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ABSTRACT

The classical case of morphological segmentation is based on the
watershed transform, constructed by flooding the gradient image,
which is seen as a topographic surface, with constant height speed.
Changing the flooding criteria, (e.g constant-speed height, area or
volume) yields different segmentation results. In the field of PDEs
and curve evolution the classic watershed transform can be mod-
elled as the solution of an eikonal PDE. In this paper we model
the watershed segmentation based on a volume flooding criterion
via a different eikonal PDE. Then we solve this PDE using the fast
marching method, which is a specific algorithm from the method-
ology of level sets. In addition, we attempt to exploit the advan-
tages of image segmentation using PDE-based volume flooding
over the classic height flooding.

1. INTRODUCTION

Segmentation is one of the most difficult tasks in image processing,
as it is application dependent and requires to some extent a seman-
tic understanding of the image. The morphological segmentation
methodology, based on the watershed transform and markers, has
been successfully used, both for interactive as for automated seg-
mentation ([1], [13]). The segmentation process starts with creat-
ing flooding waves that emanate from the set of markers and flood
the image gradient surface. The points where the emanating waves
meet each other form the segmentation boundaries. The simplest
markers are the regional minima of the gradient image. Very often,
the minima are extremely numerous, leading to an oversegmenta-
tion. For this reason, in many practical cases, the watershed will
take as sources of the flooding a smaller set of markers, which have
been identified by a preliminary analysis step as inside particles of
the regions or objects that need to be extracted via segmentation.
The advantage of the aforementioned method is robustness: the re-
sult is independent of the shape or the placement of the markers in
the zones of interest. The result is obtained by a global minimiza-
tion implying both the topography of the surface and the complete
set of markers.

Based on the criteria governing the flooding process, differ-
ent types of segmentation can occur with varying characteristics in
their results. By the term ‘flooding criterion’ we refer to a charac-
teristic that all lakes (associated with the flooding sources) share
with respect to water, such as altitude/height (contrast criteria),
area (size criteria) or volume (contrast and area criteria) [6]. The
most common type of flooding that forms the base of all traditional
morphological segmentation schemes is the one obtained when the
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water altitude variation is at the same level for all lakes, known as
uniform height flooding.

In mathematical morphology uniform flooding segmentation
has been implemented via immersion simulations [13] and hierar-
chical queues [1]. Watershed segmentation has also been modelled
via the eikonal PDE ([8], [5], [2], [7]). Modelling the watershed
via the eikonal has the advantage of a more isotropic flooding but
it also introduces some challenges in the implementation. In gen-
eral, efficient algorithms to solve time-dependent eikonal PDEs
are the narrow-band level sets methods [9, 11]. An even more effi-
cient algorithm for stationary formulations of eikonal PDEs is the
fast marching method (FMM) introduced in Sethian ([11], [12]).
In the field of curve evolution and PDEs, watershed segmentation
has also been modelled and implemented via the eikonal PDE and
level sets by Maragos & Butt [3], [4].

In this paper we explore a different flooding criterion for the
watershed segmentation, in particular flooding with uniform vol-
ume speed as introduced by Meyer [6], but with a new PDE model
and a corresponding numerical approximation. Our first contribu-
tion is to model the volume flooding process via a time-dependent
eikonal-type PDE and level sets. Further, for solving this PDE we
propose an efficient implementation based on a variation of the
fast marching method. Finally, we provide experimental results to
illustrate the new segmentation method and compare it with the
classic watershed segmentation.

2. TYPES OF WATERSHED FLOODINGS AND PDES

As it was mentioned above, different types of segmentation can
be obtained by varying the flooding criterion. In our research
work,we are concerned about two cases: (1) Uniform Height Wa-
tershed Flooding and (2) Uniform Volume Watershed Flooding.

2.1. Uniform Height Flooding

Let’s consider the case of flooding the1D function f shown in
fig.1(a). First we pierce this function at one of its regional minima,
as shown in fig.1(a),and then we immerse it in water with constant
vertical speed. In this case the water altitude at each time instance
is uniform. By∆H we refer to the height difference from one time
instance to another. When the flooding of the functionf is done
with uniform height speed we have∆H

∆t
= const = c. Given that

tan(θ) = ∆H
∆L

= |f ′| we have:

∆H

∆t
= |f ′|∆L

∆t
=⇒ V =

∆L

∆t
=

c

|f ′| (1)

By the termV we refer to the horizontal velocity by which the
level sets of the functionf propagate in time.
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Fig. 1. (a) Lakes of1D function;L(t) is length of level sets.(b) Planar Projection of a lake of2D function;A(t) is area of level sets.

