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Abstract

In this paper, the general class of morphological/rank/linear (MRL) multilayer feed-forward neural networks (NNs) is
presented as a unifying signal processing tool that incorporates the properties of multilayer perceptrons (MLPs) and
morphological/rank neural networks (MRNNs). The fundamental processing unit of MRL-NNs is the MRL-"lter, where
the combination of inputs in every node is formed by hybrid linear and nonlinear (of the morphological/rank type)
operations. For its design we formulate a methodology using ideas from the back-propagation algorithm and robust
techniques to circumvent the non-di!erentiability of rank functions. Extensive experimental results are presented from
the problem of handwritten character recognition, which suggest that MRL-NNs not only provide better or similar
performance when compared to MLPs but also can be trained faster. The MRL-NNs are a broad interesting
class of nonlinear systems with many promising applications in pattern recognition and signal/image processing.
( 2000 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Multilayer feed-forward neural networks, or simply
neural networks (NNs), represent an important class of
nonlinear systems widely used in problems of sig-
nal/image processing and pattern recognition. Their ap-
plications in signal/image processing usually employ
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networks with a single output, which are sometimes
called NN-"lters. Furthermore, adaptive "lters and NNs
are closely related, so that their adaptation/training can
be studied under the same framework [1]. In this sense,
the design of an NN-"lter corresponds to the training
process of its embedded NN. The usefulness of NNs
can be e$ciently investigated due to the existence of
the back-propagation algorithm [2], which represents a
generalization of the LMS algorithm for feed-forward
networks. In this way, the system design is viewed as
a problem of unconstrained optimization that is iter-
atively solved by the method of steepest descent.

The node structure in an NN is supposed to model the
input}output characteristic of a neuron, and so it repres-
ents the essence of the system. The perceptron, i.e., a lin-
ear combiner followed by a nonlinearity of the logistic
type, is the classic node structure used in NNs. However,
it has been observed that logic operations, which are not
well modeled by perceptrons, can be generated by some
internal interactions in a neuron [3]. For the sake of
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a better representation of these internal properties, a pos-
sible improvement to the basic perceptron model is pre-
sented in this paper. We propose the MRL-NNs [4],
a general class of NNs where the combination of inputs
in every node is formed by hybrid linear and nonlinear
(of the morphological/rank type) operations. The funda-
mental processing unit of this class of systems is the
MRL-"lter [5], which is a linear combination between
a morphological/rank "lter and a linear FIR "lter. The
MRL-NNs have the unifying property that the charac-
teristics of both multilayer perceptrons (MLPs) and mor-
phological/rank neural networks (MRNNs) [6] are ob-
served in the same system. An important special case of
MRNNs is the class of min}max classi"ers [7], which can
provide classi"cation results comparable to MLPs, but
with faster training processes. Other related works with
min}max operations in networks have appeared in Refs.
[8,9]. We show in this paper that the MRL-NNs can
solve the parity problem in closed form with about half of
the number of nodes usually required by MLPs and
a smaller computational complexity. Examples from
simple pattern classi"cation problems are also included
to provide geometrical insights. These demonstrate the
potential of this new structure that o!ers e$cient solu-
tions to pattern classi"cation problems by requiring
fewer nodes or fewer parameters to estimate than those
needed by MLPs. Next, we formulate a simple and sys-
tematic training procedure using ideas from the back-
propagation algorithm and robust techniques to circum-
vent the nondi!erentiability of rank functions. Our ap-
proach to train the morphological/rank nodes is a theor-
etically and numerically improved version of the method
proposed by Salembier [10,11] to design morphologi-
cal/rank "lters. Finally, we apply the proposed design
methodology to problems of optical character recogni-
tion and provide extensive experimental evidence show-
ing not only that the MRL-NNs can generate similar or
better results when compared with the classical MLPs,
but they also usually require less processing time for
training.

2. The MRL-NN

In general terms, a (multilayer feed-forward) NN is
a layered system composed of similar nodes, with some of
them nonobservable (hidden), where the node inputs in
a given layer depend only on the node outputs from the
preceding layer. In addition, no feedback is allowed in the
topology of this class of systems. Every node performs
a generic composite operation, where an input to the
node is "rst processed by some function h( ) , ) ) of the
input and internal weights and then transformed by an
activation function f ( ) ). The node structure is de"ned by
the function h. In the case of MLPs, h is a linear combina-
tion. The activation function f is usually employed for

rescaling purposes. We will consider the special cases
where f is the identity or a nonlinearity of the logistic type
and denote the corresponding systems as NNs of types
I and II, respectively. A general NN is formally de"ned
by the following set of recursive equations:

y(l),F(z(l))"( f (z(l)
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where l is the layer number, and N
l

is the number of
nodes in layer l. The weight vectors w(l)

n
represent the

tuning parameters in the system. The structure of the lth
layer is illustrated in Fig. 1. Besides this, the input and
output of the system are
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Before we de"ne the MRL-NN, we shall review the
concept of its fundamental processing unit: The MRL-
"lter. Let x"(x

