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11.1 Introduction
Starting from the famous “Put That There!” demonstration prototype, developed by the
Architecture Machine Group at MIT in the late 70s, the growing potential of multimodal
gesture interfaces in natural human-machine communication setups has stimulated people’s
imagination and motivated significant research efforts in the fields of computer vision, speech
recognition, multimodal sensing, fusion, and human-computer interaction (HCI). In the words
of Bolt [1980, p. 1]: “Because voice can be augmented with simultaneous pointing, the free
usage of pronouns becomes possible, with a corresponding gain in naturalness and economy
of expression. Conversely, gesture aided by voice gains precision in its power to reference”.

Multimodal gesture recognition lies at the heart of such interfaces. As also defined in
the Glossary, the term refers to the complex computational task comprising three main
modules: (a) tracking of human movements, primarily of the hands and arms, and recognition
of characteristic such motion patterns; (b) detection of accompanying speech activity and
recognition of what is spoken; and (c) combination of the available audio-visual information
streams to identify the multimodally communicated message.

To successfully perform such tasks, the original “Put That There!” system of Bolt [1980]
imposed certain limitations on the interaction. Specifically, it required that the user be tethered
by wearing a position sensing device on the wrist to capture gesturing and a headset micro-
phone to record speech, and it allowed multimodal manipulation via speech and gestures of a
small only set of shapes on a rather large screen (see also Figure 11.1). Since then however, re-
search efforts in the field of multimodal gesture recognition have moved beyond such limited
scenarios, capturing and processing the multimodal data streams by employing distant audio
and visual sensors that are unobtrusive to humans. In particular, in recent years, the intro-
duction of affordable and compact multimodal sensors like the Microsoft Kinect has enabled
robust capturing of human activity. This is due to the wealth of raw and metadata streams
provided by the device, in addition to the traditional planar RGB video, such as depth scene
information, multiple audio channels, and human skeleton and facial tracking, among oth-
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Figure 11.1 Screenshot from the “Put That There!” demonstration video by the Architecture
Machine Group at MIT [Bolt 1980].

ers [Kinect 2016]. Such advancements have led to intensified efforts to integrate multimodal
gesture interfaces in real-life applications.

Indeed, the field of multimodal gesture recognition has been attracting increasing interest,
being driven by novel HCI paradigms on a continuously expanding range of devices equipped
with multimodal sensors and ever-increasing computational power, for example smartphones
and smart television sets. Nevertheless, the capabilities of modern multimodal gesture systems
remain limited. In particular, the set of gestures accounted for in typical setups is mostly
constrained to pointing gestures, a number of emblematic ones like an open palm, and gestures
corresponding to some sort of interaction with a physical object, e.g., pinching for zooming.
At the same time, fusion with speech remains in most cases just an experimental feature.
When compared to the abundance and variety of gestures and their interaction with speech
in natural human communication, it clearly seems that there is still a long way to go for the
corresponding HCI research and development [Kopp 2013].

Multimodal gesture recognition constitutes a wide multi-disciplinary field. This chapter
makes an effort to provide a comprehensive overview of it, both in theoretical and application
terms. More specifically, basic concepts related to gesturing, the multifaceted interplay of
gestures and speech, and the importance of gestures in HCI are discussed in Section 11.2. An
overview of the current trends in the field of multimodal gesture recognition is provided in
Section 11.3, separately focusing on gestures, speech, and multimodal fusion. Further, a state-
of-the-art recognition setup developed by the authors is described in detail in Section 11.4, in
order to facilitate a better understanding of all practical considerations involved in such a
system. In closing, the future of multimodal gesture recognition and related challenges are
discussed in Section 11.5. Finally, a set of Focus Questions to aid comprehension of the
material is also provided.
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Glossary Terminology for Understanding Multimodal Gesture Recognition

Co-speech gestures are gestures produced while speaking. Their interplay with speech
and their role in human interaction are discussed in Section 11.2.2.

Gesture recognition models are primarily statistical constructs that can be trained to
represent specific gestures based on corresponding data. In this chapter, traditional
hidden Markov models (HMMs) with Gaussian mixture model (GMM) observation
probabilities are considered, as part of the authors’ gesture recognition system detailed
in Section 11.4. Further, a number of models based on deep learning approaches
are overviewed in Section 11.3.1. A more elaborate discussion of deep learning for
multimodal interaction modeling can be found in the second volume of this Handbook
(e.g., [Keren et al. 2017]).

Gesture types: Following the classification scheme of McNeill [1992], there exist five
basic gesture types, namely emblems, icons, metaphors, deictics, and beats. Their
main properties and typical examples are discussed in Section 11.2.1, as well as in
Chapter 6 of this volume [Kopp and Bergmann 2017].

Kinect is a multimodal sensing device containing an array of specialized cameras and
microphones to facilitate advanced audio-visual scene understanding [Kinect 2016].
It was originally developed as an accessory for a gaming machine, but has since
found numerous applications in HCI research. The Kinect provides multiple raw data
streams, namely traditional planar RGB video, video frames with depth information
of the scene, and five audio channels (one for each of its four microphones, as well
as a single enhanced audio signal). It is therefore often referred to as an RGB-D-A
sensor, or simply as an RGB-D one, if only the video data are considered. Further, the
Kinect provides metadata streams, for example detailed 3D position, pose, and skeleton
joint coordinates of human subjects in the scene, a facial mesh for nearby subjects in
relatively frontal head pose, detection of a small set of hand gestures, etc.

Multimodal gesture recognition refers in this chapter to the composite computational
task of identifying characteristic motion patterns of hands and arms (primarily), recog-
nizing accompanying speech, and, finally, combining the available audio-visual infor-
mation streams to identify the multimodally communicated message by means of the
hand and arm movements and the uttered speech.

11.2 Multimodal Communication and Gestures
According to Kendon [2004, p. 1], a gesture is “a visible action as utterance”, or, in other
words, “a [visible] action that is employed as a part of the process of discourse, as part of



4 Chapter 11 Multimodal Gesture Recognition

uttering something to another in an explicit manner”. People, for example, point to something
to refer to it, or move their hands and arms appropriately to show the size of an object or
illustrate an abstract idea. In general, gestures correspond to coordinated motion involving at
least some of the following: hands, arms, torso, and head; in most cases though, the research
community focuses on gestures formed by hand and arm movements.

Gesturing is practically ubiquitous and constitutes an integral part of human communi-
cation that is inherently multimodal. This chapter will mainly focus on co-speech gestures,
namely gesturing performed while speaking. There is significant evidence that such gesturing
can be viewed as yet another aspect of speech as a whole, like, for example, its emotional
and syntactic aspects [McNeill 1985, McNeill et al. 2008], being pragmatically co-expressive
with them and not redundant. Further, like emotions or syntax in speech, gesturing is typically
taken for granted by interlocutors. Almost 90% of spoken utterances in descriptive conversa-
tions are accompanied by speech-synchronized gestures [Nobe 2000], which occur in similar
form for speakers across many cultures, independently of the language they speak [McNeill
et al. 2008]. Gesturing is to a great extent unconscious, but still constitutes an important com-
ponent of speech and language production.

In the rest of the section, we briefly present the fundamental properties of gestures and,
most significantly, discuss the multifaceted speech-gesture interplay and its importance in
multimodal human communication. The role of gestures in HCI and relevant application
examples are also reviewed.

11.2.1 Gesture Types and Phases
Various researchers have tried to categorize gestures along a number of relevant dimensions,
but it seems that a widely accepted typology covering the multiplicity of gestures in use by
speakers globally is yet to be proposed. According to Kendon [2004, p. 107], “a single unified
classification scheme of gesture is merely impossible given the multitude of dimensions
gesture can depend on”. In the following, we briefly present the basic gesture types (also
reviewed by Kopp and Bergmann [2017]), based on the classification scheme proposed
by McNeill [1992] with respect to the semantics of gestures. For brevity, this presentation is
by no means exhaustive, but provides a number of illustratory examples of typical multimodal
gestures. For a more comprehensive account of gesture typologies, the reader is referred
to [Müller et al. 2013].

