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Filtered Dynamics and Fractal Dimensions
for Noisy Speech Recognition
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Abstract—We explore methods from fractals and dynamical sys-
tems theory for robust processing and recognition of noisy speech.
A speech signal is embedded in a multidimensional phase-space
and is subsequently filtered exploiting aspects of its unfolded
dynamics. Invariant measures (fractal dimensions) of the filtered
signal are used as features in automatic speech recognition (ASR).
We evaluate the new proposed features as well as the previously
proposed multiscale fractal dimension via ASR experiments on
the Aurora 2 database. The conducted experiments demonstrate
relative improved word accuracy for the fractal features, espe-
cially at lower signal-to-noise ratio, when they are combined with
the mel-frequency cepstral coefficients.

Index Terms—Automatic speech recognition (ASR), filtered em-
bedding, fractal dimension, phoneme classification.

I. INTRODUCTION

THERE has been strong experimental and theoretical ev-
idence for the existence of important nonlinear aerody-

namic phenomena in the vocal tract during speech production
[1]. Such phenomena include nonlaminar flow, flow separation,
generation and propagation of vortices, and formation of jets.
However, the state of the art in acoustic processing for auto-
matic speech recognition (ASR) systems employs features like
mel-frequency cepstral coefficients (MFCC) that are based on
the linear source-filter model and plane wave propagation in the
vocal tract, ignoring nonlinear phenomena of the speech pro-
duction system. Further, even though several ASR systems have
attained satisfactory performance, their efficacy degrades signif-
icantly when speech is contaminated with noise [2].

Aerodynamic phenomena observed during speech production
indicate the existence of modulations and turbulence that may
be generated during formation of various phoneme types [3].
In this letter, we focus on phenomena related to turbulence. It
has been conjectured that methods developed in the framework
of chaotic dynamical systems and fractal theory might be em-
ployed for the analysis of turbulent flow, for example, mod-
eling the multiscale geometrical structures and energy cascades
in turbulence by using fractals [4]. Herein, we concentrate on
fractal measures as a quantitative characteristic of system com-
plexity. For example, fractal dimension can be interpreted as an
approximate quantitative characteristic feature that corresponds
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to the amount of turbulence that may reside in a speech wave-
form. Work in this area includes such an application of fractal
measures to the analysis of speech signals and recognition [5].
Lately, research in the area has been amplified by ideas con-
cerning state-space reconstruction [6]–[8], which is based on the
embedding theorem [9]. In this framework, we consider multidi-
mensional denoising methods inspired by the systems dynamics
as alternatives to scalar approaches like filterbank analysis and
auditory processing.

In this letter, we address several issues discussed above, and
extending our previous work [5], [10], we propose a combina-
tion of dynamical filtering on embedded noisy speech signals
followed by correlation dimension measurements for speech
analysis and recognition (see Section III). First, we measure the
correlation dimension on the reconstructed multidimensional
phase-space of speech signals and propose a feature vector con-
taining statistics of the correlation dimension measurements.
Further, we conduct broad-type phoneme classification exper-
iments, in order to examine the discriminative ability of the
fractal features. Moreover, for the case of noisy speech, we first
filter the embedded signal by exploiting its local geometrical
structure and subsequently estimate the proposed features. The
overall method, namely, filtered dynamics-correlation dimen-
sion (FDCD), is evaluated (see Section IV) on Aurora 2 data-
base and attains an average word recognition improvement of
15% over all tests and signal-to-noise ratio (SNR), while for low
SNR, the average improvement reaches 37%. Finally, we incor-
porate the multiscale fractal dimension introduced in [5] in all
presented experiments showing positive results.

II. BACKGROUND

1) Embedding: We assume that the speech produc-
tion system may be viewed as a nonlinear dynamical
system . A speech signal

is considered a one-dimensional (1-D)
projection of a vector function applied to the unknown mul-
tidimensional state variables . The embedding vector

formed
by samples of the original signal delayed by multiples of
defines a motion in a reconstructed -dimensional space. If
the unfolding is successful, i.e., the embedding dimension
is large enough, according to the embedding theorem [9], the
resulting system shall have common invariants, like fractal
dimensions, with the original phase-space of .

