, a,) represents
the coefficients of the morphological/rank filter. We call
the “structuring element” because for= 1 andr = n the

phological/rank/linear (MRL) systems and the relatively fewank filter becomes the morphological dilation and erosion
existing ideas to design their nonlinear part, in this paper V@ a structuring function equal té&a within its support. For
present a general class of nonlinear systems that containsl & 7 < 7, We usea to generalize the standard unweighted
special cases morphological, rank, and linear operators, and'@ek operations to filters with weights, as done in [7]. The
develop an efficient method for its adaptive optimal desigfledian is obtained when = |[n/2 + 1|. Besides these two
MRL-filters are this class of systems, consisting of a line&€ts of weights, the rank and the mixing parametex will
combination between a morphological/rank filter and a lineatso be included in the training process for the filter design.
FIR filter (see Fig. 1). Their nonlinear component is based ¢h A € [0, 1], the MRL-filter becomes a convex combination
a rank function, from which the basic morphological operatofd its components, so that when we increase the contribution

of erosion and dilation can be obtained as special cases. Of one component, the other one tends to decrease. For every
The contributions of this paper are: point of the signal, we can easily see from (1) that we need

1) extension and improvements (both theoretical and ngf2 +1 additions,n + 2 multiplications and am-point sorting

merical) of the design algorithm proposed in [13] ang@Peration. _
[14] by using new tools such as the “rank indicator vec- Fig. 2 illustrates the usefulness of the hybrid structure of the

tor” for analysis and “smoothed impulses” to circumverVIRL-filter for dealing with signals corrupted by non-Gaussian
the nondifferentiability of rank operations: noise. In this example, a sinusoidal signal is corrupted either

2) theoretical conditions, with proofs, for convergence ¢y & multivalued impulse noi%eor by a combination of
the MRL-filter design procedure: an additive Gaussian white noise and a multivalued impulse

3) applications to image processing. noise. Using the design procedure presented in this paper, we

. L . . . observed that the adaptive MRL-filter could outperform the

After some notation and definitions in Section II, a design . ! ) .

methodology for MRL-filters is presented in Section Il whergsual flat median filter, in terms of peak-to-peak signal-to-
' gise ratio (PSNR), by more than 5 dB.

the filter design is viewed as a Iearmng_ process, and tHeDue to the use of a gradient-based adaptive algorithm,
averaged least mean squares (LMS) algorithm is employedﬂ:o
u

) ) . . erivatives of rank functions will be needed. Since these
adjust the filter parameters. Convergence considerations of fhe . . : :

" : . . . ctions are not differentiable in the common sense, we
training process are discussed in Section 1V, where importan:

Fig. 1. Structure of the MRL-filter.

o ; will propose a simple design alternative using “rank indicator
convergence conditions are proved. In Section V, we presen N w . ,, .

. : . .~ yectors” and “smoothed impulses,” defined next.
designs of MRL-filters for problems of system identification

. . Definition 3—Unit Sample FunctionWe define the unit
and image restoration.

sample functiom(v), v € R, as

1, ifv=0
II. PRELIMINARIES q(v) = {0’ otherwise.
Definition 1—Rank FunctionGiven a vector ¢t = _ _
(ti, t2, ---, t.) in R", by sorting its components inAPPlying ¢ to all components of a vectar € IR”, yields a
decreasing ordert;y > to > -+ > t,, and picking vector unit sample function

the rth element of the sorted list, we define theh rank Q) = [g(vr), qlw), -, qlon)]
function of ¢ by v)= ) s qon))]
Definition 4—Rank Indicator VectorGiven a vectort =

R.(t) = Loy, r=1,2---,n. (t1, t2, -+, t,) in R, and a rankr € {1,2, ---, n}, the

o ] ~rth rank indicator vector of ¢ is defined by
Definition 2—MRL-Filter: Let z = (21, x2, --+, Z») IN

IR™ represent the values of the one-dimensional (1-D) or c(t, 7) Q(z1-1 2 =Ru(t)
. . . . =\=? ) ~ T\
two-dimensional (2-D) sampled input signal (after some enu- Qz1—1t)-1
meration of the signal samples) inside arpoint moving . ) o -
ind d lety be the output value from the filter. Then The multivalued impulse noise is a generalization of the salt and pepper
window ar_‘ 'y . p e ) : noise (two-valued impulse noise), where a noisy sample has a value that is
the MRL-filter is defined as the shift-invariant system whosiformly distributed between the extreme values of the signal.
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Fig. 2. (a) Signal corrupted by a 24% multivalued impulse noise (PSNR4.5 dB). (b) Signal (a) restored by a 25-point flat median filter (PSANR
52.8 dB). (c) Signal (a) restored by a 25-point adaptive MRL-filter (PSXNM7.5 dB). (d) Signal corrupted by a hybrid 20 dB additive Gaussian white
noise and 24% multivalued impulse noise (PSNR11.9 dB). (e) Signal (d) restored by a 25-point flat median filter (PSANRO0.1 dB). (f) Signal (d)
restored by a 25-point adaptive MRL-filter (PSNR 38.6 dB).