• Emblems: Emblematic gestures convey a particular meaning that is widely accepted by
people of a specific culture [Efron 1941, Ekman and Friesen 1969], e.g., the “thumbs
up” gesture, which means “good” in North America, or the “V” gesture signifying
“victory”. An example of emblematic gesture “OK” is depicted in Figure 11.2. These
gestures are typically stand-alone and do not require any accompanying speech to
become understood.
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(a) (b) (c) (d) (e)

Figure 11.2 An example realization of the emblematic gesture “OK”, depicting video frames of all
five phases of its formation: (a) initial phase; (b) preparation; (c) pre-stroke hold; (d) stroke;
and (e) retraction. The pre-stroke hold phase is exactly when the gesturer has raised his hand
and pauses instantly before the stroke, i.e., the abrupt forward movement of the hand.

• Icons: Iconic gestures are motion patterns conveying a physical property of a described
object, action, or event. For example, they may indicate the shape or size of an object,
as in bringing the thumb and index together to form a circle describing a camera lens.
Iconic gestures may also show how a certain action is executed, independently of whether
this information is in the accompanying speech or not. For example, one may refer to
a screwdriver and how unscrewing is performed, by repeatedly opening, closing, and
rotating one’s fist, while at the same time saying “It took me a while to remove that
screw”.

• Metaphors: Metaphoric gestures are similar to iconic gestures, in that they also represent
a certain property of the described concept, however, in this case, the property or concept
are abstract. An example is moving the palm in a way that alludes to rolling motion,
accompanying the phrase “the talk went on and on”.

• Deictics: Deictic gestures localize, namely indicate a certain location in space. Such
could be either in the physical space in front of the speaker or the listener, or in a
conceptual space defined by the interlocutors during their conversation. For example,
one may point downwards to refer to “here and now”, or point into the distance to refer
to somebody who is absent or to an event in the future.

• Beats: Beat gestures are simple, rapid, and repetitive movements, typically synchronous
with prosodic variations of speech. They are used to emphasize certain parts of what is
being said. An example is when the speaker emphatically says “we need to act now”,
accompanied by his hand flicking up and down following the rhythm of his speech.
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(a) (b) (c) (d)

Figure 11.3 Examples of two gestures from the ChaLearn corpus [Escalera et al. 2013b], each shown
in two different realizations: (a, b) Gesture “vieni qui” (“come here”), performed by two
different gesturers exhibiting significant variation in arm placement; (c, d) gesture “vattene”
(“go away”), performed by the same gesturer using the left vs. the right hand. In all examples,
motion is shown by superimposing the start- and end-frames of the gesture, with arrows
highlighting movement direction. In terms of typology, both gestures can be attributed with
deixis and iconicity, as discussed in Section 11.2.1. (From Maragos et al. [2016])

It is important to note that the aforementioned typology should only be considered as defining
a number of dimensions, along which a gesture can be represented (e.g., iconicity, deixis,
metaphoricity), and it does not really provide disjoint categories [McNeill 2005]. For example,
a dynamic pointing gesture that also shows the direction of a movement should be attributed
with both iconicity and deixis [Wagner et al. 2014]. Examples of two such gestures are
depicted in Figure 11.3. There, two realizations are shown for each, demonstrating the
inherent variability in their formation.

Focusing on gestures performed by a coordinated motion of hands and arms, it is also
of interest to briefly review the common properties of their dynamics. More specifically, the
following five phases have been identified in gesture formation [Bressem and Ladewig 2011,
Wagner et al. 2014]:

• The initial phase, where the body is at a fixed rest position, and the gesticulation starts
from there;

• a preparation phase, in which the hands and arms start to move away from the rest
position in preparation for the following phase;

• a gesture stroke, which is the most important phase of the gesture in terms of communi-
cating the intended message, and typically includes a peak in effort and informativeness;

• holds, which are static phases potentially preceding or following the stroke; and, finally,
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• a retraction or recovery phase, when the hands and arms move back to a rest position.

A sequence of snapshots of these phases during a realization of the emblematic gesture “OK”
is shown in Figure 11.2.

11.2.2 Forms of Speech-Gesture Interplay
As discussed earlier, gestures and speech are strongly interconnected. Indeed, there are
numerous studies reporting and analyzing the interrelations between gestures and spoken
language [Goldin-Meadow and Alibali 2013] (for cognitive models of these interrelations
see also [Kopp and Bergmann 2017]). In the following, we present the three main forms
of speech-gesture interplay, namely in information communication, speech production, and
language learning.

Role of Gestures in Communication
The communicative role of gestures had been a controversial topic for over 35 years [Krauss
1998], with a relative consensus on it only recently reached. Based on a growing body of ev-
idence, it is nowadays widely accepted that gestures significantly aid human communication,
by often elaborating upon and enhancing the information that is orally co-expressed [Hostet-
ter 2011, McNeill 1992]. One may, for example, use hand motions to describe the shape of an
object, while only referring to its large size by speech. Further, in noisy situations, or when
speech is ambiguous [Thompson and Massaro 1986], it has been found that listeners pay at-
tention to gestures to make sense of what is being said. This behavior becomes even more
prominent as the audio signal-to-noise ratio decreases. Gestures also contribute to a more
accurate understanding of narratives, even in cases when speech is comprehensible [Singer
and Goldin-Meadow 2005]. Interestingly, it seems that synchronously presented and non-
redundant speech and gestures, independently of whether they are congruent or incongruent,
are treated equivalently by listeners while trying to create a single multimodal mental rep-
resentation of the available information [Cassell et al. 1999]. For example, when adults are
asked to evaluate how a child performs, e.g., in a problem-solving task, they build their as-
sessment also based on information conveyed via the child’s gestures, even when such may
not be in agreement with what the child said [Goldin-Meadow et al. 1992].

Another illustrative phenomenon related to the communicative nature of gestures and its
relation with speech is that speakers rarely make gesture errors. Speech disfluencies may
be quite common, but, in contrast, gestures have been observed to almost always convey
what the speaker truly wants to communicate [Cassell 1998]. The speaker most probably
will point towards the left when he means “left”, although he may mistakenly say “right”.
This is exploited by listeners, who may be correcting speech errors based on the co-occurring
gestures [McNeill 1992].
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Role of Gestures in Speech Production
Gestures are also important in speech production. According to Krauss [1998], this is because
they facilitate lexical access, or, based on Goldin-Meadow et al. [2001], because they lighten
speaker cognitive load during speech production, by enriching the way information has been
encoded and can be accessed, or by helping speakers organize it better. It is indeed true that
gestures are performed even when they cannot be seen by listeners. For example, congenitally
blind speakers gesture when speaking to blind listeners [Iverson and Goldin-Meadow 1998],
and people gesture when talking on the phone [Rimé 1982]. So, gestures must serve an
additional role for the speaker, apart from just enhancing face-to-face communication.

The “Lexical Retrieval Facilitation” hypothesis has been endorsed to provide an explana-
tion for such observations [de Ruiter 2006, Krauss 1998]. The hypothesis is supported by nu-
merous studies [Krauss et al. 2000], and it starts from the premise that knowledge is stored in
memory in various domains/formats, e.g., visuo-spatial and motoric. It then states that gestur-
ing stimulates additional memory representations, e.g., spatio-dynamic, thus cross-modally
priming lexical items. For example, when a speaker performs a circular gesture as he says
“the ball rolled down the hill”, this gesture will contribute to the activation of word “roll”,
thus making it more easily accessible.