Low embedding dimensions entail the intersection of dis-
tinct system orbits in the reconstructed phase-space, i.e., the
system’s manifold is folded. In order to determine a sufficient
embedding dimension, a true versus false neighbor criterion is
formed by comparing the distance between points embedded
in successively increasing dimensions; the dimension at which
the percentage of false neighbors is minimized is chosen as
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the sufficient embedding dimension. The “optimum” time
delay is selected as the location of the first minimum of the
average mutual information

, where
is the pdf estimated from the histogram of [9].

2) Correlation Dimension: The correlation dimension
is a type of fractal dimension, corresponds to the number
of active degrees of freedom, and indicates the underlying
system complexity. It can be practically estimated by em-
ploying a method that belongs to the category of average
pointwise mass algorithms [11]. The correlation sum is
given for each scale by the number of points with distance
smaller than , normalized by the number of pairs of points:

,
where is the Heavyside unit-step function. Then, the correla-
tion dimension is defined as

(1)

For small enough scales and for large enough , .
3) Multiscale Fractal Dimension: The multiscale fractal

dimension (MFD) has been proposed for nonlinear speech
analysis in [5]. The main concept is based on the morphological
covering algorithm that computes the Minkowski–Boulingand
dimension of a planar set. This is computed by dilating
the graph of the speech signal with disks of increasing
radii . If is the area of the dilated graph, equals

. This limit can be estimated
from the slope of a line fit to the versus data
using least squares. The successive local estimates of over
moving scale windows yield the MFD.

III. FRACTAL FEATURE EXTRACTION, PHONEME

CLASSIFICATION, AND FILTERED DYNAMICS

A. Fractal Features

In the unfolded phase-space, we measure and as in
(1) using least-squares local slope estimation of the
versus data. We form an eight-dimensional correlation di-
mension feature vector CD by 1) calculating over the whole
range of scales the mean and the variance of both and

and 2) breaking the set of scales into two distinct subsets
and , where is the mean scale value, and cal-

culating the corresponding means and variances of , in order
to include local-scale information.

For the MFD feature set, we estimate on the scalar
speech signals along the lines of Section II-3 and sample the
MFD function at specific scale values . We have experimen-
tally observed that the variation of the MFD function is better
captured by sampling (at six scales) over a logarithmic scale.
Both the MFD and the CD features are related to a superset
of fractal dimensions [9] and are proposed as distinct tools for
complexity-related measurements, for the scalar signals and the
multidimensional embedded signals, respectively.

B. Phoneme Classification

In order to explore whether fractal features on their own
bear information facilitating the discrimination among broad
phoneme classes, we present a set of classification experi-
ments without employing the subsequently presented filtering

Fig. 1. Histograms of the correlation dimension estimate in the lower scales
CD for selected types of phonemes; number of phonemes: 3394 /k/, 2181
/p/ (stops), 2152 /ax/, 1587 /eh/ (vowels), 5825 /sh/, 3463 /z/ (fricatives).

TABLE I
CLASSIFICATION SCORES (%) FOR BROAD PHONEME CLASSES

USING THE MFCC AND THE FRACTAL FEATURES

method. The speech corpus that is utilized is the complete
TIMIT database since it is accompanied by hand-labeled
phone-level transcriptions. Each signal processed is an isolated
phoneme. The classification experiments are designed by using
the partitioning of phonemes among broad categories. They
have been realized using the HTK with one-state HMM for the
fractal features and three-state HMM for MFCC using three
Gaussian mixtures for each state. MFCC are used as baseline
features augmented by derivative and acceleration coefficients.