wherel = (1,1, ---, 1). Thus, the rank indicator vector Proposition 2: Let ¢ = ¢(¢t, r). Forr fixed, if ¢ is constant
marks the locations it where thez value occurs; it also in a neighborhood of somg, then therth rank functiornR,..(¢)
has unit area. is differentiable att, and
As an example, if the vectot = (3,0,5,7, 2,1, 3),
then its fourth rank indicator vector isc(¢,4) = IR, (1) = c(ty, 7)
£(1,0,0,0,0,0,1). Some of the properties of the rank ot t=t, TR
indicator vector are summarized below.
Proposition 1: Let ¢ € R", » € {1,2,---,n}, andc = At points in whose neighborhood is not constant, the rank
c(t, r). Then function is not differentiable.
a) ¢-1' = 1 (unit area); Proof: See the Appendix. O
b) ¢-¥ = R.(t) (inner-product representation); At points where the function = R,.(¢) is not differentiable,
C) ¢ (21 —t) =0, wherez = R,.(¢). a possibledesign choices to assign the vectot as a one-

d) If » is fixed, thenc is a piecewise-constant function ofsided value of the discontinuousz/dt. Further, since the
t with exactly2™ — 1 possible different values. Further,rank indicator vector will be used to estimate derivatives and
for all pointst, € IR™ with unequal components, ; # it is based on the discontinuous unit sample function, a simple
to,; Vi # j, there is a neighborhood around them suchpproach to avoid abrupt changes and achieve numerical
that robustness is to replace the unit sample function by smoothed
impulses,g, (v), that depend on a scale parameter 0 and
It = tolloo < % 11;111 lto,i — to, ;] have at least the following required properties:

2, (V) =q¢,(—v) (symmetry)
inside whichg is constant, i.e.¢(t, 7) = c(t,, 7). o (v) — qlv ) Vv aso — 0,
Proof: See the Appendix. O
Observe from Proposition 1b that the proposed MRL-filter @(v) = 1Y ase = oo @
structure is an efficient and compact way to represent a bq‘fh%ctmns like exp
of linear filters. In fact, using our inner-product representaﬂoeho'ceS forg
we can write the MRL-filter as ’

[-%(v/c)?] or secR(v/o) are natural
(v). Similar to Q(v), the vector form of the
smoothed unit sample function is

y= [)‘Q + (1 - )‘)Qv )‘Q ) 9/] ) [gv 1]/ Qo’(v) = [QU(Ul)v QU(UQ)v Tty (JU(Un)]'

which from Proposition 1d represents a bankbf— 1 linear Thus, Proposition 1b and the above considerations lead to the
filters. following definition.
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Definition 5—Smoothed Rank Functioff: ¢,(v) is a (recursive) formula
smoothed impulse satisfying (2), then the smoothtdrank

function is defined as w(i+ 1) =w(t) — 1o VI (W) w=w(i):

N0>07i:071727"' (5)

Rr O'(E) =C, E/ :

’ so that the value of the cost function tends to decrease at
each step. The positive constanf is usually called the step
where ) o
Q0 (1 — 1) size and regulates the tradeoff between stability and speed of
¢, (t, r) = 01—_t_1” z = R.(2). convergence of the iterative procedure. The iteration (5) starts
Qo(21—1) 1 with an initial guessu(0) and is terminated when some desired

In Definition 5,¢,, is an approximation for the rank indicator.qdition is reached. This approach is commonly known as
vector ¢. Using ideas of fuzzy set theory,, can also be ihe method of steepest descent.

interpreted as a membership function vector. For instance, ifag cost function.J. for the ith updatew(i) of the weight
t=1(3,0,517213), ¢(v) =sech(v/o), ando = 0.5, yector we use -

then . i
Jw(@)] = — *(k 6
¢, (t, 4) = 3(0.9646, 0, 0.0013, 0, 0.0682, 0.0013, 0.9646), [w(®)] M k:iZMH o (k) ©
whereM =1, 2, --- is a memory parameter, and the instan-

whereasc(t, 4) = %(1, 0,0, 0,0, 0, 1). Some properties of

: ) . " taneous error
¢, andR,. ,(t) are given in the following proposition.

