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Abstract In this work, a theory is developed for unifying large classes of nonlinear
discrete-time dynamical systems obeying a superposition of a weighted maximum or
minimum type. The state vectors and input–output signals evolve on nonlinear spaces
which we call complete weighted lattices and include as special cases the nonlinear
vector spaces of minimax algebra. Their algebraic structure has a polygonal geometry.
Some of the special cases unified include max-plus, max-product, and probabilistic
dynamical systems. We study problems of representation in state and input–output
spaces using lattice monotone operators, state and output responses using nonlinear
convolutions, solving nonlinear matrix equations using lattice adjunctions, stability,
and controllability. We outline applications in state-space modeling of nonlinear fil-
tering; dynamic programming (Viterbi algorithm) and shortest paths (distance maps);
fuzzy Markov chains; and tracking audiovisual salient events in multimodal informa-
tion streams using generalized hidden Markov models with control inputs.
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1 Introduction

Linear dynamical systems [12,14,36] can be described in discrete-time by the state-
space equations

x(t) = Ax(t − 1) + Bu(t)

y(t) = Cx(t) + Du(t) (1)

where t ∈ Z shall denote a discrete-time index, x(t) is an evolving state vector, u(t)
is the input signal (scalar or vector), and y(t) is an output signal (scalar or vector).
A, B,C, D are appropriately sized matrices, and all the matrix–vector products are
defined in the standard linear way. Linear systems have proven useful for a plethora of
problems in communications, control, and signal processing. The strongest motivation
for using linear systems as models has been the great familiarity of all sciences with
linear mathematics, e.g., linear algebra, linear vector spaces, and linear differential
equations, as well as the availability of computational tools and algorithms to solve
problems with linear systems.

However, in the 1980s and 1990s, several broad classes of nonlinear systems were
developed whose state-space dynamics can be described by equations whose structure
resembles (1) but has nonlinear operations. These were motivated by a broad spectrum
of applications, such as scheduling and synchronization, operations research, dynamic
programming, shortest paths on graphs, image processing, and non-Gaussian estima-
tion, for which nonlinear systems were more appropriate. These nonlinearities involve
two major elements: (1) a nonlinear superposition of vectors/matrices via pointwise
maximum (∨) or minimum (∧) which plays the role of a generalized ‘addition,’ and
(2) a binary operation � among scalars that plays the role of a generalized ‘multipli-
cation.’ Thus, with the above-generalized ‘addition’ and ‘multiplication,’ the set of
scalars has a conceptually similar arithmetic structure as the field of reals with stan-
dard addition and multiplication underlying the linear vector spaces over which linear
systems act. This alternative arithmetic structure (with operations ∨, �) is minimally
an idempotent semiring. Examples of ‘multiplication’ include the sum and the prod-
uct, but � may also be only a semigroup operation. The resulting algebras include
(1) the max-plus algebra (R ∪ {−∞}, max,+) used in scheduling and operations
research [21], discrete event systems (DES) [2,16,18,33], automated manufactur-
ing [18,23,37], synchronization and transportation networks [2,15,30,62], max-plus
control [15,18,27,30,62], optimization [2,3,15,19,28,51], geometry [19,26], mor-
phological image analysis [31,48,59,60], and neural nets with max-plus or max–min
combinations of inputs [17,56,57,66]; (2) the min-plus algebra or else known as tropi-
cal semiring (R∪{+∞}, min,+) used in shortest paths on networks [21] and in speech
recognition and natural language processing [34,52]; this is a logarithmic version of
(3) the underlying max-times semiring ([0,+∞),∨,×) used for inference with belief
propagation in graphical models [7,54]; (4) the fuzzy logic or probability semiring
([0, 1],∨, T ) with statistical T -norms used in probabilistic automata and fuzzy neural
nets [35,39], fuzzy image processing and dynamical systems [8,45,49], and fuzzy
Markov chains [1]. Max-plus algebra is also a major part of idempotent mathematics
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[41,50], a vibrant area with contributions to mathematical physics and optimization.
Further, in multimodal processing for cognition modeling, several psychophysical and
computational experiments indicate that the superposition of sensory signals or cog-
nitive states seems to be better modeled using max or min rules, possibly weighted.
Such an example is the work [24] on attention-based multimodal video summariza-
tion where a (possibly weighted) min/max fusion of features from the audio and visual
signal channels and of salient events from various modalities seems to outperform lin-
ear fusion schemes. Tracking of these salient events was modeled in [47] using a
max-product dynamical system. Finally, the problem of bridging the semantic gap in
multimedia requires integration of continuous sensory modalities (like audio and/or
vision) with discrete language symbols and semantics extracted from text. Similarly, in
control and robotics there are efforts to develop hybrid systems that can model interac-
tions between heterogeneous information streams like continuous inputs and symbolic
strings, e.g., motion control with language-driven variables [13]. In both of these appli-
cations, we need models where the computations among modalities/states can handle
both real numbers and Boolean-like variables; this is possible using max/min rules.

Motivated by the above applications, in this work we develop a theory and some
tools to unify the representation and analysis of nonlinear systems whose dynamics
evolve based on the following max-� model

x(t) = A(t) � x(t − 1) ∨ B(t) � u(t)

y(t) = C(t) � x(t) ∨ D(t) � u(t) (2)

where x = [x1, x2, . . . , xn]T ∈ Kn is a n-dimensional state vector with elements
from the scalars’ set K, which will generally be a subset of the extended reals R =
R ∪ {−∞,∞}. The linear matrix product in (1), which is based on a sum of products,
is replaced in (2) by a nonlinear matrix product ( � ) based on a max of � operations,
where � shall denote our general scalar operation discussed in Sect. 3.1. The max-�
‘multiplication’ of a matrix A = [ai j ] ∈ Km×n with a vector x = [xi ] ∈ Kn yields a
vector b = [bi ] ∈ Km defined by:

A � x = b, bi =
n∨

j=1

ai j � x j (3)

