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ABSTRACT
Motivated by the recent advances in human-robot interaction we

present a new dataset, a suite of tools to handle it and state-of-the-
art work on visual gestures and audio commands recognition. The
dataset has been collected with an integrated annotation and acquisi-
tion web-interface that facilitates on-the-way temporal ground-truths
for fast acquisition. The dataset includes gesture instances in which
the subjects are not in strict setup positions, and contains multiple
scenarios, not restricted to a single static configuration. We accom-
pany it by a valuable suite of tools as the practical interface to acquire
audio-visual data in the robotic operating system, a state-of-the-art
learning pipeline to train visual gesture and audio command models,
and an online gesture recognition system. Finally, we include a rich
evaluation of the dataset providing rich and insightfull experimental
recognition results.

Index Terms— human-robot communication, multimedia ges-
ture dataset, visual gesture recognition, audio commands

1. INTRODUCTION

None would refuse the impact of newly published datasets in human
activity recognition tasks. By focusing specifically on audio-visual
gesture recognition, we notice an emerging trend of new approaches,
competition challenges [1, 2], together with a few datasets that have
been recently acquired [1, 2, 3]. Nevertheless, for the sub-field of
human gesture recognition, there is a lack of datasets [4]; this is
in contrast to broader related fields, such as unconstrained action
videos, sports, movies and human activities [5, 6, 7], to name but a
few. Our contributions concern a rich suite of tools that assists data
acquisition of new audio-visual gestures, a training pipeline, and an
online system for visual and audio gesture commands recognition.
The impact of such resources would be high, if we consider that the
tools are not restrictive to the specific assistive HRI task.

Indicative existing datasets, related to the area of multimodal,
audio-visual gesture recognition include cases such as the MSRC-
12 [3], the recent ChaLearn 2014 [8], and others [2, 9, 10, 11, 12,
13]. Main parameters in such datasets include the potential mul-
timodality, the sensor’s type and point of view, the user position,
the number of gestures, and the ground-truth annotations. Most of
the datasets include a single front-view, a medium size vocabulary
(10-30 classes), a single fixed position of the subjects, either stand-
ing or sitting, except from [14] where the subject is moving. When
it comes to the sensor, most of them nowadays employ the kinect
sensor. For instance the MSRC-12 [3] is captured with Kinect, in-
cludes 12 classes and 30 subjects. Chalearn contains 20 classes of
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Italian cultural/anthropological signs; The dataset of [14] includes
14 classes with three subjects for a total of 126 sequences captured
from a moving camera and in complex backgrounds.

The introduced dataset offers several differential contributions.
We tackle a crucial aspect of variability so as to have more realistic
conditions. This concerns the non-constant position of the subject,
and then, to a smaller degree, the angle-of-view. By introducing such
variance as well as by letting the subjects perform the gestures more
freelly and from a not-strict position, we manage to introduce vari-
ability which would benefit of model generalization. Finally, there
is the multimedia aspect of the data, which apart from the Kinect,
includes a microphone array for audio.

The grund-truth annotations are important, in terms of their pro-
duction and their employment by the learning algorithms. Similar to
scripted-ground-truth [4], we apply what we term as “ground-truths
by-construction”. This allows us to accomplish fast dataset acquisi-
tion: i.e. acquired by a reusable acquisition interface, at once, to-
gether with its accompanying annotations, which are in general hard
to get. Additionally, the acquisition interface supports the dataset ex-
tension with new gestures, out-of-vocabulary or background cases.

At the same time the dataset is accompanied by a suite of tools,
to train audio and visual models, as well as to recognize in a on-
line manner gesture utterances. These tools are based on the current
state-of-the-art including dense trajectory descriptors [15, 16], bag-
of-visual-words encoding, and support vector machines [17]. These
allow us to provide: (1) a framework that can be re-used either as
is, or by varying components such as the feature extractor, or the
encoding; (2) trained models, and (3) a recognizer employing these
models that lets someone test audio-visual gestures from uknown
subjects. Finally, together with the audio and visual classification
experiments, we elaborate on valuable practical questions such as
how many subjects are required to reach a specific accuracy percent-
age given the included audio and visual variability.