Proposition 3: If z = R,.(t) and z, = R,. ,(t), then for e(k) = d(k) — y(k) (7)
all t andr: is the difference between the desired output sigiia) and the
a) ¢, -1 = 1 (unit area); actual filter outpuy(k) for the training samplé. The memory
b) lim, .oc, = ¢ parametefld controls the smoothness of the updating process.
¢) lim, g2, = 2; If we are processing noiseless signals, it is sometimes better to
d) lim, ooc, = 1/n; simply setA/ = 1 (minimum computational complexity). On
e) lim, oo 2, = (1/n) Z;;l t;. the other hand, if we are processing noisy signals, we should
Proof: See the Appendix. 0 useM > 1 and sufficiently large to reduce the noise influence
Fig. 3 shows the smoothed rank function for different valugh!ring the training process. Further, it is possible to make a
of o, whent = (t1, t2), z = Ro(t) = min{t, ta}, 2, = training process convergent by using a larger valué{of

Ra, »(t), and ¢,(v) = secH(v/o). Observe the smoothness Hence, the resulting adaptation algorithm, called the aver-
of z, for o # 0, that illustrates the usefulness of smoothingded LMS algorithm [2], is
impulses to circumvent the nondifferentiability &,.(¢). i

. N dy(k)
w(i+1) =w(i) + — Z e(k) ——= ,
Ill. ADAPTIVE DESIGN M hmi— M+1 dw w=w(%)
From the filter definition (1), we see that our design goal t=0,1,2,--- 8

is to specify a set of parametets b, », and A in such a

way that some design requirement is met. However, inste\Q(Here“ = 2po. From (1) and (4)

of using the integer rank parametedirectly in the training dy (dy 9y 9y 9y
equations, we work with a real variableimplicitly defined dw  \da’ dp’ b’ I\
via the following rescaling { do Ou
- - A—,A—,<1—A>£,a—ﬁ] ©)
7’E{H—Hn72)+0.5J, pelR  (3) da Op
) ) epr p ) ) . According to Proposition 2 and our design choice, we set
wheren is the dimension of the input signal vectorinside
the moving window. The relation betwegrnand the output dox — = Qlal —z —a) o =R (z+a). (10)

will be defined later. In this way, the weight vector to be used da Qlal—z—a)-1"

in the filter design task is defined by The final unknown iss = da/dp, which will be one more
w=(a p, b, A) (4) design choice. Notice from (1) and (3) that> 0. If all the

but any of its components may be fixed during the processéléments oft = x + a are identical, then the rank does
Our framework for adaptive design is related to adaptie°t Play any role, so tha¢ = 0 whenever this happens. On

filtering, where the design is viewed as a learning process df§ Other hand, if only one element ofis equal toa, then

the filter parameters are iteratively adapted until convergence/&fiations in the rank can drastically modify the output; in

achieved. The usual approach to adaptively adjust the vegctorthiS cases should assume a maximum value. Thus, a possible

and therefore design the filter, is to define a cost funcfien), Simple choice fors is

estimate its gradienV.J(w), and updatew by the iterative
J ) peaten oY 0 =1 Qad-z-a)l,  a=Ri(zta) (A1)
n

=S

3|-] denotes the usual truncation operation, so that 0.5] is the usual . ) .
rounding operation. wheren is the dimension ofy.
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Fig. 3. Smoothed rank function with (@ = 0, (b) o = 1, (¢) ¢ = 5, and (d)o = 10.

Finally, to improve the numerical robustness of the training simple way to map from a variable € IR to an integer
algorithm, we will frequently replace the unit sample functiomank » € {1, 2, ---, n}. For example, ifp — —oo, then
by smoothed impulses [obeying (2)], in which case an appro-— =, corresponding to a minimum operation; 4f— oo,
priate smoothing parameter should be selected. A naturalthenr — 1, corresponding to a maximum operationpit= 0,
choice of a smoothed impulse is(v) = exp[—3(v/0)?, thenr = [n/2+ 1], corresponding to a median operation.
o > 0. The choice of this nonlinearity will affect only the The evaluation of@Q,(al — x — a) represents the major
gradient estimation step in the design procedure (8). We shogRmputation during the gradient estimates of the nonlinear
use small values of such thaty, (v) is close enough tg(v). filter component.