Further, the pointwise ‘addition’ of vectors (and possibly matrices) of same size in (1)
is replaced in (2) by their pointwise ∨:

x ∨ y = [x1 ∨ y1, . . . , xn ∨ yn]T

A ∨ B = [ai j ∨ bi j ] (4)

A max-plus 2 × 2 example of (3) is

[
4 − 1
2 −∞

]
�

[
x
y

]
=
[

3
1

]
,

max(x + 4, y − 1) = 3
x + 2 = 1

(5)

with solution x = −1 and y ≤ 4.
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By replacing maximum (∨) with minimum (∧) and the � operation with a dual
operation �′ we obtain a dual model that describes the state-space dynamics of min-
�′ systems:

x(t) = A(t) � ′ x(t − 1) ∧ B(t) � ′ u(t)

y(t) = C(t) � ′ x(t) ∧ D(t) � ′ u(t) (6)

where the min-�′ matrix–vector ‘multiplication’ is defined by:

A � ′ x = b, bi =
n∧

j=1

ai j �′ x j (7)

The state equations (2) and (6) have time-varying coefficients. For constant matrices
A, B,C, D, we obtain the constant-coefficient case.

By specifying the scalar ‘multiplication’ � and its dual �′, we obtain a large variety
of classes of nonlinear dynamical systems that are described by the above unified
algebraic models of the max or min type. The most well-known special case is � = +,
the principal interpretation of minimax algebra, which has been extensively studied
in scheduling, DES, max-plus control and optimization [2,15,18,19,21,27,30,41]. In
typical applications of DES in automated manufacturing, the states xi (t) represent
starting times of the t th cycle of machine i , the input u represents availability times
of parts, y represents completion times, and the elements of A, B,C, D represent
activity durations. The homogeneous state dynamics of (2) are modeled by max-plus
recursive equations:

xi (t) = max
1≤ j≤n

ai j + x j (t − 1), i = 1, . . . , n (8)

Another special case is � = ×, which is, however, less frequently related to minimax
algebra and rarely viewed as a dynamical system. This is used in communications
(e.g., Viterbi algorithm), in probabilistic networks [7,54] as the max-product belief
propagation, and in speech recognition and language processing [34,52]. But both
its max-product algebra and its general dynamics with control inputs have not been
studied. Other cases are much less studied or relatively unknown.

Our theoretical analysis is based on a relatively new type of nonlinear space we
have developed in recent work [46] and further refine herein, which we call complete
weighted lattice (CWL). This combines two vector or signal generalized ‘additions’ of
the supremum (∨) or the infimum (∧) type and two generalized scalar multiplications,
� and its dual �′, which distribute over ∨ and ∧, respectively. The axioms of CWLs
bear a remarkable similarity with those of linear spaces, the major difference being the
lack of inverses for the sup/inf operations and sometimes for the � operation too. The
present work focuses on analyzing max/min dynamical systems using CWLs, whose
advantages over the minimax algebra [21], which has been so far the main algebraic
framework for DES and max-plus control, include the following:

1. We believe that the theory of lattices and lattice-ordered monoids [6] offers a
conceptually elegant and compact way to express the combined rich algebraic
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structure instead of viewing it as a pair of two idempotent ordered semirings of
minimax algebra. Although in several previous works the (max,+) and (min,+)

algebras have been used at the same time, expressing and exploiting the coupling
between the two becomes simpler by using the built-in duality of lattices which is
at the core of their theoretical foundation.

2. Lattice monotone operators of the dilation (δ) or erosion (ε) type can be defined,
as done in morphological image analysis [31,45,59], which play the role of ‘lin-
ear operators’ on CWLs and can represent systems obeying a max-� or a min-�′
superposition, respectively. Such operators can represent both state vector trans-
formations by matrix–vector generalized products of the max-� or min-�′ type, as
in (3) and (7), as well as input–output signal mappings in the form of nonlinear
convolutions of two signals f and g: sup-� convolution

( f ©� g)(t) �
∨

k

f (k) � g(t − k), (9)

or inf-�′ convolution

( f ©� ′g)(t) �
∧

k

f (k) �′ g(t − k) (10)

The only well-known special case � = + is called supremal or infimal convolution
in convex analysis and optimization [4,43,58] as well as weighted (Minkowski)
signal dilation or erosion in morphological image analysis and vision [31,48,59,
60]. Other cases are much less studied or relatively unknown.

3. Modeling the information flow in these dynamical systems via the above lattice
operators is greatly enabled by the concept of adjunction, which is a pair (ε, δ) of
erosion and dilation operators forming a type of duality expressed by the following

δ(x) ≤ y ⇐⇒ x ≤ ε( y) (11)

for any vectors or signals x, y.

From a geometrical viewpoint, we may call the CWLs polygonal spaces because of
the geometric shape of the corner-forming piecewise-straight lines y = max(a+ x, b)
or y = max(ax, b) and their duals (by replacing max with min) which express the
basic algebraic superpositions in CWLs, in analogy to the geometry of the straight
line y = ax + b which expresses in a simplified way the basic superposition in linear
spaces. See Fig. 1 for an example.

Contributions of our work:

(i) Unify all types of max-� and min-�′ systems under a common theoretical
framework of complete weighted lattices (CWLs). Further, while previous work
focused mainly on the (max,+) or (min,+) formalism, we join both using CWLs
and generalize them by replacing + with any operation � that distributes over
∨ and a dual operation �′ that distributes over ∧. The corresponding general-
ized scalar arithmetic is governed by a rich algebraic structure, called clodum,
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Fig. 1 Geometry of basic
superposition via a straight line
(dashed) in linear spaces versus
the polygonal line (solid line) in
complete weighted lattices—the
polygonal spaces. The polygonal
line is y = min[max(x −
0.2, 0.3), max(x/2, 0.7)]

0 1 2
0

1

Y

X

which we developed in previous work [45,46] and further refine herein. This
clodum serves as the ‘field of scalars’ for the CWLs and binds together a pair
of dual ‘additions’ with a pair of dual ‘multiplications’; as opposed to max-plus,
in some cases the ‘multiplications’ do not have inverses. Two examples differ-
ent from max-plus, which we analyze in some detail with applications, are the
max-product and the max–min cases.