To further support this, studies have shown that, when lexical access becomes harder,
speakers gesture at higher rates [Morsella and Krauss 2004], and, when speakers are not
allowed to gesture, they become more disfluent. It has also been found that the duration of
a gesture is related to how long it takes for a speaker to retrieve a word [Morrel-Samuels
and Krauss 1992]. Further, more gestures occur during spontaneous speech than in rehearsed,
apparently due to the stronger demand for on-the-fly word retrieval [Chawla and Krauss 1994].
In addition, when gesturing is constrained, it seems that people speak more slowly if speech
semantics are related to space [Rauscher et al. 1996]. Along the same lines, children were
found to perform worse in a naming task in the gesturing-prohibited vs. the gesturing-allowed
condition [Pine et al. 2007].

Additional evidence for the importance of gestures in speech production comes from
medical studies. For example, stroke patients with problems in word naming and lexical
retrieval, but with satisfactory comprehension, were found to gesture more during narration
than typical patients or others with visuo-spatial deficits [Hadar et al. 1998a]. Further, patients
suffering from Wernicke’s aphasia, i.e., having problems in comprehension but not in object
naming, were found to not gesture as much [Hadar et al. 1998b]. Last, aphasic patients with
phonological access or storage deficits, participating in a naming task, were significantly aided
when told to point, visualize, and gesture [Rose and Douglas 2001].

Role of Gestures in Language Learning
Finally, gesturing has also been found to be important for language development in children.
In particular, it has been found that the use of iconic gestures by mothers can reliably
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(a) (b)

Figure 11.4 Two examples of HCI systems employing gestures: (a) A gesture interface controlling
computer functionality (https://www.youtube.com/watch?v=Wq1FM84uAck); (b) gesture
recognition in virtual reality (https://www.youtube.com/watch?v=ALBsLEupolY).

predict noun acquisition and comprehension by children [Zammit and Schafer 2011]. Being
synchronized with speech, gestures seem to aid infants deduce the meaning of the words
they hear [Zukow-Goldring 1996]. Interestingly, most infants typically start using their own
gestures to communicate with parents before the age of ten months, namely significantly
earlier than when they start to speak. The gestures initially used by children are deictic,
e.g., pointing, or representational, i.e., iconic and abstract deictic [McNeill 1992], but they
become more complex as children grow older. There is, it seems, a strong correlation between
age, narrative complexity, and gesturing [Colletta et al. 2010]. Co-speech gestures apparently
develop in parallel with linguistic capabilities.

11.2.3 Gestures in Human-Computer Interaction
The gestures mostly considered in computer vision and HCI systems are the emblematic ones,
e.g., putting the hand up to mean “stop”, as well as deictic ones, when referring to objects or
locations in the physical space, e.g., pointing at a book and then a table while saying “put that
there”. The emblematic gestures are those that come to mind as prototypical or exemplary
ones, but they typically constitute less than 10% of all gestures produced. However, they
are used a lot in HCI systems, because they are easier for people to remember, and their
realizations are relatively less variant across performers. Such gestures are typically employed
as commands to control the functionality of a computer, tablet, or a smart television set, e.g.,
to browse the music library, play the next song, raise the volume, or play the selected movie
(see Figure 11.4a).

Deictic gestures are also accounted for in HCI, because they can be very useful when
one wants to perform a certain task, as discussed by Bolt [1980]. These are often used in
cases when the intended communication is related to the space around the speaker, physical
or virtual. Examples include controlling a virtual control panel by pushing buttons, pulling

https://www.youtube.com/watch?v=Wq1FM84uAck
https://www.youtube.com/watch?v=ALBsLEupolY
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sliders (see Figure 11.4b), or browsing through and selecting movies in a TV set movie
library [Shah 2012].

The majority however of co-speech gestures, despite their importance in communication
as discussed earlier, is still largely ignored by HCI systems [Cassell 1998]. This observation
was first made almost 20 years ago, but things have not changed much in this respect since. A
computer interface that would benefit from all the cues humans use in natural interaction
is yet to be developed. The variability of everyday gestures, which are mostly produced
unconsciously, and their possibly indirect connection to the content of accompanying speech
render their recognition quite challenging. Making sense of them independently of speech
is almost impossible, as it can also be very hard to fully understand speech without them.
That is, for example, the case when a user tries to describe the relative size of an object by
saying “it is this big”, while protruding both palms and holding them at a certain distance
from each other. In this context, naturalistic HCI systems have to first generate an appropriate
multimodal semantic representation of the user state and then react accordingly. This is why
the need for multimodal gesture recognition becomes even more acute.

11.3 Recognizing Speech and Gestures
A multimodal gesture recognition system will typically comprise a module for classifying
hand and arm gestures, a speech recognition component, and a module to fuse results based
on the available modalities, as shown in Figure 11.5. The goal of such a system is to reliably
determine what the speaker has multimodally communicated.

11.3.1 Gesture Recognition
Gesture recognition has been in the focus of intense research activity for over 40 years [Mitra
and Acharya 2007, Pavlovic et al. 1997]. A comprehensive overview of all related literature
is beyond the scope of this chapter, and the interested reader is referred to a number of
excellent reviews of the field [Chaudhary et al. 2011, Pisharady and Saerbeck 2015, Rautaray
and Agrawal 2015]. Instead, this section will focus on describing the most recently proposed
approaches that constitute the current trends concerning gesture recognition models. Such are
mainly based on deep learning techniques, a topic thoroughly reviewed in the second volume
of this Handbook (e.g., [Keren et al. 2017]). Similarly to other domains where machine
learning plays a central role [Deng and Yu 2014], deep learning methods provide significant
modeling power, taking advantage of large corpora available for training and recent strides in
parallel computing. Such techniques have the potential to lead to even greater performance
improvements in the future.

Statistical Gesture Modeling
Probably the most significant aspect of the majority of gestures and, more generally, human
actions that needs to be accounted for in a recognition system is their dynamic nature.
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Figure 11.5 Multimodal gesture recognition integrated into an HCI system. (Based on a figure
by Krahnstoever et al. [2002])

Temporal modeling is imperative, among others, for disambiguating patterns of motion, which
otherwise have very similar properties, e.g., a “come-here” gesture vs. a “go-away” one, or
“sit-down” vs. “stand-up”. Over the years, various temporal models have been proposed for
this purpose, with hidden Markov models (HMMs) and their variants being the prevalent
ones until recently [Chen et al. 2003, Mitra and Acharya 2007, Pisharady and Saerbeck
2015, Wilson and Bobick 1999]. Gesture HMMs statistically model sequences of feature
vectors (observations) that are extracted from gesture data, such as static geometric or spatial
features (e.g., shape descriptors) or dynamic ones (e.g., optical flow). Their effectiveness is
based on the assumption that observations at any instant can be modeled as dependent on the
current hidden state only. To train HMMs, the expectation-maximization algorithm is applied,
iteratively updating model parameters to maximize the observed data likelihood [Rabiner
1989]. This makes HMMs generative rather than discriminative in nature, which in turn
implies that they are not optimal for classification or recognition tasks.

Being more appropriate in that respect, discriminative models based on hidden conditional
random fields (HCRFs) [Morency et al. 2007, Wang et al. 2006] were shown to outperform
HMMs in gesture recognition. Support vector machines (SVMs), applied on a sliding window
of the observations, have also demonstrated competitive performance using complex feature
extraction schemes, such as dense trajectories [Peng et al. 2015], bag-of-words representa-
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Figure 11.6 Architecture of the CNN-based gesture recognition system of Pigou et al. [2015]. Two
CNNs are used in parallel to extract features from RGB-D data of the primary hand (upper
part of the diagram) and body (lower part) over 32-frame long data sequences. Convolutional
and max pooling layers alternate at the feature extraction stage, and gesture classification is
performed by a three-layer, feed-forward, fully-connected ANN. The max-pooling region,
as well as the number and size of CNN filters are also shown, e.g., 16 filters of size 5x5 are
employed at the first convolutional layer. (Based on a figure by Pigou et al. [2015])

tions [Laptev et al. 2008], and poselets [Bourdev and Malik 2009]. However, HMMs, SVMs,
and HCRFs, being essentially single-layer models, are not able to learn higher-level represen-
tations and to fully benefit from large corpora of gestures becoming increasingly available.