2. THE HUMAN-ROBOT COMMUNICATION DATASET

Motivation: The purpose of this dataset is the continuation of our
previous work on multimodal human-robot interaction (HRI) [18]
focusing on the challenging task of mobility assistive robotics for
elderly people. Our research has been mainly conducted within the
European project MOBOT 1 where the goal is to implement a pro-
totype in order to enable communication of an impaired user with
the robotic platform. To achieve robust and real-time recognition,
we extent the multimodal MOBOT database [19] with the current
dataset which has been designed to enable the exploration of several
parameters of our system as described in the remaining text.

1www.mobot-project.eu
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Fig. 1: Left: Standing gesture “no” at position A; right: Command “come here” at the same position, darker environment.

Fig. 2: Up: Standing near (position A), “What time is it”; bottom:
sitting far (position B), “I want to perform a task”.

Fig. 3: Experimental setup

Loc. Camera MEMS

A -/90 -/62
B 224/173 180/155
C -/165 -/99
D 190/140 164/125

Fig. 4: Distances (in cm) from lo-
cations (Loc.) A, B, C, D to the
sensors, as depicted in Fig. 3

The acquired dataset includes video and multichannel audio
data. These are to be employed in automatic visual gesture recogni-
tion and in automatic speech recognition. The subjects were in front
of the kinect in various setups, following prerecorded video prompts.
The data acquisition framework is implemented in the Robotic Oper-
ating System (ROS) that is used to collect the data while annotating
on-the-way the gesture time boundaries with a web-based GUI. The
data are available in both ROS-bags and video2.

2.1. Experimental setup and dataset description

The subjects were allowed to position themselves in an approximate
manner near to markers so as to introduce variance to our dataset.
The marker distances to the audio-visual equipment are as listed in
Fig. 4. The acquired dataset includes 1438 commands as executed
by 13 subjects. These samples are audio-visual spoken phrases and
gestures from a vocabulary of 19 commands 3, and two actions “Sit-
to-Stand” and “Stand-to-Sit”. Each command has been recorded on
average 74 times. The sequence of the gestures is randomized per
subject so as not to include identical sequences, or identical itera-
tions in the row.

2The dataset as well as several tools e.g. to visualize it can be found
in http://robotics.ntua.gr/datasets/ROSAudioVideo, re-
viewing user-name and password: “mobotdataset”.

3Vocabulary list: “Avoid Obstacle”, “Come Closer”, “Come Here”, “Go
Away”, “Go Straight”, “Go Through Door”, “Help”, “Lets Go”, “Perform
Task”, “Stop”, “Turn Left”, “Turn Right”, “I Want to Sit Down”, “I Want to
Stand Up”, “Where Am I” “What time is it”, “Yes”, “No”, ”Park”.

Fig. 5: Top: standing at medium distance (position C) “Avoid obsta-
cle”; middle: Sit-to-Stand at position D; bottom: sitting at medium
distance (position B) “Come Near”.

Scenario 1A 1B 1C 2A 2A 2A 2B 2D

Dist. near med med near near near far med
Pose Stand Sit Stand Stand Stand Stand Mix Mix
Angle Right Front Front Right Left Front Front Front
Inst. 152 302 285 95 95 95 210 204

Table 1: Partitioning of acquisition scenarios wrt the acquisi-
tion parameters and gesture instances (Inst.).

2.2. Acquisition Scenarios

The dataset includes multiple setups, that introduce variability in
terms of the parameters discussed bellow: (1) the standing or sitting
pose of the subjects; (2) the background; (3) the angle of view of the
camera (4) the distance of the subject to the recording equipment.

In the first case the subjects are standing, as the example shown
in Fig. 1. At random intervals of the recording the lighting configu-
ration is updated, as shown in the same figure. For the sitting case,
the subject is sitting in front of the equipment while the acquisition
includes multiple setups, as described in Table 1.

Mixed sitting-standing poses (Mix): During the correspond-
ing recording sessions, sit-to-stand and stand-to-sit actions are also
recorded in between gestures. These are important in the context
of the involved HRI task, and fit to the rest of the vocabulary. For
instance, when the subject utters a command “I want to stand up”,
while the subject is sitting, then the next natural action to be per-
formed is an actual “Sit-to-Stand”, and the rest of the commands are
articulated at the stand pose. In this way the subject’s pose changes
from sitting to standing and vice versa within the same recording.