1
, x

2
, 2x

n
) in Rn represent the input

signal and y be the output value from the "lter. We use
a vector notation to represent the values of the 1D or 2D
sampled input signal (after some enumeration of the
signal samples) inside an n-point moving window. The
MRL-"lter is de"ned as the shift-invariant system whose
local signal transformation rule xCy is given by
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where j3R, a, b3Rn, and & @ ' denotes transposition.R
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Fig. 1. Structure of the lth layer in a general NN.
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linear FIR "lter, and the vector a"(a
1
, a

2
,2, a

n
) rep-

resents the coe$cients of the morphological/rank "lter.
We call a the `structuring elementa because for r"1 and
n the rank "lter becomes the morphological dilation and
erosion by a structuring function equal to $a within its
support. The variables r and j are the rank and mixing
parameters of the "lter, respectively. If j3[0, 1], the
MRL-"lter becomes a convex combination of its compo-
nents, so that when we increase the contribution of one
component, the other one tends to decrease. For every
point of the signal, we can easily see from Eq. (3) that we
need 2n#1 additions, n#2 multiplications and an n-
point sorting operation.

The MRL-NN is the system de"ned by Eqs. (1) and (2)
such that
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where j(l)
n
, q(l)

n
3R; a(l)

n
, b(l)

n
3RNl~1 .

Observe from Eqs. (1), (3) and (4) that the underlying
function h is an MRL-"lter shifted by a threshold
(1!j(l)

n
)q(l)

n
. The o!set variables q(l)

n
are important when

j(l)
n
"0. The resulting weight vector for every node is then

de"ned by
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where we use a real variable o(l)
n

instead of an integer rank
variable r(l)

n
because we will need to evaluate rank deriva-

tives during the design of MRL-NNs. The relation be-
tween o(l)

n
and z(l)

n
will be de"ned later via a di!erential

equation, and r(l)
n
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n

via the following
rescaling:1
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which is a simple way to map from a variable o(l)
n
3R to

an integer r(l)
n
3M1, 2,2, N

l~1
N. For example, if o(l)
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P

!R, then r(l)
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operation; if o(l)
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n
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maximum operation; if o(l)
n
"0, then r(l)

n
"xN
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corresponding to a median operation.
Two important special cases of MRL-NNs are ob-

tained when f is the identity, de"ning the MRL-NN of
type I, and when f is a nonlinearity of the logistic type,
de"ning the MRL-NN of type II. In this way, an MLP
is a special case of an MRL-NN of type II where
j(l)
n
"0∀n, l, and an MRNN is a special case of an MRL-

NN of type I where j(l)
n
"1∀n, l. Fig. 2 illustrates the

structure of the lth layer of an MRNN [6].

1 x)y denotes the usual truncation operation, so that
x)#0.5y is the usual rounding operation.

Fig. 2. Structure of the lth layer in an MRNN.

3. Geometrical insights

Structure (4) of every node in an MRL-NN is a com-
pact representation of a set of hyperplanes. The normal
vectors of those hyperplanes will depend on the mixing
parameter j and the coe$cients b of the linear FIR "lter.
If j"1, the hyperplanes are parallel to some subset of
the canonical coordinate directions. For instance, con-
sider a single-node MRL-NN in R2 with r"2, i.e.,
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If these lines intercept each other, the intersection will
occur along the line x

2
"x

1
#a

1
!a

2
. It is not di$cult

to show that there will be no intersection if
b
1
#b

2
"j/(j!1). Fig. 3(a) illustrates the use of the

MRL-NN (7) to solve a two-class pattern recognition
problem, where the corresponding six unknown para-
meters were estimated. Fig. 3(b) shows a plot of Eq. (7) as
a function of x

1
and x

2
. Similar classi"cation could be

obtained using a two-layer MLP with at least two hidden
nodes, so that at least nine parameters would need to be
estimated.