In practical applications, with sufficiently small values of
this transform is image independent. A possible systematic
way to select the smoothing parameterwhen we choose IV. CONVERGENCE CONDITIONS

_ 1 2
Go(v) = exp[—3(v/0)7] could beg,(v)] < ¢ for |UQ| Z % gome theoretical conditions for convergence of the training
so that, for some desired and é, o = &/\/In(1/e). For oo0065 (8) are presented in this section. The goal is to

ex_ample, if6 = ¢ = 0_.1_ thenco o 0.05. But independent Of_find upper bounds:,, to the step size, such that (8) can
this, the proposed training algorithm works prop_er_ly even V‘_"ttlfbnverge if0 < 1 < .. For the sake of simplicity, we
o = 0 (no smoothing). A formal support for this is given iNassme the framework of system identification with noiseless
the next section. _ _ signals, and consider the training process of only one element
Observe the simplicity of the design methodology jusif ., at a time, while the others are optimally fixed. This
proposed, where the main design choices are defined piipans that given the original and transformed signals, and
(3), (10), and (11). Since rank functions are not differefhree parameters (sets) of the originel = (a*, p*, D", \*)
tiable, optimality of their gradient estimates is not a welised to transform the input signal, we will use (8) to track
defined problem. The fundamental issue, instead, is how dfly the fourth unknown parameter (set)®f in a noiseless
circumvent the nondifferentiability using robust and systematigvironment. If the training process (8) is convergent, then
techniques. Our method, based on three design choices anth@ ., ||w(i) — w*|| = 0, where|| - || is some error norm.
final smoothing of unit sample functions, is an efficient anBy analyzing the behavior ofw(i) — w*||, under the above
simple alternative for doing that. The design choice (10) is th&sumptions, we have found the following conditions for
natural estimate téd«/da due to Propositions 2 and 3b (se&onvergence.
Fig. 3 for a practical motivation). The design choice (11) is Proposition 4: A necessary condition folim;_... [|a(:) —
based on heuristic arguments, which is conveniently express&tl = 0 in the training process (8) with any bounded initial
in terms of unit sample functions. The design choice (3) is jusbnditiona(0), given thatp(:) = p*, b(z) = b*, andA(z) = A*
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Vi, A* # 0, is Proof. See the Appendix. O
0< 1< g = 2MA™2, The 'mixing parametei wiII_ play an important role _when
Gaussian and/or non-Gaussian signals are present in the sys-
Proof: See the Appendix. O tem. Depending on which one is more representative, the
Observe the interesting fact that the above condition fefixing parameter should be adjusted accordingly.

training the coefficients of the morphological/rank part of the The validity of the above theoretical restrictions on the step
filter is not dependent on the input data. On the other hargizes for convergence will also be experimentally demonstrated
this is not the case for the linear part of the filter, as will b the applications.
seen later. The theoretical upper boundmay be too large for
practical implementations; thus, in some applications a smaller
practical upper bound may often suffice for convergence.

Proposition 5: A sufficient condition forlim, .o |r(z) — In this section, we verify the proper operation of the training

| = 0 andlim; .o [p(i +- 1) — p(¢)| = 0 in the training process (8) and illustrate the use of MRL-filters in problems
process (8) with any bounded initial conditip(), given that ¢ image processing such as system identification and image

V. APPLICATIONS IN IMAGE PROCESSING

a(i) = a*, b(i) = b, andA(d) = A* Vi, A* £0, is restoration.
As proposed in [13], the images are scanned twice during
A2 the training process, following a zig zag path from top to
O<p<p= m bottom, and then from bottom to top. To define the local input
vector z at each pixel, a square window centered around it
with sizen = (2m + 1)%, m = 1, 2, -- -, is defined such that

where D = maxy, i |o(k) — a(1)[} + maxy,  {Jax — al}. z is the corresponding square matrix transformed to a vector

Proof. Se_e the Appendix. via column-by-column indexing. The vectosisand b should
The theoretical upper boung, may be too small, but be interpreted the same way

guarantees convergence. Due to the discrete nature of the rarﬂfollowing our design methodology, a plot of an error
pargmeterr, very fast convergence will ‘.*S“"?‘”y _be O.bservedr.heasurement versus iteration number is provided. This plot
Notice that, although the actual final objective in this case is

to track th timal int kit ding f usually called a learning curve. Moreover, for numerical
0 frack the optimal Integer rank-, Its corresponding irom robustness, the unit sample functigfv) is approximated by

(3) real parametep” is not unique; i.e., - (v) = exp[—3(v/c)?], with o = 0.001. The SNR'’s reported

in all experiments are the PSNR’s, equal to
I n—r"—0.5 <<l n—7r"+0.5
n|{ — n{—1_.
r* —0.5 P r*—1.5

Proposition 6: A necessary condition folim;_,.. ||6(¢) —

b"|| = 0'in the training process (8) with any bounded initia{ye normalized the image pixel values to be in the range [0, 1J.
conditionb(0), given thata(i) = a*, p(i) = p*, andA(7) = A*

Vi, A\* £ 1, is

PSNR= 20 log,, <S|gnal peak-to-peak ran%e

v/ Var(error signal)