Let’s now consider the case a2D function. Shown in fig.1(b)
is the planar projection of a lake of a2D function, flooded un-
der the constraint of uniform height. The boundary of the lake
at a time instancet is the setΓ(t) of points of the closed planar
curve represented by its position vector~C(t). This curve mod-
els the propagation of a wave emanating from the lake. Based on
Eq.(1) and considering that in2D shapes (a)∆L becomes the dis-
placement normal to the level curves of the function and (b)|f ′|
becomes‖∇f‖, we model the propagation of the curve~C with the
following PDE:

∂ ~C

∂t
=

c

‖∇f‖ ·
~N (2)

where ~N is the normal vector to the curve.
Now, following the level set formulation proposed by Osher

& Sethian [9], let us embed this evolving planar curve as the zero-
level curve of an evolving space-time functionφ(x, y, t); i.e.,Γ(t) =
{(x, y) : φ(x, y, t) = 0}. Then the PDE that governs the evolu-
tion of the obtained level function is:

∂φ

∂t
= V (x, y) ‖∇φ‖ (3)

whereV (x, y) is the space-dependent speed function given by
V (x, y) = c/‖∇f(x, y)‖.

2.2. Uniform Volume Flooding

Let’s now investigate the case where the flooding is done with uni-
form volume speed inside all lakes. The main difference here com-
pared to traditional watershed segmentation explained in sec.2.1 is
that during the flooding process the water height is not at same
level for all lakes. However, what remains the same at each stage
is the volume change rate of water in each lake. This means that
the variation of water volume in the lakes is constant, retaining the
balance between area and contrast. Following the same procedure
as above we flood the1D functionf of fig.1(a). We then have that
L ∆H

∆t
= const = c, which yields the horizontal velocityV :

∆L

∆t
=

∆H

∆t

1

|f ′| =⇒ V =
∆L

∆t
=

c

L(t)

1

|f ′| (4)

We then consider the 2D case of fig.1(b) where the curve~C
models the wave emanating from a lake flooded under the con-
straint of uniform volume speed. In this caseL(t) becomesA(t),

which is the area enclosed by the propagating wave at timet, and
we obtain the following PDE that governs the evolution:

∂ ~C

∂t
=

c

A(t)‖∇f‖ ·
~N (5)

The equivalent PDE level function is:

∂φ

∂t
= V (x, y, t) ‖∇φ‖ (6)

whereV (x, y, t) = c/(A(t)‖∇f(x, y)‖) is the time and space-
dependent speed function. The productA(t) ||∇f || is a mea-
sure of volume. As a consequence, the speed of the evolving
curve is inversely proportional to the volume of the sources of
the flood, so the flood is slowed down by the factor1/V . This
means that during the flooding process lakes with large volume
are filled up by water slowly whereas lakes with small volume
are filled up quickly. The evolution PDE (5) can be viewed as
a dilation with a varying radius structuring element. The radius
1/(A(t) ||∇f(x, y)||) of the structuring element depends on space
(x, y) and timet.

3. FLOODING IMPLEMENTATION USING FAST
MARCHING METHODS

The PDEs derived in sec.(2.1), (2.2) are time-dependent PDEs.
Since in both cases the speed of the evolving front is one-directional,
that is it has constant sign, we can consider the stationary formula-
tion of the embedding level function evolution PDEs (3),(6), with
positive speedV , which is known as ‘eikonal’ PDE. Namely, if

T (x, y) = inf{t : φ(x, y, t) = 0}
is the minimum time of arrivalat which the zero-level curve of
the level functionφ(x, y, t) described by Eq.(3),(6) crosses(x, y),
then

‖∇T (x, y)‖ =
1

V
Considering the two different cases of flooding discussed earlier,
the resulting ‘stationary’ eikonal-type PDEs are:

Height Flooding: ‖∇T (x, y)‖ = ‖∇f‖/c
Volume Flooding: ‖∇T (x, y)‖ = A(T ) ‖∇f‖/c

(7)

A methodology used to solve such PDEs was proposed in [12]
and it belongs to a wider category of efficient algorithms called
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‘Narrow Band Level Set Methods’ [11]. The specific methodol-
ogy, known as ‘Fast Marching Method’ (FMM), aims at approxi-
mating the solution of stationary eikonal PDEs in order to reduce
the computational complexity of solving time-dependent eikonal
PDE problems via curve evolution. The main advantages of this
methodology are that it automatically selects solutions that include
non-differentiability in natural ways, and it is extremely efficient
computationally. The central idea is to track only a narrow band of
pixels at the boundary of the- evolving wavefront. For this purpose
a narrow band is defined, including all pixels one grid point away.
The pixel (x, y) in the narrow band that produces the minimum
T (x, y) is propagated first. The minimumT (x, y) is estimated
by solving a quadratic equation. The main algorithm is fully de-
scribed in [12].