A possible way to improve results using a single node
is obtained when we set [x, !x] as the input signal.
With this choice, we double the number of underlying
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Fig. 3. Decision boundaries of MRL-NNs.

hyperplanes. For our example in R2, this means that we
could easily obtain a closed boundary composed by four
lines. Again, similar result could be obtained using a
two-layer MLP with at least four hidden nodes. In terms
of the number of parameters to be estimated, we would
need 11 parameters in an MRL-NN and at least 17 para-
meters in an MLP.

Another solution to the classi"cation problem is illus-
trated in Fig. 3(c), where now we use Eq. (7) to generate
the two-layer MRL-NN

y
2
"minMy

1
, b

3
x
1
#b

4
x
2
#q

2
N. (8)

Observe that the resulting decision boundary is closed,
and therefore provides robustness to reject spurious

patterns [12]. Similarly, Fig. 3(d) shows a plot of Eq. (8)
as a function of x

1
and x

2
. For this MRL-NN we need to

estimate nine parameters, whereas an MLP would need
at least three hidden nodes to generate a closed region
with three linear bounds, and the estimation of at least 13
parameters.

Thus, the MRL-NNs provide several improvements
over MLPs. Not only the number of required nodes or
parameters to be estimated in MRL-NNs can be smaller,
but also sigmoid functions may not be necessary at all.
Note also that, MRL-NNs provide improvements over
MRNNs because the boundaries generated when
j(l)
n
"1∀n, l (i.e., when each node has no linear part) are

located only in a "nite number of directions. Therefore,
the MRL-NN node has advantages over both the basic
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perceptron model as well as over the MRNN node. One
drawback of MRL-NNs, however, is the computation
of rank functions, but this is not a di$cult task since in
many pattern recognition applications the feature vec-
tors to rank have a relatively small length and fast sorting
algorithms are available.

4. The parity problem

The parity problem is a generalization of the XOR
problem, i.e., given a binary vector x with n components,
the parity P

n
(x) is 1 if x contains an odd number of 1s and

0 otherwise. This problem is usually considered as a refer-
ence for checking new types of NNs or new training
procedures.

Using an MLP trained by the back-propagation algo-
rithm, the parity problem can be solved with at least
n hidden nodes [2], so that n#1 nodes are usually
required and at least (n#1)2 parameters need to be
estimated. On the other hand, we can derive a closed-
form solution to the parity problem using an MRL-NN.
In fact, observe that for every binary vector x with
n components,

n
+
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(x)"x ) 1@,

n
+
r/1

(!1)r~1R
r
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where 1"(1, 1,2, 1). Thus, splitting the sums in Eq. (9)
into even and odd values of r, yields
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+
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R
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which clearly can be modeled by an MRL-NN of type
I with only xn/2y#2 nodes, i.e., with about half of the
number of nodes usually required by MLPs, and no more
than 2n integer parameters. This result represents a con-
siderable improvement over MLPs.

5. Adaptive design

Based on the LMS criterion and using ideas from the
back-propagation algorithm, we propose a steepest de-
scent method to optimally design general NNs and then
apply it to MRL-NNs. The design goal is to achieve a set
of parameters w(l)

n
, n"1, 2,2, N

l
, l"1, 2,2, ¸, such

that some cost (or objective) function is minimized using
a supervised procedure. Consider the training set

M(x(k), d(k)), k"0, 1,2, K!1N, (11)

where d(k) is the desired system output to the training
sample x(k). From Eq. (11) we generate the training
sequence2

(x([k]
.0$ K

), d([k]
.0$ K

)), k3Z, (12)

by making a periodic extension of Eq. (11). Every period
of Eq. (12) is usually called an epoch. A general supervised
training algorithm is of the form
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where the positive constant k
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between stability and speed of convergence, v(l)
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and J is some cost function to be minimized. Let us de"ne
the error signal
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Based on the steepest descent algorithm, it follows from
Eqs. (13) and (15) that
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If we de"ne the matrices=(l), <(l) and ;(l) by
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2 [k]
.0$ K

,k!Kxk/Ky denotes the index k modulo K.
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then algorithm Eq. (13) can be written as
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<(l)(i), l"1, 2,2, ¸
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In this way, using the chain rule to evaluate ;(l)(k),

Lm
Lw(l)

n

"

Lm
Ly(l)

n

Ly(l)
n

Lz(l)
n

Lz(l)
n

Lw(l)
n

. (21)

Clearly, from Eq. (1) (see Fig. 1)
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Then, from Eqs. (22) to (24), Eq. (21) can be written as
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Furthermore, de"ne the local gradients by3
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so that Eq. (25) can be written as
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denotes an array (element-by-element) multiplication.