(ii) Analyze the nonlinear system dynamics both in state space using a CWL matrix–
vector algebra and in the input–output signal space using sup/inf-� convolutions,
represented via lattice monotone operators in adjunction pairs. For the above, we
have used the common formalism of CWLs to model both finite- and infinite-
dimensional spaces.

(iii) Enable and simplify the analysis and proofs of various results in system rep-
resentation using lattice adjunctions. Further, use the latter to generate lattice
projections that provide optimal solutions for max-� equations A � x = b. Since
the constituent operators of the lattice adjunctions are dilations and erosions
which have a geometrical interpretation and have found numerous applications
in image analysis, the above perspective to nonlinear system analysis also offers
some geometrical insights.

(iv) Study causality, stability, and controllability of max-� and min-�′ systems and
link stability with spectral analysis in max-� algebra and controllability with
lattice projections.

(v) Advance the study of special cases employed in many application areas: (a) Non-
linear systems represented by max/min-sum (� = +) difference equations, as
applied to geometric filtering and shortest path computation. State equations and
stability analysis of recursive nonlinear filters. (b) Max-product systems (� = ×)
that extend the Viterbi algorithm of hidden Markov models to cases with con-
trol inputs and can model cognitive processes related to audiovisual attention.
(c) Probabilistic automata and fuzzy Markov chains governed by max/min rules
and with arithmetic based on triangular norms.

Notation: We think that the currently used notation in max-plus algebra of ⊕ and
⊗ to denote the maximum ∨ (‘addition’) and the � (‘multiplication’), respectively,
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Table 1 Notation for the main
algebraic operations

Operation Meaning

∨
Maximum/supremum: applies for scalars,

vectors and matrices
∧

Minimum/infimum: applies for scalars,
vectors and matrices

� ( � ′ ) General max-� (min-�′) matrix
multiplication

� (�′) Max-sum (min-sum) matrix multiplication

� (�′) Max-product (min-product) matrix
multiplication

©� (©� ′) General max-� (min-�′) signal convolution

⊕ (⊕′) Max-sum (min-sum) signal convolution

⊗ (⊗′) Max-product (min-product) signal
convolution

obscures the lattice operations; in contrast, our proposed notation is simpler and more
realistic since it uses the well-established symbols ∨,∧ for sup/inf operations and does
not bias the arbitrary scalar binary operation � with the symbol ⊗. Further, the symbol
⊕ has been extensively used in signal and image processing for the max-plus signal
convolution; herein, we continue this notation. Table 1 summarizes the main symbols
of our notation. We use roman letters for functions, signals and their arguments and
Greek letters for operators and also boldface roman letters for vectors (lower case)
and matrices (capital). If M = [mi j ] is a matrix, its (i, j)th element is also denoted
as {M}i j = mi j . Similarly, x = [xi ] denotes a column vector, whose i th element is
denoted as {x}i or simply xi .

2 Lattices and monotone operators

Most of the background material in this section follows [6,31,32,46,59].

2.1 Lattices

A partially ordered set, briefly poset (P,≤), is a set P with a binary relation ≤ that
is a partial ordering, i.e., is reflexive, antisymmetric and transitive. If, in addition, for
any two elements X,Y ∈ P we have either X ≤ Y or Y ≤ X , then P is called a chain.
To every partial ordering ≤, there corresponds a dual partial ordering ≤′ defined by
‘X ≤′ Y iff X ≥ Y .’ Let S be a subset of (P,≤); an upper bound of S is an element
B ∈ P such that X ≤ B for all X ∈ S. The least upper bound of S is called its
supremum and denoted by supS or

∨S. By duality, we define the greatest lower
bound of S, called its infimum and denoted by inf S or

∧S. If the supremum (resp.
infimum) of S belongs to S, then it is called the greatest element or maximum (resp.
least element or minimum) of S. An element M of S is called maximal (resp. minimal)
if there is no other element in S that is greater (resp. smaller) than M .
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A lattice is a poset (L,≤) any two of whose elements have a supremum, denoted
by X ∨ Y , and an infimum, denoted by X ∧ Y . We often denote the lattice structure
by (L,∨,∧). A lattice L is complete if each of its subsets (finite or infinite) has a
supremum and an infimum inL. Any nonempty complete lattice is universally bounded
because it contains its supremum � = ∨L and infimum ⊥ = ∧L which are its
greatest (top) and least (bottom) elements, respectively. In any lattice L, by replacing
the partial ordering with its dual and by interchanging the roles of the supremum and
infimum we obtain a dual lattice L′. Duality principle: to every definition, property
and statement that applies to L there corresponds a dual one that applies to L′ by
interchanging ≤ with ≤′ and ∨ with ∧. A bijection between two lattices L and M is
called an isomorphism (resp. dual isomorphism) if it preserves (resp. reverses) suprema
and infima. If L = M, a (dual-) isomorphism on L is called (dual-)automorphism.

The lattice operations satisfy many properties, as summarized in Table 3. Con-
versely, a set L equipped with two binary operations ∨ and ∧ that satisfy properties
(L1, L1′)–(L5, L5′) is a lattice whose supremum is ∨, the infimum is ∧, and partial
ordering ≤ is given by (L6). A lattice (L,∨,∧) contains two weaker substructures: a
sup-semilattice (L,∨) that satisfies properties (L1–L4) and an inf-semilattice (L,∧)

that satisfies properties (L1′–L4′).
The additional properties (L7, L7′) and (L8, L8′) in Table 3 hold only if the lattice

contains a least and a greatest element, respectively. A lattice L is called distributive
if it satisfies properties (L9, L9′); if these also hold over infinite set collections, then
the lattice is called infinitely distributive. The rest of the properties of Table 3, labeled
as ‘WL#,’ refer to a richer algebra defined as ‘weighted lattices’ in Sect. 3.2.