To address this shortcoming, the use of deep learning is becoming increasingly popular
in a number of spatio-temporal video-based classification tasks, including gesture and action
recognition. For example, Taylor et al. [2010] extract features from traditional RGB videos
using convolutional neural networks (CNNs), instead of hand-crafting the features. Similarly,
Pigou et al. [2015] employ RGB-D data and apply two separate CNNs to extract features for
the entire body and for the hands. These are then fed to an artificial neural network (ANN)
for gesture classification, as depicted in Figure 11.6. Three-dimensional CNNs (3D-CNNs)
are introduced by Ji et al. [2013] for recognizing human actions in surveillance videos. These
models essentially perform 3D convolutions along both spatial and temporal dimensions, by
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Figure 11.7 Architecture of the multi-scale, multi-stream gesture recognition system of Neverova
et al. [2015]. Input frame sequences are sampled at three temporal scales, i.e., every 2, 3,
or 4 frames (top-to-bottom). At each scale, RGB-D image sequences of the left and right
hands are fed into separate CNNs, and their outputs are combined using a feed-forward ANN
(similarly to Figure 11.6). Skeleton-based features are also fed into the ANNs that generate
scale-dependent gesture recognition results. These are subsequently combined by a weighted
averaging scheme to yield the final result. (Based on a figure by Neverova et al. [2015])

convolving the cube formed by adjacent 2D frames with a 3D kernel. This way, 3D-CNNs
capture motion information in a sequence of contiguous frames. In [Wu et al. 2016], a 3D-
CNN is applied on RGB-D data, and a deep belief network is used to model dynamics of
coordinates of human skeleton joints. The two networks are fused at the output stage by
means of a linear combination of their output posterior probabilities. These are then used
as observation probabilities of gesture HMMs to model higher-level temporal relationships,
allowing continuous gesture segmentation and recognition.

Stream-dependent CNNs are also considered by Neverova et al. [2015], this time at
multiple temporal scales, as depicted in Figure 11.7. Instead of using a temporal model, this
approach is window-based, i.e., classification is performed employing a sliding window over
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the sequence of observations. Fusion across temporal scales occurs at the top level of the
proposed architecture by means of weighted averaging to yield the final result, whereas multi-
stream fusion is performed at a deeper level.

Data Resources and Challenges for Gesture Recognition
Concerning data resources for gesture recognition, the recent publication of the ChaLearn
databases, collected using RGB-D or RGB-D-A sensors, and the corresponding Chal-
lenges [Escalera et al. 2016] have provided a major evaluation benchmark for state-of-the-art
gesture recognition approaches (examples from one of these sets are shown in Figure 11.3).

In particular, the first ChaLearn Challenge and corpus concerned multimodal gesture
recognition [Escalera et al. 2013b]. Most of the developed systems on these data were based
on HMMs [Pitsikalis et al. 2015], but other approaches such as neural networks, SVMs, and
random forests were also applied. For the visual recognition of gestures, low-level features
such as space-time interest points [Willems et al. 2008] were used by Nandakumar et al.
[2013], and, to model large-scale temporal dependencies, recurrent neural networks (RNNs)
were applied by Neverova et al. [2013]. The best performing system in the Challenge,
proposed by Wu et al. [2013], employed dynamic time warping (DTW) [Rabiner and Juang
1993] to achieve visual gesture classification based on features extracted from the human body
skeleton.

The next ChaLearn Challenge (Looking at People – LAP) and gesture recognition cor-
pus [Escalera et al. 2015] targeted gesturer-independent classification of gestures. The best
approaches in the corresponding task were based on sophisticated hand-crafted visual features
for the available input streams. For example, four types of skeleton features were extracted at
multiple temporal scales by Monnier et al. [2015], namely normalized positions of the upper
body major joints, joint quaternion angles, Euclidean distances between specific joints, and
directed distances between pairs of joints, following Yao et al. [2011]. Derivatives of all the
above were used along with handshape features based on histograms of oriented gradients
(HOGs), originally proposed by Dalal and Triggs [2005]. The first ranked team [Neverova
et al. 2015] employed a descriptor comprising seven subsets of skeleton features. More specif-
ically, the adopted representation included joint velocities, positions, accelerations, as well as
inclination and azimuth angles.

11.3.2 Speech Recognition
Deep learning has recently prevailed in the field of automatic speech recognition (ASR) as
well. The remarkable parallel computing capabilities of modern graphics processing units,
the introduction of effective training algorithms, and the abundance of available speech data
have allowed deep architectures to unfold their potential. Indeed, early works demonstrated
their superior performance in both phone recognition [Mohamed et al. 2009] and large-
vocabulary continuous speech recognition [Dahl et al. 2012], as compared to HMMs with
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Figure 11.8 Typical DNN-HMM architecture for speech recognition. Filtered spectral energies are
used at the input DNN layer. Observation probabilities at each HMM state are estimated
using the DNN output posteriors. HMM states typically correspond to context-dependent
sub-phonemes [Yu and Deng 2011].

conventional observation probabilities based on Gaussian mixture models (GMMs), known
as GMM-HMMs. Since then, deep neural networks (DNNs) and their variants have become
indispensable in state-of-the-art ASR systems.

In fact, the idea to combine ANNs and HMMs to improve ASR first appeared almost 30
years ago. More specifically, the most promising ANN-HMM approaches back then would
either use ANNs to estimate posterior probabilities for each HMM state (“connectionist” ap-
proach) [Bourlard and Morgan 1994, Morgan and Bourlard 1990], or process these posterior
probabilities appropriately and treat them as features in a GMM-HMM system (“tandem”
approach) [Hermansky et al. 2000]. In both cases, the results would not necessarily outper-
form the rival systems based on conventional GMM-HMMs that were being very intensely
developed in parallel. Despite the very appealing properties of the ANN-HMM approach, its
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inherently discriminative nature and modeling effectiveness among others, it was not possible
to effectively train systems with more than two hidden ANN layers. Insufficient computational
resources, the lack of large enough corpora, and limitations of the applied training algorithms
were the main culprits. However, all these obstacles have recently been overcome, ANNs have
become DNNs, and DNN-HMMs consistently demonstrate the best performance in all major
ASR tasks [Hinton et al. 2012].

A characteristic architecture of a DNN-HMM speech recognition system is depicted in
Figure 11.8. Speech features typically comprise filtered spectral energies at various frequency
bands, and the number of DNN hidden layers may vary, depending on available data and task
specifics [Yu and Deng 2011]. Alternative types of networks and combinations, each accept-
ing either the same or appropriately transformed speech input, have also been successfully
proposed, e.g., CNNs, RNNs, and long short-term memory networks, leading to state-of-the-
art performance in a number of challenging ASR tasks [Hannun et al. 2014, Saon et al. 2016,
Xiong et al. 2017]. Research in this area is currently extremely active, and further improve-
ments are expected. Among others, such could concern training algorithms, multi-task learn-
ing, i.e., re-using models trained for a particular task in a different one, and handling cases
where limited only data are available [Deng et al. 2013].

11.3.3 Multimodal Fusion
Correct interpretation of user intent based on speech and accompanying gestures requires ap-
propriate fusion of the two modalities. Fusion, or multimodal integration, is probably the most
critical component of a multimodal gesture recognition system. In natural interactions, even if
the results of the single-modality recognition modules may be quite reliable, their integrated
interpretation can be difficult to determine. For example, certain co-occurrences can be inter-
preted as redundant expressions of the same meaning, like “bye bye” and the corresponding
emblematic gesture, while others need to be combined, e.g., “go there” and the accompanying
pointing gesture (see also the distinction between redundant and complementary speech and
gestures in [Kopp and Bergmann 2017]).