Angle, Distance, Background: In one of the setups, we vary the
camera angle of view. The standard setup is defined, unless speci-
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Fig. 6: Visual gesture accuracy of all descriptors, per subject, and mean accuracy for all subjects.

fied, as the front. Two tilted versions are introduced by letting the
subjects to face the camera in left and right at 10 degree angles. The
distance of the recording equipment is also varied according to the
positions specified in Table 4 and Fig. 3. Note finally, that due to the
different setups the background is greatly updated.

Parameters and subjects: One of the differences with existing
datasets consists of the variability introduced in the dataset due to
the mixed setups even for a single subject. Subjects 1–8 took part
in the setups 1A, 1B, 1C; subjects 9–13 took part in the setups 2A,
2B, 2D. The second character A, B, C, corresponds to the positions
as depicted in Fig. 3. The rest of the varying parameter combination
are shown in Table. 1. Samples of the data collected in various setups
are shown in Fig. 1, Fig. 2 and Fig. 5.

3. RECOGNITION EXPERIMENTS AND RESULTS

3.1. Visual modality

Feature extraction and descriptors: Dense trajectories [15] consists
in sampling feature points from each video frame on a regular grid
and tracking them through time based on optical flow. Tracking is
performed in multiple spatial scales, and trajectories are pruned to a
fixed length L to avoid drifting. Following the trajectory extraction,
different descriptors are computed within space-time volumes along
each trajectory4.

Feature encoding: Extracted features are encoded using separate
codebooks per descriptor. Codebooks are constructed by clustering
a subset of selected training features into K clusters. Each trajec-
tory is assigned to its closest visual word. We use Bag of Visual
Words (BoVW) encoding, i.e. a histogram of visual word occur-
rences, yielding a sparse K-dimensional video representation.

Classification and fusion: Videos are classified based on their
BoVW representation, employing non-linear support vector ma-
chines (SVMs) with the χ2 kernel [20]. Descriptors are combined in
a multichannel approach, by computing distances between BoVW
histograms as: K (hi,hj) = exp

(
−
∑

c
1
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D
(
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i ,h

c
j

))
, where

c is the c-th channel, i.e. hc
i is the BoVW representation of the i-th

video, computed for the c-th descriptor, and Ac is the mean value
of χ2 distances D

(
hc
i ,h

c
j

)
between all pairs of training samples.

Since we face multiclass classification problems, we follow the
one-against-all approach and select the class with the highest score.

3.2. Audio modality

Speech modeling and recognition: Speaker independent acoustic
models are trained for Greek based on the Logotypografia cor-
pus [22]. HTK tools and recipe [23] was followed for training

4Descriptors include: the Trajectory descriptor for motion, HOG [20] for
shape and appearance, and finally, for motion, HOF [21] and MBH [15] com-
puted on both axes (MBHx, MBHy).
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Fig. 7: Spoken command classification accuracy on the full set of 19
audio-gestural commands using the original Greek triphones and the
adapted version; the median (Md.) is also depicted.

3-state, cross-word triphones, with 8 Gaussians per state, based on
MFCC-plus-derivatives. The recognizer for spoken commands is
grammar-based: this is a robust solution in small tasks, like the
examined HRI task. We also denoise by delay-and-sum beamform-
ing of 7 MEMs5 [24] channels arranged on a 4 cm linear setup.
The Greek triphones are adapted to a development set consisting
of recordings from the corpus. We use the global maximum likeli-
hood linear regression (MLLR) technique, to transform the means
of the Gaussians yielding improvements in distant spoken command
recognition [25].

3.3. Recognition results

Experimental setup: Experiments are carried out in a leave-one-out
scheme, i.e. testing on single subjects, while the rest are used for
training. This is repeated for all subjects giving an unbiased esti-
mate on the ability to generalize to unseen subjects. We report clas-
sification accuracy for each subject individually, as well as the mean
accuracy over all.

Visual gestures recognition: In Fig. 6 we assess the perfor-
mance of all descriptors, as well as their combination (see Sec. 3.1).
Motion-based descriptors consistently perform best, since motion,
rather that shape or appearance, is the most discriminative cue for
our visual vocabulary. Nevertheless, in most cases combining all
descriptors results in better accuracy.

Audio command phrases recognition: As shown in Fig. 7 the
performance is approximately doubled after adapting the original
acoustic models to the specific conditions of the dataset and to the
particularities of speech signals after denoising with beamforming.
Nevertheless, the average performance of 67% across the testing
subjects shows that the task is challenging: diffused background
noise exists on some sessions, speech is far-field, and subjects are
uttering from various positions and angles towards the MEMS. Ad-
ditionally, although the recognition grammar is designed to support

5Micro Electro-Mechanical System (MEMS) microphones are compact
sensors with comparable performance to the traditional electret condenser
microphones (ECMs).
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Fig. 9: Accuracy of gesture and
spoken commands depending on
the vocabulary size.

acoustically distinguishable commands, we observed that commands
with small length of one word are very often misrecognized.