Notice that !(l) can be directly evaluated once we know
the function h( ) , ) ). However, the local gradients d(l) can-
not be computed so simply. From Eq. (26), we observe
that once we know f ( ) ), then we can directly compute
FQ ( ) ); but e(l) is the problem. An e$cient way to overcome
this di$culty is to recursively compute e(l) with a back-
ward propagation.

Computing Eq. (23) for l"¸, from Eqs. (16), (14) and
(2) we obtain
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from Eqs. (32), (26) and (33) we have
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then Eq. (34) can "nally be written as
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The resulting training algorithm, called the general aver-
aged back-propagation algorithm, is outlined in Table 1,
where k"2k

0
. Observe that the central problem in using

this general training algorithm is the evaluation of three
derivatives: fQ , h(l)

n
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n
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Table 1
General averaged back-propagation algorithm

(1) Set iQ0. For l"1, 2,2, ¸, start the weights=(l)(i) with small uniformly distributed random variables.
(2) For k"i!M#1, i!M#2,2, i do

(a) Present the input x([k]
.0$ K

) to the network, determine its output y(k) using Eqs. (1) and (2) (forward computation), and compute
e(k) using Eq. (14).

(b) For l"¸, ¸!1,2, 1, evaluate the local gradients (backward computation)

d(l)(k)"e(l)(k) ( FQ (z(l)(k)),

where

e(l)(k)"G
e(k), l"¸,

d(l`1)(k) )#(l`1)(k), otherwise

and compute the gradient matrices

;(l)(k)"diag(d(l)(k)) )!(l)(k).

(3) Update the internal weights by
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i
+

k/i~M`1

;(l)(k)

and set iQi#1.

(4) Repeat steps (2)}(3) until the weight values are stabilized and the cost function (15) is minimized, or until the maximum number of
epochs to be processed is reached.

An important special case of the general averaged
back-propagation algorithm is obtained when N

L
"1,

corresponding to NN-"lters. For this case, we have from
Eq. (23)
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In this way, de"ning

d3 (l),eJ (l)(FQ (z(l)), (38)

yields from Eq. (26) that d(l)"ed3 (l). Similarly, de"ning

;I (l),2 diag(d3 (l)) )!(l), (39)

yields from Eq. (30) that;(l)"e;I (l). Therefore, recasting
the above training algorithm with these tilded variables
and setting k"2k

0
, simpli"es the algorithm as outlined

in Table 2.
Based on this framework, the design of MRL-NNs can

easily be derived. From Eqs. (5) and (24),

c(l)
n
"A

Lz(l)
n

La(l)
n

,
Lz(l)

n
Lo(l)

n

,
Lz(l)

n
Lb(l)

n

,
Lz(l)

n
Lq(l)

n

,
Lz(l)

n
Lj(l)

n
B. (40)

Using Eq. (4) of MRL-NNs, it follows from Eqs. (33) and
(40) that

h(l)
n
"j(l)

n

La(l)
n

Ly(l~1)
#(1!j(l)

n
)b(l)

n
, (41)

c(l)
n

"Aj(l)
n

La(l)
n

La(l)
n

, j(l)
n

La(l)
n

Lo(l)
n

, (1!j(l)
n
)y(l~1), 1!j(l)

n
, a(l)

n
!b(l)

nB.
(42)

The di$culty in evaluating Eqs. (41) and (42) is due to the
nondi!erentiability of rank functions, but we can circum-
vent this problem by using pulse functions as done in [5].
In this way,

La(l)
n

Ly(l~1)
"

La(l)
n

La(l)
n

"c(l)
n
,

Q(a(l)
n
1!y(l~1)!a(l)

n
)

Q(a(l)
n
1!y(l~1)!a(l)

n
) ) 1@

(43)

and

La(l)
n

Lo(l)
n

"s(l)
n
,1!

1

N
l~1

Q(a(l)
n
1!y(l~1)!a(l)

n
) ) 1@. (44)

In Eqs. (43) and (44), Q(v),(q(v
1
), q(v

2
),2, q(v

n
)), where

q(v),G
1 if v"0,

0 if v3RCM0N.
(45)
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Table 2
General averaged back-propagation algorithm for NN-"lters

(1) Set iQ0. For l"1, 2,2, ¸, start the weights=(l)(i) with small uniformly distributed random variables.
(2) For k"i!M#1, i!M#2,2, i do

(a) Present the input x([k]
.0$ K

) to the network, determine its output y(k) using Eqs. (1) and (2) (forward computation), and compute
e(k) using Eq. (14).