Examples 1 (a) Any chain is an infinitely distributive lattice. Thus, the chain (R,≤)

of real numbers equipped with the natural order ≤ is a lattice, but not complete.
The set of extended real numbers R = R ∪ {−∞,+∞} is a complete lattice.

(b) The power set P(E) = {X : X ⊆ E} of an arbitrary set E equipped with the
partial order of set inclusion is an infinitely distributive lattice under the supremum
and infimum induced by set inclusion which are the set union and intersection,
respectively.

(c) In a lattice L with universal bounds ⊥ and �, an element X ∈ L is said to have
a complement Xc ∈ L if X ∨ Xc = � and X ∧ Xc = ⊥. If all the elements of
L have complements, then L is called complemented. Any complemented and
distributive lattice B is called a Boolean lattice.

(d) LetLE = Fun(E,L) denote the set of all functions f : E → L. If ≤ is the partial
ordering of L, we can equip the function space LE with the pointwise partial
ordering f ≤ g, which means f (x) ≤ g(x) ∀x ∈ E , the pointwise supremum
(
∨

i fi )(x) = ∨
i fi (x), and pointwise infimum (

∧
i fi )(x) = ∧

i fi (x). Then,
(LE ,∨,∧) becomes a function lattice, which retains possible properties of L of
being complete, or (infinitely) distributive, or Boolean.

2.2 Operators on lattices

Let O(L) be the set of all operators on a complete lattice L, i.e., mappings from L to
itself. Given two such operators ψ and φ, we can define a partial ordering between them
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(φ ≤ ψ), their supremum (ψ ∨ φ) and infimum (ψ ∧ φ) in a pointwise way, as done
in Example 1(d). This makes O(L) a complete function lattice which inherits many
of the possible properties of L. Further, we define the composition of two operators
as an operator product: ψφ(X) � ψ(φ(X)); special cases are the operator powers
ψn = ψψn−1. Some useful types and properties of lattice operators ψ include the
following: (i) identity: id(X) = X ∀X ∈ L. (ii) extensive: ψ ≥ id. (iii) antiextensive:
ψ ≤ id. (iv) idempotent: ψ2 = ψ . (v) involution: ψ2 = id.

2.2.1 Monotone operators

Of great interest are the monotone operators, whose collections form sublattices of
O(L). They come in three basic kinds according to which of the following lattice
structures they preserve (or map to its dual): (i) partial ordering, (ii) supremum,
(iii) infimum.

A lattice operator ψ is called increasing or isotone if it is order-preserving, i.e.,
X ≤ Y �⇒ ψ(X) ≤ ψ(Y ). A lattice operator ψ is called decreasing or antitone if it
is order-inverting, i.e., X ≤ Y �⇒ ψ(X) ≥ ψ(Y ).

Examples of increasing operators are the lattice homomorphisms which preserve
suprema and infima over finite collections. If a lattice homomorphism is also a bijec-
tion, then it becomes an automorphism. A bijection φ is an automorphism if both φ

and its inverse φ−1 are increasing.
Four types of increasing operators, fundamental for unifying systems on lattices,

are the following:

δ is dilation iff δ(
∨

i∈J Xi ) =∨i∈J δ(Xi )

ε is erosion iff ε(
∧

i∈J Xi ) =∧i∈J ε(Xi )

α is opening iff increasing, idempotent, antiextensive
β is closing iff increasing, idempotent, extensive

Dilations and erosions require arbitrary (possibly infinite) collections {Xi : i ∈ J }
of lattice elements; hence, they need complete lattices. The special case of an empty
collection equips each dilation and erosion with the following necessary properties:

δ(⊥) = ⊥, ε(�) = � (12)

The four above types of lattice operators were originally defined in [31,59] as gen-
eralizations of the corresponding Minkowski-type morphological operators and have
been applied in numerous image processing tasks.

Examples of decreasing operators are the dual homomorphisms, which interchange
suprema with infima. A lattice dual-automorphism is a bijection θ that interchanges
suprema with infima, or equivalently iff it is a bijection and both θ and its inverse
θ−1 are decreasing. A negation ν is a dual-automorphism that is also involutive; we
may write X¬ = ν(X) for the negative of a lattice element. Given an operator ψ in
a lattice equipped with a negation, its corresponding negative (a.k.a. dual) operator is
defined as ψ¬(X) � [ψ(X¬)]¬. For example, the most well-known negation on the
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set lattice P(E) is the complementation ν(X) = Xc = E\X , whereas on the function
lattice Fun(E, R) the most well-known negation is ν( f ) = − f .

The above definitions allow broad classes of operators on vector or signal spaces to
be grouped as parallel or sequential combinations of lattice monotone operators and
their common properties to be studied under the unifying lattice framework. In this
work, we shall find them very useful for representing the state and output responses or
for approximating solutions of systems obeying a supremal or infimal superposition.

2.2.2 Order continuity

Consider an arbitrary sequence (Xn) of elements in a complete latticeL. The following
two limits can be defined using only sup/inf combinations:

lim sup Xn �
∧

n≥1

∨

k≥n

Xk lim inf Xn �
∨

n≥1

∧

k≥n

Xk (13)

In general, lim inf Xn ≤ lim sup Xn . A sequence (Xn) is defined to order converge to

a lattice element X , written as Xn
ord→ X , if lim inf Xn = lim sup Xn = X .

An operator ψ on L is called ↓-continuous if (Xn)
ord→ X in L implies that

lim sup ψ(Xn) ≤ ψ(X). Dually, ψ is called ↑-continuous if (Xn)
ord→ X implies that

lim inf ψ(Xn) ≥ ψ(X). Finally, ψ is called order continuous if it is both ↓-continuous
and↑-continuous. On a chain, e.g., (R,≤), the concepts of order convergence and order
continuity coincide with their topological counterparts.