Related to this, an illustrative classification of multimodal interfaces is provided in Ta-
ble 11.1, based on the corresponding multimodal interpretation and on the relative timing of
event occurrences in the involved modalities [Nigay and Coutaz 1993]. In the synergistic case,
both speech and gestures are available in parallel, and they must be fully integrated to actually
interpret user intent. It should be pointed out that “parallel” does not necessarily mean si-
multaneous; empirical studies have shown that expecting the user’s speech and corresponding
gestures to fully overlap is an oversimplification [Oviatt and Cohen 2015]. Given this finding,
a synergistic interface would expect the “put that there” command to be delivered by the user
synchronizing the first pointing gesture with the utterance of “put that” and the second point-
ing gesture with the utterance of “there”. The exact expected timing between the delivery of
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speech and gestures should ideally be adapted to the user and the context (see [Huang et al.
2006] for a machine learning approach to that).

In the concurrent scenario, speech and gestures are independent, but occur in parallel. The
user, for example, can increase the brightness of the monitor using speech, while, at the same
time, zooming-in with a pinching gesture. On the other hand, concerning interfaces that expect
sequential utilization of the two modalities, the alternate case refers to when input is provided
in one of the modalities and is then complemented via the other, while the exclusive case
to when the events in the two modalities are handled separately. An alternate multimodal
interface would require, for example, saying “put that there” first, and then sequentially
performing two pointing gestures (one for “that” and one for “there”). The synergistic and the
alternate modes of operation are the ones we are mostly interested in, but there are potential
benefits in using the other types as well [Turk 2014].

For synergistic systems, the next question that needs to be addressed regards the level at
which fusion should be performed. To answer this, a comprehensive recent survey of multi-
modal integration approaches [Lalanne et al. 2009] uses the seven-layered protocol model of
HCI [Nielsen 1986]. This model accounts for the physical, perceptual, and conceptual repre-
sentations involved, with multimodal fusion potentially feasible at any of its seven layers. An
example is provided in Table 11.2, for the case of a user saying “remove this” and pointing
to a specific shape on the screen, with the goal of removing a table from a virtual room. The
corresponding representations at each layer of the interaction are shown.

More specifically, fusion of multiple modality feature streams at the physical world layers
of Table 11.2 is often referred to as “early integration”. Such approach typically requires
that the involved modalities are tightly synchronized, as for example in the case of audio-
visual ASR [Potamianos et al. 2017]. Since this is not guaranteed in speech- and gesture-based
interaction, early integration is not directly applicable to multimodal gesture recognition, at
least following the paradigms that have appeared in the literature so far. Instead, fusion is
typically applied at the perceptual or the conceptual world layers of Table 11.2, being often
referred to as “intermediate” and “late integration”, respectively [Maragos et al. 2008]. Such
approaches are also commonly employed in pen and speech interfaces, as discussed in Chapter

Table 11.1 Multimodal interface types based on the corresponding multimodal interpretation and
on the relative timing of the events occurring in each modality.

Modality Occurrence Timing

Sequential Parallel

Multimodal
Interpretation

Combined Alternate Synergistic

Independent Exclusive Concurrent
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Table 11.2 The seven-layer model of HCI [Nielsen 1986]. The model has been adapted to multimodal
gesture recognition, in the example of a user saying “remove this” and pointing to a specific
shape on the screen, with the goal of removing a table from a virtual room. Multimodal fusion
can potentially occur at any of the seven layers depicted. Further details are discussed in
Section 11.3.3.

Level Type Units Definition Example World

1 Goal Real-world
concepts

Mentalization of a goal,
a wish in the user’s head

Remove the table
from the virtual

room on the screen

2 Pragmatic System
concepts

Translation of a goal into
system concepts

Delete the table that
lies at the particular
point of the room

3 Semantic Detailed
functions

Real world objects
translated into system

objects manipulated by
functions

Delete object in
screen coordinates

Conceptual

4 Syntactic System
sentences

Time and space
sequencing of

information units

Delete screen
coordinates

5 Lexical Information
units

Smallest elements
transporting significant

information: word,
figure, screen

coordinates, icon

[delete] command,
screen coordinates

Perceptual

6 Alphabetic Lexemes

Primitive symbols:
letters, numbers,

columns, lines, dots,
phonemes, ...

/r/, /iy/, /m/, /uw/,
/v/, right-hand
pointing index

finger

7 Physical
Physically

coded
information

Light, sound, physical
movement

Saying “remove
this”, pointing to a
shape on the screen

Physical

10 of this volume [Cohen and Oviatt 2017]. For example, Johnston and Bangalore [2000] use a
multimodal weighted finite-state transducer to generate the final decision based on speech and
pen pointing recognition. In other work, Johnston [1998] applies a unification-based method
for fusion, where speech and pen drawings are represented by attribute-value structures and
integrated into single multimodal representations by means of appropriate grammars. Further,
Wu et al. [1999] propose a statistical fusion approach, where posterior probabilities of the
speech and pen drawing or pointing recognition results are appropriately integrated, and the
multimodal combination with the highest probability is selected as the final output. Such
fusion approaches are directly transferable to multimodal gesture recognition as well.

More elaborate statistical approaches for fusion at the lexical layer for multimodal gesture
recognition are presented in [Miki et al. 2014, Pitsikalis et al. 2015]. There, N-best lists
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of symbol sequences are generated using the two modalities separately, and then properly
rescored based on both. The best-scoring hypothesis is subsequently returned as the final
multimodal gesture recognition result. Additional details on this approach are provided in
Section 11.4.2. Further, a framework to more tightly integrate the available modalities, even
during the training phase, is proposed by Wu and Cheng [2014]. Building on boosting
learning [Zhang and Yu 2005] and co-training [Blum and Mitchell 1998], this approach
iteratively combines at the lexical level many co-trained weak classifiers for all modalities
to construct a multimodal strong classifier. The method is shown to achieve state-of-the-art
performance in a number of multimodal gesture recognition tasks.

11.4 A System in Detail
In this section, we highlight the main ideas and methods of the authors’ recent work on
multimodal gesture recognition [Pitsikalis et al. 2015]. The developed system comprises
two main modules: feature extraction and modeling for each of three available unimodal
data streams, as overviewed in Section 11.4.1, and multimodal fusion that is discussed in
Section 11.4.2. The presentation aims to facilitate a better understanding of the practical
aspects of addressing these tasks.

System development and evaluation utilizes the demanding ChaLearn dataset [Escalera
et al. 2013b] that focuses on multiple-instance, user-independent learning of gestures from
multimodal data. The corpus was used in the multimodal gesture recognition Challenge,
held in conjunction with the ICMI’13 conference [Escalera et al. 2013a], and is available
online [ChaLearn 2013] (samples of it are depicted in Figure 11.3). The data are captured
using an RGB-D-A sensor (Kinect) providing a number of data streams, namely sequences of
both RGB and depth image frames of the gesturer’s body, skeleton information, orientation of
body joints, as well as concurrently recorded audio of the accompanying speech, essentially
having the same meaning as the performed gesture.

Each recording in the ChaLearn corpus may include a sequence of gestures (ten or more),
and the goal is to recognize the entire sequence as accurately as possible. The vocabulary
used contains twenty Italian cultural-anthropological gestures. Examples include, among
others, utterances “come here”, “I am hungry”, and “go away” in Italian, accompanied by
their corresponding gestural expressions. The dataset is partitioned into three subsets, used
for development, validation, and final evaluation, including 39 users and approximately 14k
multimodal gesture instances in total, all manually transcribed and loosely end-pointed. The
corresponding temporal boundaries are provided as part of the corpus, and they are exploited
in the training phase of the presented system.