(b) For l"¸, ¸!1,2, 1, evaluate the local gradients (backward computation)

d3 (l)(k)"eJ (l)(k) ( FQ (z(l)(k)),

where

eJ (l)(k)"G
1, l"¸,

d3 (l`1)(k) )#(l`1)(k), otherwise

and compute the gradient matrices

;I (l)(k)"diag(d3 (l)(k)) )!(l)(k).

(3) Update the internal weights by

=(l)(i#1)"=(l)(i)#k<(l)(i), l"1, 2,2, ¸

<(l)(i)"
1

M

i
+

k/i~M`1

e(k);I (l)(k)

and set iQi#1.
(4) Repeat steps (2)}(3) until the weight values are stabilized and the cost function (15) is minimized, or until the maximum number of

epochs to be processed is reached.

In order to avoid abrupt changes and achieve numerical
robustness, we frequently replace the function q(v) by
smoothed impulses qp (v), p*0, such as exp[!1

2
(v/p)2]

or sech2(v/p) (see [5] for details).
The remaining unknown is FQ ( ) ), which depends on the

type of MRL-NN in use. For the MRL-NN of type I,
F(z(l))"z(l), so that FQ (z(l))"1. For the MRL-NN of
type II, we will use f (z)"[1#exp(!gz)]~1, g*1,
whose derivative is fQ (z)"g f (z)[1!f (z)], so that
FQ (z(l))"gy(l)([1!y(l)]. In the next section, we will apply
the general averaged back-propagation algorithm to de-
sign MRL-NNs and MLPs in problems of handwritten
character recognition.

6. Applications in OCR

Using the design framework discussed in the previous
section, we now present some representative experi-
mental results from optical character recognition (OCR).
Our approach is to perform a comparative analysis of
MRL-NNs versus MLPs, illustrating some of the charac-
teristics of both systems. We show that the MRL-NNs
are a good alternative to MLPs, usually providing equal
or better performance with smaller training times.

For our experiments, we have used a large database of
handwritten characters provided by the National Insti-

tute of Standards and Technology (NIST) [13,14]. We
selected a total of K

T
"61,094 samples of handwritten

digits to form our data set. Those digits were generated
and coded as follows [13]:

(1) A handwriting sample form (HSF) is "lled out and
scanned at a resolution of 300 dpi in binary format.

(2) The resulting image is processed and characters are
extracted using connected components.

(3) Every valid character image is normalized in size to
20]32 pixels and then centered within a 32]32
image.

(4) A slant correction is applied to every normalized
character image in an attempt to straighten its form.

(5) The resulting (binary) images are converted to vec-
tors whose 322 components are #1 for black pixels
and !1 for white pixels.

(6) Principal component analysis (or Karhunen}Loève
transform (KLT)) [15] is applied to generate feature
vectors of dimension 64.

In our simulations, we normalized the feature vectors
x(k), k"0, 1,2, K

T
!1, via the following transforma-

tion:

x(k)C
1

2A
x(k)

max
k
DDx(k)DD

=

#1B. (46)
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Fig. 4. Mean of the normalized KLT components.

For the selected data set, max
k
DDx(k)DD

=
"21.2. Fig. 4

shows the mean of the resulting normalized vectors for
every digit (0, 1,2, 9). In this "gure, K(i) indicates the
number of elements in the class of digit i, so that
+ 9

i/0
K(i)"K

T
.

The data set was split such that 45,000 digits were used
for training and the remaining 16,094 digits were used for
testing (Test Set d1). The "rst 15,000 elements of the
training set were used as a validation set during the
training process, from which a convergence criterion was
de"ned. The training sequence was ordered such that one
instance of every digit is presented to the system in each
iteration. Further, for the sake of a better understanding
of the above coding process, we modi"ed the HSF de-
veloped by the NIST and created a handwriting digits
sample form (HDSF) to collect a second test set of digits.
Then a group of 11 people were asked to "ll out those
forms, and a similar procedure was employed to generate
another testing data (Test Set d2) composed of 132
examples of every digit. Results of this process are shown
in Fig. 5. Note that the same KLT basis (provided by the
NIST) was used to generate all feature vectors.