There is a stronger form of order convergence applicable to monotone sequences.
We write Xn ↓ X to mean a monotonic convergence where (Xn) is a decreasing
sequence (Xn+1 ≤ Xn) and X =∧n Xn . Dually, we write Xn ↑ X to mean that (Xn)

is an increasing sequence (Xn+1 ≥ Xn) and X =∨n Xn . This monotonic convergence
allows to easily examine the order continuity of increasing operators. Specifically, an
increasing operator ψ on a complete lattice L is ↓-continuous iff Xn ↓ X implies
that ψ(Xn) ↓ ψ(X) for any sequence (Xn). Dually, ψ is ↑-continuous iff Xn ↑ X
implies that ψ(Xn) ↑ ψ(X). This result implies that, since dilations (resp. erosions)
distribute over arbitrary suprema (resp. infima), dilations are ↑-continuous, whereas
erosions are ↓-continuous.

2.2.3 Residuation and adjunctions

An increasing operator ψ on a complete lattice L is called residuated [9,10] if there
exists an increasing operator ψ� such that

ψψ� ≤ id ≤ ψ�ψ (14)

ψ� is called the residual of ψ and is the closest to being an inverse of ψ . Specifically,
the residuation pair (ψ,ψ�) can solve inverse problems of the type ψ(X) = Y either
exactly since X̂ = ψ�(Y ) is the greatest solution of ψ(X) = Y if a solution exists,
or approximately since X̂ is the greatest subsolution in the sense that X̂ = ∨{X :
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ψ(X) ≤ Y }. On complete lattices an increasing operator ψ is residuated (resp. a
residual ψ�) if and only if it is a dilation (resp. erosion). The residuation theory has
been used for solving inverse problems in matrix algebra [2,19,21] over the max-plus
or other idempotent semirings.

Dilations and erosions come in pairs as the following concept reveals. The pair
(δ, ε) of operators on a complete lattice L is called an adjunction1 on L if

δ(X) ≤ Y ⇐⇒ X ≤ ε(Y ) ∀X,Y ∈ L (15)

In any adjunction, (15) implies that δ is a dilation and ε is an erosion. It can be shown
that this double inequality is equivalent to the inequality (14) satisfied by a residuation
pair of increasing operators if we identify the residuated map ψ with δ and its residual
ψ� with ε. To view (δ, ε) as an adjunction instead of a residuation pair has the advantage
of the additional geometrical intuition and visualization afforded by the dilation and
erosion operators, which are well known in image analysis and can be interpreted as
augmentation and shrinkage, respectively, of input sets or of hypographs of functions.

In any adjunction (δ, ε), ε is called the adjoint erosion of δ, whereas δ is the adjoint
dilation of ε. There is a one-to-one correspondence between the two operators of an
adjunction pair, since, given a dilation δ, there is a unique erosion

ε(Y ) =
∨

{X ∈ L : δ(X) ≤ Y } (16)

such that (δ, ε) is adjunction. Conversely, given an erosion ε, there is a unique dilation

δ(X) =
∧

{Y ∈ L : ε(Y ) ≥ X} (17)

such that (δ, ε) is adjunction. Adjunctions create operator duality pairs that are different
than negation in the sense that one operator is the closest to being the inverse of the
other, either from below or above.

2.2.4 Projections on lattices

A large variety of useful lattice operators share two properties: increasing and idem-
potent. Such operators were called morphological filters in [31,59]. We shall call them
lattice projections of the order type, since they preserve the lattice ordering and are
idempotent in analogy with the linear projections that preserve the algebraic struc-
ture of linear spaces and are idempotent. Two well-studied special cases of lattice
projections are the openings and closings, each of which has an additional property.
Specifically, openings are lattice projections that are antiextensive, whereas closings
are extensive projections. Combinations of such generalized filters have proven to
be very useful for signal denoising, image enhancement, simplification, segmenta-
tion, and object detection. From the composition of the erosion and dilation of any

1 As explained in [31,32], the adjunction is related to a concept in poset and lattice theory called ‘Galois
connection.’ In [31,59] an adjunction pair is denoted as (ε, δ), but in this paper we prefer to reverse the
positions of its two operators, so that it agrees with the structure of a residuation pair (ψ, ψ�).
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adjunction (δ, ε), we can generate a projection α = δε that is also an opening since
α(X) ≤ X and α2 = α. To prove this note that, by (15),

δε ≤ id ≤ εδ (18)

which implies that δεδε = δε. Dually, any adjunction can also generate a closing
projection β = εδ, which always satisfies β(X) ≥ X and β2 = β. There are also
other types of lattice projections that are studied in [19].

2.3 Lattice-ordered monoids and clodum

A lattice (M,∨,∧) is often endowed with a third binary operation, called symbolically
the ‘multiplication’ �, under which (M, �) is a group or monoid or just semigroup
[6].

Consider now an algebra (M,∨,∧, �, �′) with four binary operations, which we
call a lattice-ordered double monoid, where (M,∨,∧) is a lattice, (M, �) is a monoid
whose ‘multiplication’ � distributes over ∨, and (M, �′) is a monoid whose ‘multi-
plication’ �′ distributes over ∧. These distributivities imply that both � and �′ are
increasing. To the above definitions, we add the word complete if M is a complete
lattice and the distributivities involved are infinite. We call the resulting algebra a
complete lattice-ordered double monoid, in short clodum [45,46].

Previous works on minimax or max-plus algebra and their applications have used
alternative names2 for algebraic structures similar to the above definitions which
emphasize semigroups and semirings instead of lattices. If � = �′, we have a self-
dual ‘multiplication.’ This always happens if (M, �) is a group, i.e., a monoid where
each element has an inverse; in this case we obtain a lattice-ordered group, and the
group ‘multiplication’ X �→ A � X is a lattice automorphism.

We give a precise definition of a general clodum and some examples since this will
be one of the fundamental algebraic structures to build the nonlinear spaces in our
work. An algebraic structure (K,∨,∧, �, �′) is called a clodum if:

(C1) (K,∨,∧) is a complete distributive lattice.
(C2) (K, �) is a monoid whose operation � is a dilation.
(C3) (K, �′) is a monoid whose operation �′ is an erosion.