A. Experiment 1: System Identification

oM The goal here is to experimentally demonstrate convergence
O<p<pp="—[L{A-XN]2 or divergence behaviors of the training process (8), using
" the assumptions of Section IV. Thus, we explore the system
identification problem of tracking one element @f, given
where L = maxy {[z(k)|}. that we know the original and transformed images, and the
Proof: See the Appendix. - U other three elements ob*. In this way, the input signal
Notice that, contrary to the case of the morphological/rank the original image, and the desired signal is the image
part of t_he filter, the_inpt_Jt data has a c_rucigl influence apsnsformed by the corresponding MRL-filter defined wia
the maximum step size in the case of its linear part. TRge considered both cases of noiseless and noisy system
condition in Proposition 6 will frequently require quite Sma'|dentification, with(M = 10) and without 4 = 1) averaging
values of sFep size, there_for.e contributiqg to slow convergen§eihe error sequence in the cost functidn The noisy case
rates. In this sense, designing the nonlinear component of {hgs generated by adding a uniformly distributed noise with a
MRL-filter is generally more effective than designing its lineapgnR — 45 dB. The plotted learning error was the percent

component. This fact is demonstrated in Section V. normalized max absolute error
Proposition 7: A necessary condition folim;_ . |A(2) —

A*| = 0 in the training process (8) with any bounded initial (i) — w|

conditionA\(0), given thata(i) = a*, p(i) = p*, andb(i) = b* i) = = ||W*||_ = % 100

Vi, is g

_ -2
O<p<pu=2MZ Our criterion for stopping the iterations wg&i) < &., where

where Z = max,{|a(k) — 8(k)|}. the threshold¢. depended on the parameter type and the
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TABLE |
REsuLTS oF EXPERIMENT 1. THEORETICAL UPPER BOUNDS
FOR THE STEP SIZE & (PROPOSITIONS4—7) WITH THE
CORRESPONDINGCASES OF CONVERGENCE ORDIVERGENCE

Experiment 1 (Figures 4-5)

010
fa =32M , p, = 1.61

wy = 0.40M |, py = 4.59M
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perturbations, so that the same thresh@gldould be employed

in both noiseless and noisy cases. In contrast, larger thresholds
&. had to be used with the other filter parameters in the noisy
cases; as expected, the additive filter parameteas the most
sensitive to additive perturbations (larges). Furthermore,

the rates of convergence for the parametgrs, and A were

in general much faster than for the paramdteHence, it is
faster to design the morphological/rank part than the linear
part of the MRL-filter using the LMS approach.

B. Experiment 2: Image Restoration
The goal here it to restore an image corrupted by non-

Gaussian noise. Hence, the input signal is a noisy image, and
a(ap = 0) the desired signal is the original (noiseless) image. The noisy
image for training the filter was generated by first corrupting
the original image with a 47 dB additive Gaussian white

Noiseless (£, = 107%%, M = 1) Noisy (£ = 10%, M = 10)

Iz #lterations Iz #lterations noise, and then with a 10% multivalued impulse noise. After

20 3168 20 3152 the MRL-filter is designed, another noisy image (with similar
type of perturbation) is used for testing. The optimal filter

40 Divergence 40 1888 parameters were estimated after scanning the image twice

during the training process. We used the training algorithm
(8) with A/ =1 andp = 0.1, and started the process with an
unbiased combination between a flat median and the identity,

p(po=0=>r¢=75)

Noiseless (£, = 1074%, M = 1) | Naoisy (& = 1071%, M = 10)

7 #lItcrations 7 #lterations ie.,
60 10 60 10
120 4 120 5 0 0 0 0 0 0
b (b = 0) a=10 0 0f,b,=|0 1 0], po=0, Ag =0.5.
0 0 0 0 0 0
Noiseless (£, = 1071%, M = 1) Noisy (& = 1%, M = 10)
" #lterations M #lterations ] ) ]
The final trained parameters of the filter were
0.4 52,194 0.4 19,063
0.8 Divergence 0.8 10,836 ~
0.75 0.00 0.05
A (do =05) a=|-046 —001 0.71],
Noiseless (£, = 107%%, M = 1) Noisy (¢, = 1%, M = 10) |—0.09 -0.02 -0.51
m #ltcrations o #ltcrations [0.01 0.19 —0.01
b=1013 08 007, r=5, A=098
100 06 100 B 000 0.13 —0.02
1000 Divergence 1000 18