There are several issues that render multimodal gesture recognition on this dataset quite
challenging, as described by [Escalera et al. 2013b]. These include the requirement to process
long continuous sequences of gestures (i.e., not just isolated instances), as well as the need
to account for a relatively large vocabulary of gestures and a large variety of users. Further,
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Figure 11.9 Schematic depicting the feature extraction pipeline of the multimodal gesture system,
detailed in Section 11.4.1. Top row: Kinect sensor providing the data streams; Middle row:
visual data (RGB and depth) and audio data; Bottom row: visual features (skeleton-based, as
well as HOGs extracted from the RGB and depth channels) and audio features (MFCCs).

the presence of distracting, non-sense (non-target) gestures and spoken phrases, referred to as
out-of-vocabulary (OOV) for both modalities, makes the task even harder.

11.4.1 Single-Stream Feature Extraction and Modeling
The developed multimodal gesture recognition system exploits both raw audio-visual and
human skeleton metadata streams provided by the Kinect. Such data are processed to yield
three feature streams, namely: one extracted from the skeleton information (visual metadata);
a second containing visual features from both depth and planar RGB video; and a third
exploiting the audio data. The extracted features are briefly described in the following and
are schematically depicted in Figure 11.9:
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• Skeleton: Skeletal features are based on the 3D coordinates of the body skeletal points,
readily provided by the Kinect sensor [Shotton et al. 2013]. More specifically, the
employed feature set includes 27 features in total: the 3D positions of hands and elbows,
the relative 3D positions of hands with respect to the corresponding elbows, the 3D
direction of hand movement, and the 3D distance between the hand centroids.

• Handshape: The handshape is represented by means of HOG features, which are vi-
sual descriptors popular in the computer vision literature [Buehler et al. 2009]. First,
segmented images of both hands in the planar RGB video and depth data streams are
obtained, exploiting the hand tracking results provided by the Kinect and using simple
depth-based thresholding. Subsequently, HOGs are extracted on both RGB and depth
hand images, employing a 7×7 grid and 4-bin histograms, using the open-source VLFeat
library [Vedaldi and Fulkerson 2008]. The resulting feature vector dimensionality is 392.
Both handshape and skeleton features are extracted at 20 frames per second.

• Audio: To efficiently capture the spectral properties of speech signals, the acoustic
frontend generates 39-dimensional feature vectors every 10 msec. Each such vector
comprises 13 Mel Frequency Cepstral Coefficients (MFCCs), along with their first- and
second-order temporal derivatives.

Following feature extraction, the underlying single-stream modeling scheme is based
on HMMs, building on the keyword-filler paradigm that was originally introduced for
speech [Rose and Paul 1990, Wilpon et al. 1990] in applications like spoken document
indexing and retrieval [Foote 1999] and speech surveillance [Rose 1992]. Similarly to these
works, recognition of a specific set of gestures within an observed sequence, comprising other
heterogeneous events as well, is viewed as a keyword detection problem. The twenty gestures
to be recognized are the keywords, and all the rest is ignored. Then, for every information
stream, each gesture, or in practice its projection on that stream (considering gestures as
multimodal events), is modeled by an HMM. In addition, for each stream, a separate HMM is
trained to represent silence/inactivity, and another one, referred to as the background model
(BM), accounts for all OOVs appearing in that stream. All these models are three-state,
left-to-right HMMs with GMMs employed as state-dependent observation probability distri-
butions. The actual number of mixture components used in the experiments is optimized on
the development set. Given enough training data, DNNs could also be used for this purpose.
The proposed modeling scheme is implemented using the open-source hidden Markov model
toolkit [HTK 2009, Young et al. 2002].

11.4.2 Multimodal Fusion
Gestures in the ChaLearn dataset occur in parallel to their semantically corresponding verbal
expressions. By fusing information from all available modalities, one can improve robustness
of the targeted multimodal interface. As a side note, based on the classification scheme pre-
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Figure 11.10 Overview of the multimodal fusion scheme for gesture recognition, detailed in
Section 11.4.2. Single-stream models are first used to generate possible hypotheses for
the observed gesture sequence. These are subsequently rescored by all streams, and the best
one is selected. Finally, a parallel segmental fusion scheme is applied to yield the result.

sented in Table 11.1, such an interface would be synergistic: although the available modalities
convey the same meaning and do not complement each other, they synergize to improve recog-
nition robustness. Given a vocabulary of multimodal gestures and a sequence of concurrent
observations from multiple input streams, the goal is to obtain the best possible hypothesis re-
garding the observed gesture sequence. In the presented system, the final decision is based on
the three feature streams discussed in Section 11.4.1, namely skeleton-based, handshape fea-
tures, and auditory spectral ones. In essence, any set of information streams can be employed
within this framework.

More specifically, a two-level fusion approach is implemented to combine information
from the individual feature streams:

• 1st Pass (P1): First, the single-stream models described in Section 11.4.1 are used to
generate a set of possible gesture sequence hypotheses for the given observations. This
initial set of hypotheses is then multimodally rescored and re-sorted.

• 2nd Pass (P2): Based on the temporal boundaries of the gestures in the best hypothesis
after P1, the parallel segmental fusion scheme of Vogler and Metaxas [2001] is applied
to further improve recognition performance.

The approach is schematically depicted in Figure 11.10. A more detailed description of the
fusion steps is provided next.
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N-Best Rescoring and Re-sorting
Using the single-stream gesture models and a grammar that defines the set of alternative
sequences of gestures allowed (essentially any gesture can follow any other, with silence and
OOVs possibly appearing in-between), a list of N-best hypotheses is initially generated for
the unknown sequence for each stream. To achieve this, a variation of the Viterbi algorithm is
applied, namely the lattice N-best algorithm [Schwartz and Austin 1991], which apart from
storing just the single best gesture at each node, it also records additional highly-scoring
gestures together with their scores.

The superset of all these N-best hypotheses, after removing duplicates, is subsequently
rescored and re-sorted. The combined new score for each hypothesis is a weighted sum of
single-stream scores after normalization, i.e., after transforming them to have zero mean and
standard deviation equal to one (across each stream hypothesis scores). Stream weights are
determined experimentally on a held-out validation set.

More specifically, the stream-based scores are estimated by means of “force-aligning”
each gesture sequence hypothesis with the observation sequence in the particular stream.
This is achieved by means of the Viterbi algorithm [Rabiner and Juang 1993] applied in
a constrained search space, so that it can only output alternative temporal alignments for
the specific hypothesis. Insertions or deletions of silence and possibly other OOVs are also
accounted for, in order to allow, for example, a hypothesis originally based on audio to better
match the visual observation sequence, e.g., when the user randomly moves the hands without
saying anything. The hypothesis with the maximum combined score is returned and passed to
the second fusion step, detailed next.