After making several tests, we designed a group of 12
experiments with three di!erent network topologies: 64-
N-10 MRL-NNs and MLPs with N"5, 10, 20. This
notation indicates a system with 64 inputs, N hidden
nodes, and 10 outputs. For simplicity, MRL5, MRL10

and MRL20 will denote MRL-NNs with 5, 10 and 20
hidden nodes (similarly for MLPs). Two di!erent step
sizes were tested: k"0.01, 0.1. Every experiment was
repeated 5 times (i.e., "ve runs) with di!erent random
initial conditions, and the best result is reported here.
Among many possible ways to initialize the systems, and
after performing various tests, we initialized the weights
randomly in the ranges: a(l)

n
: [!0.1, 0.1], r(l)

n
: [1, N

l~1
],

b (l)
n
: [!1/JN

l~1
, 1/JN

l~1
], q (l)

n
: [!0.1 , 0 .1] , j (l)

n
:

[0.4, 0.6]. Further, in order to estimate gradients, we
smoothed impulses with qp(v)"exp[!1

2
(v/p)2],

p"0.05. Due to the size of the training set, we have used
the proposed training algorithm with M"1 only. We
have tested the case M'1 with a small subset of the
training set, but no signi"cant improvements were ob-
served. Both MRL-NNs and MLPs were de"ned using
a sigmoid activation function with g"1 (MRL-NNs of
type II).

As usual, the desired system output d"(d
0
, d

1
,2, d

9
)

was de"ned by

d
n
"G

1 x % digit n,

0 otherwise.
(47)

We say that an input digit x is misclassi"ed if and only if
the output y from the system has the property

argmaxMyNOargmaxMdN.
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Fig. 5. Example of extracted digits from the completed HDSFs.

Further, for a given con"dence threshold h3[0, 1], we
say that an input digit x is rejected if and only if the
output y from the system has the property

argmaxMyN"argmaxMdN AND maxMyN(h.

In this way, we de"ne the rejection rate R(h) and the error
rate E(h) (in a percentage basis) for a given set of digits by

R(h)"
d rejected digits

total d digits
]100, (48)

E(h)"
d misclassified digits

total d digits ! d rejected digits
]100. (49)

Because E and R vary with h, we de"ne their norms by

DDE(h)DD"
1

10

9
+
i/0

EA
i

10B, (50)

DDR(h)DD"
1

10

9
+
i/0

RA
i

10B. (51)

Using ideas from [16], two measurements were de"ned
in the attempts to control the training process and to
compare di!erent systems. These measurements are the
"gure of merit (FM) and the generalization loss (GL),
which are computed (for a given set) by the end of every
epoch. The "gure of merit for a given epoch t is de"ned
by the following convex combination of Eqs. (50) and
(51):

FM(t)"1
2

(DDE(h)DD#DDR(h)DD). (52)

The training process tends to decrease the "gure of merit,
and good performance corresponds to small values of
FM.

The generalization loss is used to stop the training
process, and is de"ned as the relative increase of the
"gure of merit in the validation set (vs) over the min-
imum-so-far (in a percentage basis), i.e.,

GL(t)"A
FM

74
(t)

min
t{xt

FM
74

(t@)
!1B]100. (53)
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Table 4
Figure of merit/error rate/rejection rate (%) corresponding to the optimal set of weights of best MRL-NN versus best MLP for k"0.01,
0.1

FM/DE(h)DD/DDR(h)DD

k"0.01 k"0.1

MRL5 MLP5 MRL5 MLP5

Training 10.7/11.5/10.0 12.5/11.8/13.1 11.8/13.2/10.5 9.9/8.8/11.1
Test1 14.7/16.8/12.5 16.8/12.7/20.9 18.7/22.4/15.0 18.4/19.9/16.9
Test2 25.7/25.2/26.2 29.7/22.0/37.3 21.0/20.3/21.7 23.6/17.4/30.0
Overall 12.0/13.1/11.0 13.9/12.2/15.6 13.7/15.6/11.9 12.3/11.6/13.0
Epoch 24 100 3 10

MRL10 MLP10 MRL10 MLP10
Training 13.8/13.0/14.5 8.2/6.5/9.9 7.4/6.9/7.8 7.4/7.0/7.7
Test1 13.0/13.6/12.5 13.6/12.5/14.7 11.0/13.1/8.9 11.1/10.9/11.4
Test2 23.0/23.8/22.0 20.4/13.8/27.0 16.5/13.7/19.2 19.1/18.6/19.6
Overall 9.2/8.8/9.6 9.8/8.2/11.5 8.5/8.7/8.3 8.6/8.2/8.9
Epoch 99 96 62 96