which represents a biased combination between a nonflat

noise level. For the case of tracking the 0ptima| rafik we median filter and a linear FIR filter, where some elements
actually plottedé(4) using the integer rank instead of the Of a andb present more influence in the filtering process.
real parametep. Fig. 6 shows the results of using the designed MRL-filter
Table | contains the parameters of the MRL-filter usedith a test image, and its comparison with a flat median
for system identification, the corresponding theoretical upp#iter of the same window size. The noisy image used for
bounds for the step size, and parts of the simulation training is not included there because the (noisy) images
results. The training images and the resulting learning curvésed for training and testing are simply different realizations
are shown in Figs. 4 and 5. As a main conclusion fro®f the same perturbation process. Observe that the MRL-
this experiment, whose results are typical of many othélter outperformed the median filter by about 3 dB. Spatial
similar experiments we have performed, in a supervised systemor plots are also included, where lighter areas indicate
identification task our design algorithm converges fast twgher errors, and they clearly show that the MRL-filter better
the real parameters of the MRL-filter within small erropreserves the image structure.
distances. Observe also that the learning curves of the ranlkor the type of noise used in this experiment, we must have
parameter presented almost no dependence on small additiae least part of the original (noiseless) image, otherwise we
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Fig. 4. Images of Experiment 1. (a) Original image (2%1301). (b) Image (a) transformed by the MRL-filter indicated in Table I.

would not be able to provide a good estimate to the optimBurthermore, each subset of weight coefficients could be
filter parameters during the training process (8). In order tiesigned individually.

validate this point, we repeated Experiment 2 using 40000  Convergence issues were discussed, and theoretical upper
subimages of the training image (only 17% of the pixels), arkbunds.,, for the step sizg: were proposed, such that the
the resulting MRL—fi.Iter still outperformed the median filter pycorresponding adaptation algorithms could lead to convergent
about 2.3 dB (that is, 0.5 dB smaller than the result obtainggp,vior ifo < 1t < j1e. An interesting result was that the step

when using full 'Imiges)' '_I'here are stltuattlﬁns, h_(t)r\]/vever, V\;hlt 8unduw for designing the weights for the morphological/rank
we can use only the noisy 1mage together with some i ﬁ%rt does not depend on the input data. Mathematical proofs
constraints and design the filter that is closest to the ident

[13], [14]. But this approach is only appropriate for certain erg provided for thg cgnvergence con_d|t|or?s_. . .
Finally, some applications to system identification and im-

types of impulse noise. . . :
An exhaustive comparison of different filter structures ifge restoration were illustrated. Our results agreed with the

problems of system identification and noise cancellation #0ve stated theoretical developments and pointed out the
beyond the scope of this paper. Nevertheless, Experimenfaﬁt that designing morphological/rank filters is more efficient
was extended with the adaptive design of ax33 L-filter ~than designing linear FIR filters via the LMS approach, in the
[1] under the same conditions. Starting the L-filter with a fl&@ense of faster convergence to the desired filter coefficients.
median, even after scanning the image four times during tRerthermore, the MRL-filters could outperform the standard
training process, the resulting L-filter was just 0.2 dB bettdiat median filter (in terms of SNR’s) in restoring noisy signals.
than the (flat) median filter. Our results using MRL-filters are encouraging and demon-
strate the effectiveness of these filters for certain image/signal
processing tasks.

Comparing our design methodology for the nonlinear filter
gomponent with the approach in [13] and [14], some exten-
in this paper and termed thBIRL-filter. It consists of a sions and improvements can be pointed out: Theoretical proofs

linear combination between a morphologicalirank filter angf cOnvergence are provided; no Dirac delta function is used;
a linear filter. The main motivation for its definition was thé"€ notion of “rank indicator vector” and “smoothed impulses”
need to have a system capable of dealing with combinatiodf€ introduced. Our approach is simpler, more intuitive, and
of Gaussian and non-Gaussian noises in signals but af#nerically more robust.
presenting characteristics of a morphological system in someAlthough we defined MRL-filters as a shift-invariant sys-
cases. tem, we can directly use the proposed design procedure to
The nonlinear component of the MRL-filter is defined by axtend the idea for a shift-variant (adaptive) system. This
morphological structuring element (vector of additive weighipproach can be useful when the image/signal presents strong
coefficients) and a rank parameter. The linear componentnignstationary spatial/temporal characteristics. We are currently
defined by a vector of multiplicative weight coefficients. Anvestigating the application of MRL-filters as processing

mixing parameter is then employed to control the contributigiydes in a general class of multilayer networks used for pattern
of each component. recognition [11].

An adaptive scheme was then proposed to design this
filter, and some new ideas were developed to overcome the
problem of nondifferentiability of rank functions. Together
with some design choices, the resulting adaptation algorithm
was very simple and based on the averaged LMS algorithm.a) Direct consequence of Definition 4.

VI. CONCLUSIONS

A new hybrid nonlinear and linear filter was introduce

APPENDIX A
PROOF OF PROPOSITION 1
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signals (from left to right). The solid and dashed lines correspond, respectively, to the small and large values of the gtep size

b) If ¢ = (c1, c2, - -~

, Cr), by Definition 4

., om=1,2 -

, 1.