In Fig. 1, we present histograms of a single component of the
feature vector , namely, the correlation dimension esti-
mation over the lower scales , for selected phonemes.
The specific component stands as a representative that is closest
to the correlation dimension estimation and thus of the under-
lying complexity, since its estimate definition requires that the
scale tends to zero. We observe that the estimate of is
higher for the fricative sounds and lower for the vowels as intu-
itively expected, since fricative sounds have more complex dy-
namics; also, has greater variance for transient sounds
like stops than the others. The classification scores for eight ex-
periments shown in Table I indicate the capability of the pro-
posed feature sets to classify phonemes into broad classes; some
cases like Voiced versus Unvoiced perform better than Front
versus Central versus Back. While the fractal features alone con-
tain six or eight components per phoneme, they occasionally
yield comparable accuracies to the MFCC feature vector con-
taining 39 coefficients per frame.

C. Filtered Dynamics

For noisy speech, we employ a denoising method in the un-
folded phase-space. Increased interest has appeared in this field
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Fig. 2. (a) Noisy speech signal segment (Aurora 2, 0 dB SNR); in dark the processed 50 ms frame, (b) detail. Embedded frame: (c) before and (d) after dynamic
filtering; the trajectories in (d) are more compact than in (c). (e) The median distance between a reference point and its 15 nearest neighbors decreases as a result
of the filtering procedure: The histogram for all points quantifies the increase in compactness visually observed by comparing (c) and (d).

[12]–[14], while there are a couple of efforts toward the appli-
cation of such methods to speech signals using limited data sets
[7], [15]. In this first systematic application on a standard noisy
speech database, we adopt features from various methods and
evaluate the proposed method on an ASR task. We consider the
clean speech signal contaminated with additive noise ,
which gives the observed signal . The em-
bedded signal is corrupted by noise and is thus
characterized by increased variance; our objective is to reduce
this effect by using a smoothing transformation. The processing
is applied separately for each reference point , using its
(e.g., 30) closest neighbors; these are aggregated in the
neighborhood matrix that shall be henceforth referred to
as the neighborhood of . The geometrical structure of the
neighborhood can be represented using a set of eigenvectors es-
timated by the singular value decomposition of the neighbor-
hood matrix

(2)

is a matrix formed by the eigenvectors of the
matrix, contains in its diagonal the singular

values in decreasing order, and is a matrix formed
by the eigenvectors of the covariance matrix .

If the noise variance is lower than that of the clean signal,
the larger eigenvalues will correspond to the system dynamics,
whereas the smaller ones will correspond to noise. To suppress
the latter, we project the data on the subspace spanned by the

largest principal components that account for a fixed factor
(e.g., 0.7) of the total variance of the set , i.e.,

. We apply this projection step only to the central ref-
erence point, so as not to distort points that are on the neighbor-
hood boundaries. The proposed change in the location of each
point is contracted by a factor, which is linearly increased along
with the iterations, in the range [0.1, 1], in order to move the
points gradually toward the positions suggested by the geom-
etry of their neighborhood. This projection step is repeated for
the whole set since the neighborhoods of each point may be al-
tered in each iteration, and only a part of the whole correction
suggested is applied. Instant application of the whole correction
could lead to instabilities. This process is applied until conver-
gence or for a fixed number of iterations (e.g., 8–12). Further ro-
bustness is acquired by applying a lowpass filter as in [12] to the
scalar noisy signal before the embedding. However, the
corrections that are computed via the local projections are ap-
plied to the original noisy signal. Fig. 2 shows the effect of the
projection-based cleaning procedure on the embedded frame.
Visually, the trajectories in various regions are more compact,

and the points are more condensed according to the geometry of
the dynamics when compared to the noisy one. Quantitatively,
we observe [see Fig. 2(e)] the reduction of the nearest neighbor-
hood distances, by measuring the median distance between each
reference point and a fixed number of its nearest neighbors.