Varying the vocabulary and training subjects subset: Figure 9
depicts how the vocabulary size affects the accuracy. Several audio-
visual commands share common motion or audio sub-units, thus in-
creasing the vocabulary size has a negative impact on the discrimi-
native ability. A valuable question that arises often for a dataset or a
practical recognition system, is how many data are enough to get an
acceptable accuracy. Of course one may just use as much as possible,
although this may come at a cost. Next, we provide some evidence
on this. We train models on subsets of subjects, by sampling the sub-
jects’ combinations space. To avoid any bias, we randomly sample
them in order to contain n = [1, 2, 4, 6, 8, 12] subjects; that is take
for instance multiple (35) training sets of n = 4 subjects. This num-
ber of instances is proportional, e.g. 10% to the number of possible
combinations. Figure 10 shows the distribution of the recognition
accuracy over the whole set of experiments that are carried out with
the same number of n. The bottom row depicts the shift between
consecutive histograms measured by their χ2 distance normalized
by the corresponding increment of n.

First, for the audio, the histograms on the left column of Fig. 10
show that by increasing the number of subjects used in adaptation,
the average performance per subject increases but non-linearly, as
shown in the bottom row of Fig. 10: the accuracy distributions tend
to shift unequally for each increment of n. Another factor concerns
the percentage p of adaptation samples (sentences) used for each
subject included in the adaptation sets. Figure 8 depicts the aver-
age performance across the testing subjects when varying n and p.
Global MLLR adaptation reaches quickly its maximum performance
by using p = 10% of the samples from n = 3 subjects which is sim-
ilar to using n = 12 subjects with p = 60% of their samples.

For the visual case, the shifts of histograms on the right column
of Fig. 10 are more clear. The χ2 distances in the bottom indicate
that the performance increment is more noticeable when training on
n = [1 . . . 3] subjects and stabilizes for n > 3. Nevertheless, train-
ing on n = 8 seems to be sufficient and robust enough compared to
the scenario of using n = 12 subjects.

System generalization and extensibility: The employed acquisi-
tion and experimentation framework allows us to easily extent our
data and test our system in a variety of conditions and setups. Ex-
perimentation on this new dataset shed light on how the performance
depends on parameters such as the number of training/adaptation
subjects and the vocabulary size. Previous results on the MOBOT
database showed the challenges that exist in very realistic scenarios
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Fig. 10: Testing the effectiveness of training of the visual, audio
models by varying the number of employed subjects (n). The his-
tograms show how the accuracies per testing subject distribute when
using samples from n = [1, 2, 3, 4, 8, 12] subjects for training and
testing to unseen sets consisting of the rest subjects. The shift be-
tween consecutive histograms is quantified using the χ2 distance
normalized by the increment of n.

with elderly subjects. Currently, based on the presented framework,
we continue collecting data from user studies on elderly subjects in
order to increase our system’s robustness.

4. CONCLUSION

In this work we presented a new multimedia dataset for audio and
visual gesture-commands for human-robot-interaction. This has
enough variability in terms of setup and acquisition scenarios such
as sitting vs standing, lighting variations, variable distances and
angles of the acquisition equipment. We accompany the dataset with
a rich set of tools such as the web-controlled acquisition interface,
that can be used to introduce by-construction ground-truths, to ac-
quire additional data, or out-of-vocabulary words. The backbone of
our suite of tools, is the visual and audio pipeline for training the
models, and the online recognizer. Apart from the rich recognition
results for both modalities, we show evidence in a standard exper-
imenter’s question: “how many subjects and data are required?”.
We discovered that while employing state-of-the-art processing
pipelines three subjects are enough to adapt the employed acoustic
models in audio modality and eight subjects to train from scratch
the employed SVMs in visual modality. The experiments are to be
further enriched by multimodal fusion but this is out of the scope
of this article. We expect that work in focused datasets, which are
sparsely existing, shall advance the state-of-the-art in automatic vi-
sual gesture, and multimedia recognition, as well as its application
to human-robot-interaction.
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