From Definition 3 it follows that

1/N
Crn - 07/ ’

if x=¢t,,
otherwise
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Fig. 6. Experiment 2. (a) Original texture image (240250). (b) Test image: image (a) corrupted by a hybrid 47 dB additive Gaussian white noise and
10% multivalued impulse noise (PSNR 19.3 dB). (c) Image (b) restored by a flatx3 3 median filter (PSNR= 25.7 dB). (d) Image (b) restored by the
designed 3x 3 MRL-filter (PSNR= 28.5 dB). (e) Spatial error map of the flat median filter. (f) Spatial error map of the MRL-filter.

where N is the number of inputs; that are equal to the d) For a fixed rank, the numberV of inputs that are equal
output z = R..(t). Therefore to the output varies from 1 ta. Hence, the total number
of all possible different values af in R" is

- 1
et = Z tmcmzﬁ(z—i—z—i—---—i—z =R.(t)-

m=1 N times

- n!
E —_ = 2" — 1.
! — !
c) Direct consequence of a) and b). N=1 Nin — N)!
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Now considert, = (to,1, to,2, - -, to,») in IR such equation and taking the absolute value, it follows that for
that ¢ ; # t0.;, Vi # j, and anyt € R™ such that ¢ = 0,1, 2, ---
||t_to||oo < % Inin#j |t0 i —to J| Then,t andto have

- ) ) 2 M .
the same ordering, and heneg, r) = c(¢,, 7). | 0< ‘1 - A Y [m(4)]

gjlm(1)] < gjm(i+ 1)]

<[1= X2 L pma| estm@) + Aclm(i)] (D)

APPENDIX B
PROOF OF PROPOSITION 2 where

From Proposition 1b and d, i&(z, ) is constant in a AT e TN
neighborhood oft,, then R..(¢) = c(¢y, r) - ¥’ Vi in that eilm(D)] = la;lm ()] — o
region, so that A=|NpM -1)/M

IR, (1) 9 @l = max_ Alelmk)]l}.
ot | T g ] =ty ). M ks
- T £t But for a convergent proces&m(i)] — 0 asi — oo,
Otherwise,R.(¢) is not differentiable. O so that from (D.5) a necessary condition for convergence is
|1 — A2(p/M)c;[m(i)]] < 1V m(s). Furthermore, from (D.3)
APPENDIX C 1/n < ¢;[m(4)] £ 1, so that the least upper boupg for the
PROOF OF PROPOSITION 3 step sizey is obtained if
a) Direct consequence of Definition 5. 0< i< g =2MA"2, (D.6)
b) Sinceg,(v) — ¢q(v) aso — 0, then from Definition 5
it follows directly thatc, — ¢ aso — 0. The same result can be similarly derived for every elemgnt

c) Direct consequence of b), Definition 5, and Propositid®f . Therefore the restriction (D.6) is a necessary condition for

1b. lla(?) — a*|| — 0 asi — oo for any bounded initial condition

d) Sinceq,(v) — 1 aso — oo, then from Definition 5 it a(0). -

follows directly that
1 1 APPENDIX E
€ = pi=Llaso = oo PROOF OF PROPOSITION 5
. N Sinceg, b, and are optimally fixed A # 0, then from (8),
e) Direct consequence of d and Definition 5. O (9), and (11) the training process of the parametés
APPENDIX D . Y U
PROOF OF PROPOSITION 4 pli+1) = p()) + 77 > elk)s(h),

Assume convergence in the training @f Since p, b, and i—0 kfg%fl (E.1)
A are optimally fixed,\ # 0, then from (8)—(10) the training T '
process of thejth element ofa is From (3), the corresponding training process of the rank

\ i parameterr is
. . W
i+ 1) =a. (s il e (kb
CLJ(L + ) GJ(L) + M k=i;4+l C( )CJ( )7 7('L + 1) — |_7’/('l: + 1) + 05J, i = 0’ 1’ 2’ . (E2)
i=0,1,2 - (0.1 where
wherec; (k) is thejth element ofc[z (k) + a(d), r]. Leta* be ;L n—1

the desired vector, and consider the subsequefides; (¢)]} (E3)