Remarks

(i) As a lattice, K is not necessarily infinitely distributive, although in this paper all
our examples will be such.

2 Minimax algebra [21] has been based on bands (idempotent semigroups) and belts (idempotent presemir-
ings), whereas max-plus algebra and its application to DES [2,15,20,28] is based on dioids (canonically
ordered semirings). In [21], a semilattice is called a commutative band and a lattice is called band with
duality. Further, a belt is a semilattice-ordered semigroup, and a belt with duality [21] is a pair of two
idempotent predioids [28] whose ‘additions’ are dual and form a lattice. Adding to a belt (B, ∨, �) iden-
tity elements for � and ∨, the latter of which is also an absorbing null for �, creates an idempotent dioid
[2,20,28]. More general (including nonidempotent) dioids are studied in [28]. Finally, belts that are groups
under the ‘multiplication’ � and as lattices have global bounds are called blogs (bounded lattice-ordered
groups) in [21].
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(ii) The clodum ‘multiplications’ � and �′ do not have to be commutative.
(iii) The least (greatest) element ⊥ (�) of K is both the identity element for ∨ (∧)

and an absorbing null for � (�′) due to (12).

If � = �′ over G = K\{⊥,�} where (G, �) is a group and (G,∨,∧) a conditionally
complete lattice, then the clodum K becomes a richer structure which we call a com-
plete lattice-ordered group, in short clog. By extending properties of lattice-ordered
groups [6] to clogs, we can show that in any clog the distributivity between ∨ and ∧
is of the infinite type and the ‘multiplications’ � and �′ are commutative. Thus, a clog
has a richer structure than a blog (bounded lattice-ordered group) as defined in [21],
because a clog is a complete and commutative blog.

Examples 2 (a) Our scalar arithmetic in this paper will use a numeric commutative
clodum. Two such examples follow:
(a1) Max-plus clog3: (R,∨,∧,+,+′), where ∨/∧ denote the standard sup/inf

on R, + is the standard addition on the set R of extended reals playing the
role of a ‘multiplication’ � with +′ being the ‘dual multiplication’ �′; the
operations + and +′ are identical for finite reals, but a + (−∞) = −∞ and
a +′ (+∞) = +∞ for all a ∈ R.

(a2) Max–min clodum: ([0, 1],∨,∧, min, max), where � = min and �′ = max.
(b) Matrix max-sum clodum: (R

n×n
,∨,∧,�,�′) where R

n×n
is the set of n × n

matrices with entries from R, ∨ and ∧ denote here elementwise matrix supremum
and infimum, and �,�′ denote max-sum and min-sum matrix ‘multiplications’:

C = A � B = [ci j ], ci j =
n∨

k=1

aik + bkj (19)

D = A �′ B = [di j ], di j =
n∧

k=1

aik +′ bkj (20)

This is a clodum with noncommutative ‘multiplications.’

3 Representations of vector and signal operations on weighted lattices

3.1 Algebraic structures on the scalars

We assume that all elements of the vectors, matrices, or signals involved in the descrip-
tion of the systems examined herein take their values from a set K of scalars, which in
general will be a subset of R = R∪{−∞,∞} with the natural ordering ≤ of extended
real numbers. We assume that the chain (K,≤) is universally bounded, i.e., contains
its least ⊥ �

∧K and greatest element � �
∨K. For the weighted lattice model,

we need to equip K with four binary operations:

3 In every clodum and clog, we have a pair of dual ‘additions’ and a pair of dual ‘multiplications.’ However,
for brevity, we assign them shorter names that contain only one ‘addition’ (max) and one ‘multiplication,’
e.g., ‘max-plus clog’.
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(A). The standard maximum or supremum ∨ on R, which plays the role of a gen-
eralized ‘addition.’

(A′). The standard minimum or infimum ∧ on R, which plays the role of a gener-
alized ‘dual addition.’

(M). A commutative generalized ‘multiplication’ � under which: (i) K is a monoid
with (‘unit’) identity element e and (‘zero’) null element ⊥, i.e.,

a � e = a, a � ⊥ = ⊥, ∀a ∈ K, (21)

and (ii) � is a scalar dilation, i.e., distributes over any supremum:

a �

(
∨

i

xi

)
=
∨

i

a � xi (22)

(M′). A commutative ‘dual4 multiplication’ �′ under which: (i) K is a monoid with
identity e′ and null element �, i.e.,

a �′ e′ = a, a �′ � = �, ∀a ∈ K, (23)

and (ii) �′ is a scalar erosion, i.e., distributes over any infimum:

a �′
(
∧

i

xi

)
=
∧

i

a �′ xi (24)

Under the above assumptions (K,∨,∧, �, �′) becomes a scalar clodum. Note that,
in addition to the minimal requirements of a general clodum in Sect. 2.3, we assume
commutative operations �, �′. Further, the rich structure of R endows the set K to be
infinitely distributive as a lattice. This will be the most general and minimally required
algebraic structure we consider for the set of scalars. We avoid degenerate cases by
assuming that ∨ �= � and ∧ �= �′. However, � may be the same as �′, in which case
we have a self-dual ‘multiplication.’

A clodum K is called self-conjugate if it has a lattice negation (i.e., involutive
dual-automorphism) that maps each element a to its conjugate a∗ such that

(
∨

i

ai

)∗
=
∧

i

ai
∗,

(
∧

i

bi

)∗
=
∨

i

bi
∗, (a � b)∗ = a∗ �′ b∗ (25)

We assume that the suprema and infima in (25) may be over any (possibly infinite)
collections.