MRL20 MLP20 MRL20 MLP20
Training 7.6/8.4/6.9 7.5/6.9/8.1 8.4/7.8/9.0 7.5/6.8/8.2
Test1 12.4/15.0/9.7 13.4/12.3/14.5 17.4/24.6/10.2 11.8/12.8/10.9
Test2 20.1/23.1/17.1 20.8/13.3/28.3 19.1/19.5/18.8 20.5/20.6/20.4
Overall 9.1/10.4/7.8 9.3/7.3/11.4 10.9/12.3/9.6 8.9/8.7/9.1
Epoch 100 100 9 88

Table 3
Number of epochs of initial training and corresponding best
"gures of merit (out of each set of "ve runs) in the validation set
when using G¸'5% or t'20 as stopping criterion

k"0.01 k"0.1

d Epochs FM % d Epochs FM %

MRL5 11 23.6 4 17.2
MLP5 20 23.3 19 14.7
MRL10 17 18.2 9 15.2
MLP10 20 16.8 20 12.9
MRL20 10 16.3 4 13.4
MLP20 20 14.7 11 13.2

A generalization loss larger than 5% or an epoch larger
than 20 was our criterion to stop training during the
initial stage of "ve runs per experiment.

Using our proposed training algorithm with all the
above considerations, we observed the results presented
in Table 3. Notice that, either for a step size k"0.01 or
0.1, the MRL-NNs required a smaller number of iter-
ations than MLPs, and provided similar performances
(FMs) in the validation set. The reported values of FM

are the minimum-so-far up to the epoch when the train-
ing stopped. Also, the internal parameters of the systems
to be used after training correspond to those minima.
Computing the "gures of merit of MLPs with equal
number of iterations of MRL-NNs, we usually observed
better performances with MRL-NNs.

Next, we continued the training processes of the ex-
periments indicated in Table 3 for 100 epochs (indepen-
dently of GL) and analyzed the classi"cation results
obtained with the systems of minimum "gures of merit.
We observed that the training processes of MRL-NNs
usually converge faster than MLPs, but at a price of an
oscillating behavior of the "gures of merit. MLPs, on the
other hand, have a smooth convergence behavior, but
their training processes usually take a longer time to
reach optimal solutions. Detailed plots of FM and GL
versus number of epochs for both MRL-NNs and MLPs,
and of error and rejection rates versus con"dence thre-
shold for training set and test set (Test Set d1) are not
included here due to space limitation, but can be found
in [4].

Table 4 summarizes our best simulation results in
terms of training, testing and overall performance. The
rows with epochs indicate the amount of time necessary
to reach the minimum FMs. Again, we usually observed

L.F.C. Pessoa, P. Maragos / Pattern Recognition 33 (2000) 945}960 955



Fig. 6. MRL10 (solid line) versus MLP20 (dashed line): "gure of merit and generalization loss.

Table 5
Confusion matrices for the training set generated with the optimal set of weights of best MRL10 versus best MLP20 when k"0.1 and
h"0.5

Actual digit MRL10 classi"cation output

0 1 2 3 4 5 6 7 8 9 Rejected

0 4487 0 0 0 1 1 8 0 0 0 3
1 0 3751 13 48 14 32 60 31 61 0 490
2 274 4 3455 108 9 1 155 2 49 0 443
3 16 0 17 4323 3 13 6 2 8 5 107
4 47 6 8 8 3927 0 109 0 44 14 337
5 113 0 1 150 6 3425 255 0 3 3 544
6 171 0 0 0 0 0 4321 0 0 0 8
7 73 2 1 2 9 0 0 4093 8 63 249
8 81 58 9 268 12 71 28 15 3399 16 543
9 39 0 0 20 14 11 4 104 20 3531 757

Actual digit MLP20 classi"cation output

0 1 2 3 4 5 6 7 8 9 Rejected

0 4494 0 0 0 3 0 0 0 0 0 3
1 5 3709 6 93 4 40 11 51 55 0 526
2 268 13 3096 188 13 8 77 17 20 0 800
3 11 0 1 4366 1 29 1 5 3 8 75
4 106 9 5 22 4065 8 14 2 13 9 247
5 119 0 0 196 5 3923 44 2 1 6 204
6 269 0 0 0 14 5 4020 0 0 0 192
7 26 1 0 8 6 2 0 4181 3 26 247
8 199 64 6 273 11 101 10 13 3122 37 664
9 134 1 0 18 11 4 0 71 8 3823 430

similar performances of MRL-NNs and MLPs, but with
smaller number of iterations for MRL-NNs. The overall
best result was FM"8.5%, obtained with a 64-10-10
MRL-NN. Similar results were obtained with a 64-10-10

MLP (FM"8.6%) and a 64-20-10 MLP (FM"8.9%),
but with a larger number of iterations.