" +exp(—p)’
and {z[m2(¢)]} of training samples such that

Wheneverr(i) = »*, the desired rank, then the updating
Ro{z[mi(i)] + a*} =x;[mi(i)] + o] (D.2) process stopse[k) = 0 V&, so that|p(i + 1) — p(i)| = 0,
and thereafter. If~(0) = *, nothing needs to be done. Otherwise,
; AN e ; ) ; eitherr(0) > »* or »(0) < r*. Since the sequenc® = [r(i
Rolalma @] + alma ()]} =a;Ima@] + a5lma @] (O3) o bour1(d39d, a suffif:ignt condition fdr(i) — r*| — 0[ érl]j
The iteration (D.1) is convergent if(:) — 0 asi — oco. For |p(i + 1) — p(i)] — 0 as¢ — oo for any bounded initial
a convergent process, we must hgve(i): m(i) = m.(i) = condition p(0) is that S is either monotone decreasing or
m2(i)} # 0, because otherwise we contradict our assumptiononotone increasing. But this condition is guaranteed if
of convergence. Using the training samplegm(¢)]}, then . . )
from (1), (D.2), and (D.3) [P +1) =+ ()] <1 Vi. (E.4)

e[m(i)] = dm(i)] — y[m(i)] = Ma} — a;[m(i)]}  (D.4) From (E.1) and (E.3) we can write

so that|a;[m(i)] — a*| — 0 if e[m(i)] — 0. By substituting 111y - B = 1) — [B@E) — 1]n
(D.4) in (D.1), subtréctingzj from both sides of the resulting ri+) [B(i) = 1]r'(2) + [n — B(i)]

(E.5)
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where where
B(i) = exp [_)\Mu B/(L):| (E.6) L= m,flxﬂx(k)”
M-1
d =(1-))?
an i C=1=A)"n—7
B'(i) = e(k)s(k) (E.7) (@) =llz@ll | max - {Je(R)] lz(F)I]}-
k=i—M+1 T
sincel < (i) < n, then[B() — 1] (i) +[n— B()] > n—1, From (F.3), a necessary condition for convergence is
such that subtracting/(z) from (E.5) and taking the absolute 1—[L(1 - V]*n Plaq
value, results M
(§) — or equivalentl
)~ @) < nlBG)-1 L <)o), gy O MY
n— oM y
Hence, from (E.4), (E.6), and (E.8), a sufficient condition for O0<p<pa= n (LA =M (F4)
convergence is
O
M 1 M
|A[B(2)] n)  n|Al|B/(i)] APPENDIX G

On the other hand, from (11) and (E.7),

. n—1
B0 = — > lek)l-
k=i—M+1
Besides this, from (1) and (7)
3 le(t)] < M max{|e(k)[} < M|AID
k=¢—M+1 g

PROOF OF PROPOSITION 7

Sincea, p, andb are optimally fixed, then from (8) and (9)
(E.10) the training process of the parameteis
: : K i . . .
A+1) =A0) + - Z e(k)|e(k) — BR)],
k=i—M+1

(E.1D) i=0,1,2, . (G.1)

If this iteration is convergent, ther{i) — 0 asi — oo. Choose

where D = max; ({|z(k) — ()|} + maxy,{|ar — a|}. any samplec(é), and let\* be the desired mixing parameter
Substituting (E.11) in (E.10), then from (E.9) the least upper From (1)

bound ., for the step size. is obtained if
)\—2
(n—1)D

such that convergence is guaranteed.

O<p<pp,=

e(i) = d(@) —y(i) = [\ = AD][(@) = p)]  (G.2)

so that|A(¢) — A*| — 0if e(¢) — 0, given thata(s) #£ 3(0).
For the same sample, computing the error at iteratient,
U using (G.1) and taking the absolute value, results that for

i=0,1,2 -
APPENDIX F P
PROOF OF PROPOSITION 6 0< ‘1 ~u Z2||e(d)] < le(i +1)|
Sincea, p, and A are optimally fixed A # 1, then from (8) < ‘1 P ootV + Dl G3
and (9) the training process of the vectors - M (D] + D2() (G.3)
i here
. ~ o (1=Xu w
Wi+ 1) =bi)+ Y e(k)a(k),
M k=i— M+1 Z = m}ixx{|a(k) = BRI}
i=0,1,2 ---. (F.1) M—1

If this iteration is convergent, ther{i) — 0 asi — co. Choose

D=y i

any samplex(i), and letd* be the desired vectdr From (1)

e(i) = d(1) — y(i) = (1 = V" - b(@)] - 2'(4)

(i) = le(@) =A@ max - Alex|a(k) = AR)[}.

(F.2) i—M+1<k<i—1

so that||b(é) — b*|| — 0 if e(i) — 0, given thatz(i) # 0. From (G.3), a necessary condition for convergence is

For the same sample, computing the error at iteratieni,
using (F.1) and taking the absolute value, results that for

i=0,1,2 -

0< ‘1 L1 —A)]Qn%

< ‘1 CL(L = A ﬁ

le(D)] < le(e + 1)

le(@)] + Cq(2)

Hoso
1- 1 ‘ 1
‘ M <
or equivalently

0<p<ppr=2MZ2 (G.4)
(F.3)
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