The set of scalars can be partitioned as K = G ∪ {⊥,�}; the members of G are
called the finite scalars, borrowing terminology from the case when K = R. This is

4 It is simply a matter a convention that we selected to call ∧ and �′ as ‘dual addition and multiplication’
(instead of ∨ and �).
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Table 2 Scalar arithmetic in a
CLOG

a ∈ K b ∈ K ∨ ∧ � �′

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ y ∈ G y ⊥ ⊥ ⊥
⊥ � � ⊥ ⊥ �
x ∈ G y ∈ G x ∨ y x ∧ y x � y x �′ y
� ⊥ � ⊥ ⊥ �
� y ∈ G � y � �
� � � � � �

useful for cases where (G, �) is a commutative group. Then, for each a ∈ G there exists
its ‘multiplicative inverse’ a−1 such that a � a−1 = e. Further, the ‘multiplication’
� and its self-dual �′ (which coincide over G) can be extended over the whole K by
adding the rules in (21) and (23) involving the null elements. As defined in Sect. 2.3,
the resulting richer structure is a clog. WheneverK is a clog, it becomes self-conjugate
by setting

a∗ =

⎧
⎪⎨

⎪⎩

a−1 if ⊥ < a < �
� if a = ⊥
⊥ if a = �

(26)

Next we further elaborate on three main examples used in this paper for a scalar
clodum.

Examples 3

(a) Max-plus clog (R,∨,∧,+,+′): This is the archetypal example of a clog. The
identities are e = e′ = 0, the nulls are ⊥ = −∞ and � = +∞, and the
conjugation mapping is a∗ = −a.

(b) Max-times clog ([0,+∞],∨,∧,×,×′): The identities are e = e′ = 1, the nulls
are ⊥ = 0 and � = +∞, and the conjugation mapping is a∗ = 1/a.

(c) Max–min clodum ([0, 1],∨,∧, min, max): As ‘multiplications’ we have � =
min and �′ = max. The identities and nulls are e′ = ⊥ = 0, e = � = 1. A
possible conjugation mapping is a∗ = 1 − a. Additional cloda that are not clogs
are discussed in Sect. 9.3 using more general fuzzy intersections and unions.

Table 2 summarizes the results of all scalar binary operations in a clog. We see that
in a clog the � and �′ coincide in all cases with only one exception: the combination of
the least and greatest elements. Henceforth when a clodum K is a clog we can denote
the algebra as (K,∨,∧, �) using only one ‘multiplication’ operation and the case ⊥��
will have value ⊥ (resp. �) if it is combined with other terms via a supremum (resp.
infimum).
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3.2 Complete weighted lattices

Consider a nonempty collection W of mathematical objects, which will be our space;
examples of such objects include the vectors in R

n
or signals in Fun(E, R). Thus,

we shall symbolically refer to the space elements as ‘vectors/signals,’ although they
may be arbitrary objects. Also, consider a clodum (K,∨,∧, �, �′) of ‘scalars.’5 We
define two internal operations among vectors/signals X,Y in W: their supremum
X ∨ Y : W2 → W and infimum X ∧ Y : W2 → W , which we denote using
the same supremum symbol (∨) and infimum symbol (∧) as in the clodum, hoping
that the differences will be clear to the reader from the context. Further, we define
two external operations among any vector/signal X in W and any scalar c in K:
a ‘scalar multiplication’ c � X : (K,W) → W and a ‘scalar dual multiplication’
c �′ X : (K,W) → W , again by using the same symbols as in the clodum. Now, we
define W to be a weighted lattice space over the clodum K if for all X,Y, Z ∈ W
and a, b ∈ K all the axioms of Table 3 hold. Note6 that: (a) Under axioms L1–L9 and
their duals L1′–L9′, W is a distributive lattice with a least element (O) and a greatest
element (I ). (b) These axioms bear a striking similarity with those of a linear space.
One difference is that the vector/signal addition (+) of linear spaces is now replaced
by two dual superpositions, the lattice supremum (∨) and infimum (∧); further, the
scalar multiplication (×) of linear spaces is now replaced by two operations � and �′
that are dual to each other. Only one major property of the linear spaces is missing
from the weighted lattices: the existence of ‘additive inverses’; i.e., the supremum and
infimum operations do not have inverses.

We define the weighted lattice W to be a complete weighted lattice (CWL) space
if all the following hold:

(i) W is closed under any, possibly infinite, suprema and infima.
(ii) The distributivity laws between the scalar operations � (�′) and the supremum

(infimum) are of the infinite type.

Note that, a clodum is by itself a complete weighted lattice over itself.
Consider a subset A of a complete weighted lattice W over a clodum K. A space

element F is called a sup-� combination of points in A if there exists an indexed set
of space elements {Fi } in A and a corresponding set of scalars {ai } in K such that

F =
∨

i

ai � Fi , (27)

Dually, we can form an inf-�′ combination G = ∧
i bi �′ Gi of points Gi in A

with scalars bi . The sup-� span of A, denoted by span∨(A), is the set of all sup-�
combinations of elements in A. If A = ∅, then span∨(A) = {O}. Dually, the set of

5 In this paper, as ‘scalars’ we use numbers from R or its subsets, but the general definition of a weighted
lattice allows for an arbitrary clodum as the set of ‘scalars.’
6 If in our definition of a weighted lattice, one focuses only on one vector ‘addition,’ say the vector
supremum, and its corresponding scalar ‘multiplication,’ then the weaker algebraic structure becomes an
idempotent semimodule over an idempotent semiring. This has been studied in [19,28,41].
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Table 3 Axioms of weighted lattices

Sup-semilattice Inf-semilattice Description

L1. X ∨ Y ∈ W L1′. X ∧ Y ∈ W Closure of ∨, ∧
L2. X ∨ X = X L2′. X ∧ X = X Idempotence of ∨, ∧
L3. X ∨ Y = Y ∨ X L3′. X ∧ Y = Y ∧ X Commutativity of ∨,∧
L4. X ∨ (Y ∨ Z) = L4′. X ∧ (Y ∧ Z) = Associativity of ∨, ∧

(X ∨ Y ) ∨ Z (X ∧ Y ) ∧ Z

L5. X ∨ (X ∧ Y ) = X L5′. X ∧ (X ∨ Y ) = X Absorption between ∨, ∧
L6. X ≤ Y ⇐⇒ L6′. X ≤′ Y ⇐⇒ Consistency of ∨, ∧
Y = X ∨ Y Y = X ∧ Y with partial order ≤