Segmental Parallel Fusion
At this step, the temporal boundaries of the best hypothesis mentioned above are used
to segment the observation streams and reduce the recognition problem to a segmental
classification one. It has to be mentioned that temporal boundaries may be different for each
stream, since temporal synchronization is not guaranteed. For every segment, corresponding
to a detected gesture, and for each stream, the log-likelihood of all stream-based gesture
models is estimated given the corresponding observation sequence. The segmental scores
are then linearly combined across modalities to get a multimodal score of all possible
gestures. The parameters of this linear combination are determined experimentally on a held-
out validation set. Finally, for each segment, the recognized gesture is the one with the
highest multimodal score. This final step is expected to yield additional improvements and
correct false alarms by seeking loosely overlapping multimodal evidence in support of each
hypothesized gesture.
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11.4.3 Experimental Results
As already mentioned, the performance of the proposed multimodal gesture scheme has been
evaluated on the ChaLearn corpus [Pavlakos et al. 2014, Pitsikalis et al. 2015]. In Table 11.3,
recognition results are presented for each stream separately, as well as after single- or two-
stage fusion. All results are expressed in accuracy (%), computed as 100−WER, where WER
is the percent word error rate that accounts for insertions, deletions, and substitutions. Based
on the audio modality alone, recognition accuracy reaches 87.2%, while the second best-
performing modality is the skeleton (49.1% accuracy). Combining all modalities by means
of segmental parallel fusion (P2) alone improves performance to 88.5%, while multimodal
N-best rescoring (P1) alone leads to 93.1% accuracy (in the presented experiments, N was
chosen equal to 200). To evaluate the P2 component separately, no multimodal rescoring
of hypotheses was performed, and the segments in all modalities were determined after
forced-alignment to the best audio-based hypothesis. The proposed multimodal fusion scheme
employing both P1 and P2 yields the best recognition accuracy (93.3%), reducing error by a
relative 48% over a baseline approach discussed next.

For comparison purposes in Table 11.3, the best performing approach at the ChaLearn
multimodal gesture recognition Challenge [Escalera et al. 2013b, Wu et al. 2013] is considered
as the baseline. That system only employs the audio and skeletal input streams. First, a simple
time-domain end-point detection algorithm based on coordinates of body joints is applied to
split continuous data sequences into candidate gesture segments. Then audio HMMs (similar
to the models of the presented system) are used to estimate an audio-based score for each
gesture in each segment. In an analogous manner, a DTW-based skeletal feature classifier is
applied to estimate corresponding visual-based scores. These single-stream scores by the two
classifiers are normalized and then combined to produce a weighted sum for fusion. All in
all, the baseline system resembles the use of the P2 fusion step alone, also performing quite
similarly to it. Given that, the presented system leads to better performance, mainly because
it also accounts for the N-best hypotheses and not just the best one (via integration of the P1
fusion step).

Table 11.3 Evaluation results on the ChaLearn corpus of the various components of the multimodal
gesture recognition system of Section 11.4.

Unimodal Accuracy (%) Multimodal Accuracy (%)

Handshape 20.2 Fusion – P2 88.5
Skeleton 49.1 Fusion – P1 93.1
Audio 87.2 Fusion – P1+P2 93.3

Baseline 87.2
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REF DACCORDO OOV OOV OK OOV OOV OOV SONOSTUFO

AUDIO DACCORDO BM PREDERE OK BM FAME BM SONOSTUFO

P1 DACCORDO BM BM OK BM BM OK SONOSTUFO

P2 DACCORDO BM BM BM BM BM BM SONOSTUFO

P1+P2 DACCORDO BM BM OK BM BM BM SONOSTUFO

Figure 11.11 Example recognition results on a ChaLearn corpus sequence, employing the techniques
of Section 11.4. Input audio and visual streams are depicted in the first and second rows,
respectively. Ground-truth annotations are given in the row labeled as “REF”. Speech
recognition results are shown in row “AUDIO”. Finally, multimodal gesture recognition
results using fusion schemes P1, P2, and P1+P2 are depicted in the last three rows. Deletion
errors are highlighted in blue and insertions in green. A corresponding video demonstration
can be found at: https://www.youtube.com/watch?v=xrsRsxz3Vk4 (From [Pavlakos et al.
2014])

A gesture sequence recognition example is shown in Figure 11.11. Both audio and visual
modalities are illustrated for a gesture sequence, accompanied by the ground-truth gesture-
level transcriptions (row: “REF”). In addition, the recognition output employing the audio
modality alone (AUDIO) is shown, along with the three presented fusion schemes (P1, P2,
and P1+ P2). Focusing on audio-only recognition results, one notices two insertions (words
“PREDERE” and “FAME”). By employing either the P1 or P2 schemes separately, the above
gesture insertions are corrected, as the use of the visual modality helps identifying that these
segments correspond to OOVs. However, recognition is still not perfect, since other insertion
or deletion errors arise. On the contrary, the application of the proposed two-step fusion
scheme leads to the best possible recognition result in this case.

In general, correct identification of OOVs and elimination of false alarms remains challeng-
ing. To address this problem, it would be beneficial to explicitly add modality synchronization
constraints and, in this way, properly detect events that are not really multimodal, i.e., the ma-
jority of OOVs in ChaLearn. Further, as discussed earlier, properly adapting the proposed
methodology to employ discriminative single-stream models, e.g., DNN-HMMs, instead of
GMM-HMMs, can lead to additional performance improvements.

https://www.youtube.com/watch?v=xrsRsxz3Vk4
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11.5 Conclusions and Outlook
In this chapter, after introducing the basic properties of gestures and discussing the various
forms of speech-gesture interplay, we presented an overview of the current trends in the field
of multimodal gesture recognition. We specifically focused on recent advances in gesture
recognition, speech recognition, and multimodal fusion, also providing up-to-date references
for the interested reader to delve deeper into the presented methodologies. Last, we described
in detail a state-of-the-art multimodal gesture recognition system that employs a two-stage
fusion scheme, evaluating it on a well-known multimodal gesture dataset.

Multimodal gesture recognition has definitely come a long way since the seminal work
of Bolt [1980]. The increasing availability of RGB-D-A sensors like the Kinect has allowed
the widespread collection of gesture and speech data and has significantly boosted related
research. The application of the deep learning paradigm has already led to significant im-
provements in the speech and gesture recognition domains separately, and recently proposed
fusion approaches also bear significant potential to push developed systems a little closer to
real-life applications. Multimodal gesture recognition systems are already foreseen in am-
bient assisted living [Rodomagoulakis et al. 2016], gaming applications [Liu and Kavakli
2010], and learning environments [Miki et al. 2014], among others. In this direction, how-
ever, there are numerous challenges remaining to be addressed. Automatic gesture and speech
recognition cannot yet be considered as solved problems, especially in spontaneous natural
interaction. Similarly, fusion approaches cannot yet easily overcome the difficulties emerging
in real-life scenarios, where errors, delays, and large variability are commonplace. Towards
overcoming these hurdles, the ongoing collection of annotated, representative, “in the wild”
corpora of speech and gestures, the development of standardized benchmarks, as well as the
increasingly broader availability and improvement of open-source software toolkits for recog-
nition bear the promise to further promote research in the area and lead to significant advances
in the near future.
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Focus Questions

11.1. Record a video of a face-to-face discussion you have with a friend. After you carefully
examine the recording, identify the co-speech gestures you have performed. Which are
the roles played by the gestures you have identified? Are they just communicative, or do
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they also facilitate more efficient speech production? Then, do the same for a video of
yourself while having a telephone conversation. How does your gesturing differ in the
two cases?

11.2. Have you tried to participate in a face-to-face discussion and consciously avoid gestur-
ing? How do you think your speech was or would be affected?

11.3. Using the video recordings described above, try to categorize all identified co-speech
gestures using the scheme detailed in Section 11.2.1. Are there gestures that would
possibly fit in two or more categories?

11.4. Based on your experience of human-computer interfaces, can you identify a number
of gestures and/or verbal expressions that you typically use when interacting with an
electronic device? Have you experienced multimodal interaction with a computer? Can
you think of a specific use-case in which a multimodal human-computer interface would
really be beneficial? Based on the classification scheme in Table 11.1, what type of
interface is that?

11.5. How are the temporal dynamics of gestures typically modeled in a gesture recognition
setup? How are dynamics typically treated differently by HMMs in comparison to SVMs
or ANNs?

11.6. To what extent are state-of-the-art approaches for speech and gesture recognition similar?
In which aspects do they differ?

11.7. Based on Table 11.2, and similarly to the example already provided there, can you
think of another example of multimodal human-computer interaction and identify how
information proceeds through all seven layers, i.e., from the physical one all the way up
to the ultimate goal level? Where do you think fusion would be more appropriate in your
example?