IV. APPLICATION TO SPEECH RECOGNITION

The overall method proposed above for noisy speech signals,
namely, filtered dynamics-correlation dimension (FDCD), is
evaluated via ASR experiments in Aurora 2 database [2], which
contains additive noise in various conditions and SNR. A
drawback of the FDCD method is its high computational com-
plexity, due to the intensive embedding and filtered embedding
procedures (computation time is up to two or three orders of
magnitude higher than the one for the MFCC, respectively).
The experiments are realized by use of the HTK system (con-
text-independent, 18-state, left–right word HMM with three
Gaussian mixtures). The HMM are trained on the clean data
set (8440 utterances) and tested on 60 noisy sets (6 SNR 10
noise-types 1001 utterances) referred to as clean training
scenario (we focus on this scenario that examines the mis-
match among clean and noisy data on various SNR and noise
types). The above nonlinear features are not self-standing
but contribute as second-order information to the first-order
linear speech structure expressed by MFCC. The average
word recognition accuracy of the fractal features alone ranges
between 61% and 26% for the clean and 10 dB SNR cases,
respectively. The input vectors are split in two data streams
that are assumed independent with stream weights set equal
to 1 and 0.2 for MFCC and fractal features, respectively. The
augmented features include 13 elements for the MFCC plus
normalized energy augmented by six or eight elements for the
MFD or FDCD features, respectively. All feature vectors are
extended by their time derivatives , and cepstral mean
subtraction is applied to increase their robustness. The frame
length for the MFCC and MFD streams is set equal to 30 ms.
For the FDCD stream, additional information surrounding
each frame is considered using 50 ms frames; since dynamical
processing prompts for longer time series, selecting shorter
frame length deteriorates slightly the results (e.g., by 0.5%
for 40 ms). Synchronization between the different streams is
achieved by keeping the same 10-ms frame period.

Table II shows the average results per SNR (sets A, B contain
four noise types each, and set C contains two). The combination
of MFCC with the MFD features results in a slight improvement
for higher SNR that increases for the middle SNR. Although the
dynamical filtering is proposed prior to the CD measurements,
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TABLE II
AVERAGE (AVG.) WORD ACCURACY (%) IN ALL TESTS AND AVERAGE

RELATIVE IMPROVEMENT (%) (IMPROV.) OF THE MFCC AND THE

AUGMENTED FRACTAL FEATURES ON AURORA 2 (CLEAN TRAINING)

TABLE III
AVERAGE WORD ACCURACY (%) OVER ALL TESTS OF PLAIN CD

AND FDCD ON AURORA 2 (CLEAN TRAINING)

by projecting back to the 1-D signal, one may employ it for en-
hancement and further estimate the MFD feature. This exper-
iment has similar performance in most SNR, with a light im-
provement relative to the MFD case without filtering (up to 2.4%
at 5 dB SNR); anyhow, the combination of filtering and MFD
has inferior performance compared to FDCD. Higher improve-
ments are shown for the FDCD features (overall improvement
MFD: 10.1%, FDCD: 15.3%; 5 dB SNR improvement MFD:
22.2%, FDCD: 37.4%), except for the clean case, where the
MFD features perform slightly better (the utilized baseline typi-
cally performs better than the one reported in [2]). Compared to
these results, the average performance of the recently proposed
modulation features [16] is similar or slightly better on average
on Aurora 2 (average overall improvement 21%; at 5 dB SNR:
average 33%, maximum 46%). However, the modulation fea-
tures extract different types of nonlinear information than the

fractal features. Finally, Table III indicates that the improved
ASR performance attained by the CD features is in part due to
the filtering process: when using the unfiltered data points, the
average overall improvement decreases. This demonstrates that
the filtered dynamics step is essential for the feature extraction
of noise-robust features that further incorporate information re-
lated to the system’s invariants.

V. CONCLUSION

Based on a dynamical systems perspective, we employ fractal
dimension measurements on a speech signal’s multidimen-
sional phase-space. Our goal is to quantify turbulence-related
phenomena and to cope with additive noise. The fractal features
(CD and the previously proposed MFD) are shown to possess
discriminative ability for the classification among broad classes
like fricatives, vowels, voiced, and unvoiced phonemes from
the TIMIT database. Moreover, the combination of filtering
on the embedded space followed by the correlation dimension
feature extraction (FDCD) results in an average relative im-
provement of 37% for recognition at lower SNRs on the Aurora
2 database, when the extracted features are combined with the
MFCC. This indicates the potential of the dynamical systems
approach and of fractal dimension measurements to robustly
extract nonlinear information useful for ASR.
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