Finally, we compare MRL10 versus MLP20 (for
k"0.1), because the two systems have about the same
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Fig. 7. MRL10 (solid line) versus MLP20 (dashed line): error and rejection rates.
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Table 6
Confusion matrices for the test set generated with the optimal set of weights of best MRL10 versus best MLP20 when k"0.1 and
h"0.5

Actual digit MRL10 classi"cation output

0 1 2 3 4 5 6 7 8 9 Rejected

0 1141 17 6 44 38 0 46 3 5 2 137
1 0 2171 2 1 0 0 0 22 6 0 8
2 0 23 1178 42 9 0 0 38 70 0 226
3 0 4 13 1289 0 0 0 116 36 26 101
4 0 37 0 0 869 0 0 5 222 42 335
5 1 14 6 19 0 1063 2 9 50 7 167
6 5 15 24 11 3 0 1360 0 0 0 133
7 0 10 3 0 0 0 0 1731 59 5 26
8 0 127 0 2 0 0 0 21 1276 0 40
9 0 10 0 0 1 0 0 419 208 651 286

Actual digit MLP20 classi"cation output

0 1 2 3 4 5 6 7 8 9 Rejected

0 1125 23 3 27 48 1 20 2 0 7 183
1 0 2178 0 2 0 0 0 11 12 0 7
2 0 18 992 112 8 0 0 60 19 0 377
3 0 9 5 1315 0 0 0 148 22 20 66
4 0 31 0 0 923 3 0 30 45 45 433
5 4 12 2 18 1 1119 0 37 24 8 113
6 12 25 13 0 14 3 1337 0 2 0 145
7 0 17 0 0 1 1 0 1637 150 2 26
8 0 139 0 2 0 0 0 10 1262 3 50
9 0 20 0 0 1 3 0 333 250 708 260

number of internal weights. Fig. 6 shows the plots of FM
and GL versus number of epochs for both systems, and
Fig. 7 illustrates the error and rejection rates versus
con"dence threshold for training and test sets. Tables
5 and 6 show the confusion matrices of training and test
sets of best MRL10 versus best MLP20 for k"0.1 and
h"0.5 (con"dence threshold).

Comparing our best MRL-NN (a 64-10-10 NN) with
the best NIST MLP [14] (a 128-128-10 NN), we have
that with no rejection (i.e., h"0) their system has an
error rate near to 4% on some data set while our system
has a training error rate of about 10%. However, both
the network topologies and the training algorithms are
di!erent.

We used MLPs as our benchmark because they repres-
ent a subset of MRL-NNs (with no morphological com-
ponent). An exhaustive comparison of di!erent neural
network architectures, such as radial basis function and
associative memory-type networks, in problems of hand-
written character recognition is beyond the scope of this
paper. The reader should keep in mind that other alter-
native architectures and/or di!erent choices of feature

vectors could generate results comparable to or better
than those within this paper.

7. Conclusions

The general class of MRL-NNs and its training algo-
rithm were presented in this paper. The fundamental
processing unit of this class of systems is the MRL-"lter,
i.e., a linear combination between a morphological/rank
"lter and a linear FIR "lter. Every node in an MRL-NN
is a shifted MRL-"lter followed by some activation func-
tion. This node structure is viewed as an extension of the
basic perceptron model.

The usefulness of MRL-NNs is illustrated by showing
that the parity problem can be solved in closed form with
about half of the number of nodes usually required by
MLPs and a smaller computational complexity. Exam-
ples from simple pattern classi"cation problems are also
included to provide geometrical insights for the proposed
NN architecture. The MRL-NNs have the unifying prop-
erty that the characteristics of both MLPs and MRNNs
are observed in the same system.
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An important general result was the formulation of a
systematic design framework based on the back-propa-
gation algorithm, which is fully de"ned by evaluating
only three derivatives. This framework was used to derive
the training algorithm of MRL-NNs, but it can also be
directly applied to design other types of NNs.

Finally, we applied the proposed design methodology
to problems of optical character recognition and pro-
vided extensive experimental evidences showing not only
that the MRL-NNs can generate similar or better results
when compared with the classical MLPs, but they also
usually require smaller processing times for training. We
used a large database from the National Institute of
Standards and Technology and, after exhaustive analysis
and simulations, the best overall result was obtained with
our proposed system. The MRL-NNs de"ne a broad and
interesting class of nonlinear systems with many promis-
ing applications in signal/image processing and pattern
recognition.
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