11.8. How would the proposed multimodal gesture recognition approach of Section 11.4 differ
if DNNs were employed instead? How can DNNs benefit the proposed multimodal
gesture recognition scheme?
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Video 11.1. Digital resource for Figure 11.1.
Video of the “Put that there!” prototype by the Architecture Machine Group at MIT
(slighly shortened version of the original,
available at: https://www.youtube.com/watch?v=RyBEUyEtxQo).

Video 11.2. Digital resource for Figure 11.4a.
A demonstration video of a gesture interface to control computer functionality.
Available at: https://www.youtube.com/watch?v=Wq1FM84uAck

Video 11.3. Digital resource for Figure 11.4b.
A demonstration video of gesture recognition in a virtual reality environment.
Available at: https://www.youtube.com/watch?v=ALBsLEupolY

Video 11.4. Digital resource for Figure 11.11.
A demonstration video of the authors’ multimodal gesture recognition system presented
in Section 11.4. Available at: https://www.youtube.com/watch?v=xrsRsxz3Vk4

https://www.youtube.com/watch?v=RyBEUyEtxQo
https://www.youtube.com/watch?v=Wq1FM84uAck
https://www.youtube.com/watch?v=ALBsLEupolY
https://www.youtube.com/watch?v=xrsRsxz3Vk4
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B. Rimé. 1982. The elimination of visible behaviour from social interactions: Effects on verbal,
nonverbal and interpersonal variables. European Journal of Social Psychology, 12(2): 113–129.

I. Rodomagoulakis, N. Kardaris, V. Pitsikalis, E. Mavroudi, A. Katsamanis, A. Tsiami, and P. Maragos.
2016. Multimodal human action recognition in assistive human-robot interaction. In Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
2702–2706.

M. Rose and J. Douglas. 2001. The differential facilitatory effects of gesture and visualisation processes
on object naming in aphasia. Aphasiology, 15(10-11): 977–990.

R. C. Rose. 1992. Discriminant wordspotting techniques for rejecting non-vocabulary utterances in
unconstrained speech. In Proceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), volume 2, pp. 105–108.

R. C. Rose and D. B. Paul. 1990. A hidden Markov model based keyword recognition system.
In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), volume 1, pp. 129–132.

G. Saon, T. Sercu, S. J. Rennie, and H. J. Kuo. 2016. The IBM 2016 English conversational telephone
speech recognition system. Computing Research Repository, arXiv/1604.08242v2.

R. Schwartz and S. Austin. 1991. A comparison of several approximate algorithms for finding multiple
(N-best) sentence hypotheses. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), volume 1, pp. 701–704.



BIBLIOGRAPHY 35

A. Shah. 2012. Use voice, gestures to control TV. PCWorld Magazine. http://www.pcworld.com/article/
253223/use voice gestures to control tv.html.

J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, M. Cook, and R. Moore. 2013.
Real-time human pose recognition in parts from single depth images. Communications of the ACM,
56(1): 116–124.

M. A. Singer and S. Goldin-Meadow. 2005. Children learn when their teacher’s gestures and speech
differ. Psychological Science, 16(2): 85–89.

G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler. 2010. Convolutional learning of spatio-temporal
features. In K. Daniilidis, P. Maragos, and N. Paragios, eds., Computer Vision – ECCV 2010 (Part
VI), volume LNCS 6316, pp. 140–153. Springer-Verlag, Berlin, Germany.

L. A. Thompson and D. W. Massaro. 1986. Evaluation and integration of speech and pointing gestures
during referential understanding. Journal of Experimental Child Psychology, 42(1): 144–168.

M. Turk. 2014. Multimodal interaction: A review. Pattern Recognition Letters, 36: 189–195.

A. Vedaldi and B. Fulkerson, 2008. VLFeat: An open and portable library of computer vision algorithms.
http://www.vlfeat.org/. (last accessed January 6, 2017).

C. Vogler and D. Metaxas. 2001. A framework for recognizing the simultaneous aspects of American
sign language. Computer Vision and Image Understanding, 81(3): 358–384.

P. Wagner, Z. Malisz, and S. Kopp. 2014. Gesture and speech in interaction: An overview. Speech
Communication, 57: 209–232.

S. B. Wang, A. Quattoni, L.-P. Morency, D. Demirdjian, and T. Darrell. 2006. Hidden conditional
random fields for gesture recognition. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), volume 2, pp. 1521–1527.

G. Willems, T. Tuytelaars, and L. Van Gool. 2008. An efficient dense and scale-invariant spatio-temporal
interest point detector. In D. Forsyth, P. Torr, and A. Zisserman, eds., Computer Vision – ECCV 2008
(Part II), volume LNCS 5303, pp. 650–663. Springer-Verlag, Berlin, Germany.

J. G. Wilpon, L. R. Rabiner, C.-H. Lee, and E. R. Goldman. 1990. Automatic recognition of keywords
in unconstrained speech using hidden Markov models. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 38(11): 1870–1878.

A. D. Wilson and A. F. Bobick. 1999. Parametric hidden Markov models for gesture recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 21(9): 884–900.

D. Wu, L. Pigou, P.-J. Kindermans, N. Le, L. Shao, J. Dambre, and J.-M. Odobez. 2016. Deep dynamic
neural networks for multimodal gesture segmentation and recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 38(8): 1583–1597.

J. Wu and J. Cheng. 2014. Bayesian co-boosting for multi-modal gesture recognition. Journal of
Machine Learning Research, 15: 3013–3036.

J. Wu, J. Cheng, C. Zhao, and H. Lu. 2013. Fusing multi-modal features for gesture recognition. In
Proceedings of the ACM International Conference on Multimodal Interaction (ICMI), pp. 453–460.

L. Wu, S. L. Oviatt, and P. R. Cohen. 1999. Multimodal integration-a statistical view. IEEE Transactions
on Multimedia, 1(4): 334–341.

W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, and G. Zweig. 2017. The
Microsoft 2016 conversational speech recognition system. In Proceedings of the IEEE International

http://www.pcworld.com/article/253223/use_voice_gestures_to_control_tv.html
http://www.pcworld.com/article/253223/use_voice_gestures_to_control_tv.html
http://www.vlfeat.org/


36 BIBLIOGRAPHY

Conference on Acoustics, Speech and Signal Processing (ICASSP).

A. Yao, J. Gall, G. Fanelli, and L. Van Gool. 2011. Does human action recognition benefit from pose
estimation? In Proceedings of the British Machine Vision Conference (BMVC), pp. 67.1–67.11.

S. Young, G. Evermann, D. Kershaw, G. Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev, and
P. Woodland. 2002. The HTK Book. Cambridge University Engineering Department, Cambridge,
England.

D. Yu and L. Deng. 2011. Deep learning and its applications to signal and information processing
[exploratory DSP]. IEEE Signal Processing Magazine, 28(1): 145–154.

M. Zammit and G. Schafer. 2011. Maternal label and gesture use affects acquisition of specific object
names. Journal of Child Language, 38(1): 201–221.

T. Zhang and B. Yu. 2005. Boosting with early stopping: Convergence and consistency. The Annals of
Statistics, 33(4): 1538–1579.

P. Zukow-Goldring. 1996. Sensitive caregiving fosters the comprehension of speech: When gestures
speak louder than words. Early Development and Parenting, 5(4): 195–211.


	Multimodal Gesture Recognition
	Introduction
	Multimodal Communication and Gestures
	Gesture Types and Phases
	Forms of Speech-Gesture Interplay
	Gestures in Human-Computer Interaction

	Recognizing Speech and Gestures
	Gesture Recognition
	Speech Recognition
	Multimodal Fusion

	A System in Detail
	Single-Stream Feature Extraction and Modeling
	Multimodal Fusion
	Experimental Results

	Conclusions and Outlook