The propagation of all waves (associated with the relevant
sources) begins simultaneously. At places where two or more
fronts meet, a dam is erected to specify the segmentation line.
Whereas in the case of uniform height flooding FMM is easy to
implement as done in [4], in the case of uniform volume flooding
solving the PDE of Eq.(7) has the peculiarity of the pseudo time
varying termA(T ). This is why the fast marching algorithm has to
be implemented so it takes under consideration the time-dependent
area variations of the fronts. Every time we ‘march’ a pixel for-
ward the area of the relevant front is increased. Consequently, the
corresponding area term of the front has to be updated.

4. RESULTS AND DISCUSSION

Different experiments were undertaken in order to investigate the
advantages of using volume flooding, and find out the differences it
has over the classic one. Some of the results are presented in fig.2,
fig.3 and fig.4. The images used to test the proposed methodol-
ogy exploit the need for using this type of flooding. In fig.2(a) a
synthetic image is presented. It was created by taking the distance
transform of a binary image of four randomly shaped objects and
adding a arbitrary constant to each one, thus producing a grey level
image. Four different cases are examined. At first, uniform vol-
ume flooding is applied directly the original image and then to its
gradient. Secondary, uniform height flooding is applied to the ini-
tial image and its gradient. The segmentation results, presented in
fig.2(d)-(e), exploit the basic property of volume flooding, that is,
it retains the balance between area and contrast. Using four mark-
ers (one for each object) that have been set manually, we flood
the image from these predefined sources. When uniform volume
flooding is applied, we see that the object that is eventually lost
is the one with the smallest volume (area and contrast). On the
other hand, when uniform height is applied, the object that is fi-
nally lost is the one with the lowest contrast, which happens to be
the one with the biggest area. Additionally we can say that uniform
volume flooding behaves better when it is applied directly to the
image of interest and not its gradient. Judging by this experimen-
tal result we can say that volume flooding leads to more balanced
results.

In fig.3 and fig.4 are presented the results of the aforemen-
tioned types of flooding applied to real images. We have used the
image of a parrot as well as a medical image which is a thorax
MRI. Differences in the images’ intensity create lakes with dif-
ferent volume (because their area and altitude - intensity are not
the same).In fig.3(a)-(d), fig.4(a)-(d) are illustrated the results of
the preliminary stages before the actual segmentation. These are:
image simplification in order to create more flat lakes and feature

extraction,such as edge gradient and marker set. Image simplifica-
tion is achieved by applying non-linear filtering [10] ( ASF based
on reconstruction) and feature extraction is accomplished using
morphological techniques [10]. The marker set is a binary set de-
fined manually where each particle marks a region of interest in
the image. The segmentation results are presented in fig.3(e)-(h),
fig.4(e)-(h) respectively. As it can be seen, volume flooding gen-
erally behaves better. It seems to be more balanced since it takes
under consideration not only the contrast criteria but area crite-
ria as well. It should be mentioned that whereas uniform height
flooding should be applied to the gradient of the image of inter-
est, volume flooding produces better results when applied directly
to the image not to its gradient. In fig.3(i)-(l) we see the results
of height and volume segmentation applied directly on the initial
image, without any simplification preprocessing. Volume flooding
behaves better than height flooding, especially when applied on
the image function and not on its gradient.

In conclusion, we can say that volume flooding exploits both
the contrast and the size properties of the objects present in an im-
age. It can be considered as a useful segmentation tool in cases
where we want to keep the balance between the aforementioned
image properties and it can give good results in cases that contrast-
based driven segmentation fails. In addition, the PDE implemen-
tation has the advantage of a more isotropic flooding. There is the
consideration of adding a attraction term to the PDE describing the
evolution of the curve in Eq.(5) in order to make a more robust, ef-
ficient and active contour-like segmentation methodology.
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Fig. 2. (a) Synthetic imagef (b) Gradient‖∇f‖ (c) Markers (d) Vol. Flooding off (e)Vol. Flooding‖∇f‖ (f) Height Flooding off (g) Height Flooding of‖∇f‖.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 3. (a) Parrot imagef (b) Simplified imageg (c) Gradient‖∇g‖ (d) Manual markers(e) Vol. Flooding ofg (f) Vol. Flooding of‖∇g‖ (g) Height Flooding ofg
(h) Height Flooding‖∇g‖ (i) Vol. Flooding off (j) Vol. Flooding of‖∇f‖ (k) Height Flooding off (l) Height Flooding‖∇f‖ .

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. (a) MRI thoraxf (b) Simplified imageg (c) Gradient‖∇g‖ (d) Manual markers(e) Vol. Flooding ofg (f) Vol. Flooding of‖∇g‖ (g) Height Flooding ofg
(h) Height Flooding of‖∇g‖.
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