L7. O ∨ X = X L7′. I ∧ X = X Identities of ∨, ∧
L8. I ∨ X = I L8′. O ∧ X = O Absorbing nulls of ∨,∧
L9. X ∨ (Y ∧ Z) = L9′. X ∧ (Y ∨ Z) = Distributivity of ∨, ∧

(X ∨ Y ) ∧ (X ∨ Z) (X ∧ Y ) ∨ (X ∧ Z)

WL10. a � X ∈ W WL10′. a �′ X ∈ W Closure of �, �′
WL11. a � (b � X) = WL11′. a �′ (b �′ X) = Associativity of �, �′

(a � b) � X (a �′ b) �′ X
WL12. a � (X ∨ Y ) = WL12′. a �′ (X ∧ Y ) = Distributive scalar–vector

a � X ∨ a � Y a �′ X ∧ a �′ Y mult over vector sup/inf

WL13. (a ∨ b) � X = WL13′. (a ∧ b) �′ X = Distributive scalar–vector

a � X ∨ b � X a �′ X ∧ b �′ X mult over scalar sup/inf

WL14. e � X = X WL14′. e′ �′ X = X Scalar identities

WL15. ⊥ � X = O WL15′. � �′ X = I Scalar nulls

WL16. a � O = O WL16′. a �′ I = I Vector nulls

all inf-�′ combinations of elements inA is called its inf -�′ span, denoted by span∧(A).
If A = ∅, then span∧(A) = {I }.

If the above sup-� and inf-�′ combinations are based on a finite set of space elements,
we shall call them max-� and min-�′ combination, respectively. A set S in a complete
weighted lattice is called max-� independent if each point F ∈ S is not a max-�
combination of points in S\{F}; otherwise, the set is called max-� dependent. Dually
for the min-�′ (in)dependence.

A max-� independent subset B of a CWL W is called an upper basis for the space
if each space element F can be represented as a sup-� combination of basis elements:

F =
∨

i

ci � Bi , Bi ∈ B (28)

Dually, a min-�′ independent subsetB′ ofW is called a lower basis ifW = span∧(B′).
Examples of upper and lower bases are given later for CWLs of functions.

In this paper, we shall focus on CWLs whose underlying set is a function space
W = Fun(E,K) where E is an arbitrary nonempty set serving as the domain of
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our functions and the values of these functions are from a clodum (K,∨,∧, �, �′) of
scalars as described in Sect. 3.1. Then, we extend pointwise the supremum, infimum
and scalar multiplications of K to the functions: for F,G ∈ W , a ∈ K and x ∈ E

(F ∨ G)(x) � F(x) ∨ G(x)

(F ∧ G)(x) � F(x) ∧ G(x)
(29)

(a � F)(x) � a � F(x)

(a �′ F)(x) � a �′ F(x)

Under the first two operations W becomes a complete infinitely distributive lattice
that inherits many properties from the lattice structure of K. The least (O) and greatest
(I ) elements of W are the constant functions O(x) = ⊥ and I (x) = �, x ∈ E .
Further, the scalar operations � and �′, extended pointwise to functions, distribute
over any suprema and infima, respectively. Thus, the function space Fun(E,K) is by
construction a completeweighted lattice of functions over the clodumK. The collection
of all its properties creates a rich algebraic structure.

If the clodum K is self-conjugate, then we can extend the conjugation (·)∗ to
functions F pointwise: F∗(x) � (F(x))∗. This obeys the same rules as the scalar
conjugation on the clodum. Namely,

(
∨

i

Fi

)∗
=
∧

i

Fi
∗,

(
∧

i

Gi

)∗
=
∨

i

Gi
∗, (a � F)∗ = a∗ �′ F∗ (30)

In such a case, we have a self-conjugate complete weighted lattice.
The space of vectors and the space of signals with values from K are special cases

of function lattices. In particular, if E = {1, 2, . . . , n}, then W becomes the set of all
n-dimensional vectors with elements from K. If E = Z, then W becomes the set of
all discrete-time signals with values from K.

Elementary increasing operators onW are those that act as vertical translations (in
short V-translations) of functions. Specifically, pointwise ‘multiplications’ of functions
F ∈ W by scalars a ∈ K yield theV-translations τa and dual V-translations τ ′

a , defined
by

[τa(F)](x) � a � F(x), [τ ′
a(F)](x) � a �′ F(x) (31)

A function operator ψ on W is called V-translation invariant if it commutes with
any V-translation τ , i.e., ψτ = τψ. Similarly, ψ is called dual V-translation invariant
if ψτ ′ = τ ′ψ for any dual V-translation τ ′.

The above CWL W of functions contains an upper basis B and a lower basis B′
which consist of the impulse functions q and the dual impulses q ′, respectively:

qy(x) �
{
e, x = y
⊥, x �= y

, q ′
y(x) �

{
e′, x = y
�, x �= y

(32)

Then, every function F(x) admits a representation as a supremum of V-translated
impulses placed at all points or as infimum of dual V-translated impulses:

123



Math. Control Signals Syst. (2017) 29:21 Page 19 of 49 21

F(x) =
∨

y∈E
F(y) � qy(x) =

∧

y∈E
F(y) �′ q ′

y(x) (33)

By using the V-translations and the basis representation of functions with impulses,
we can build more complex increasing operators, as explained next.

In general, if the space W is self-conjugate and has an upper basis B, then it will
also possess a lower basis since (28) implies that F∗ =∧i ci

∗ �′ Bi ∗. Thus, in the case
of function CWLs that are self-conjugate, the upper and lower bases have the same
cardinality, which is called the dimension7 of W . If this is finite, the space is called
finite-dimensional; otherwise, it is called infinite-dimensional. Specific examples of
finite- and infinite-dimensional upper and lower basis are mentioned in Sects. 3.3 and
3.4 for vector and signal spaces, respectively.

Consider systems that are V-translation-invariant dilations or erosions over W .
This invariance implies that they obey an interesting nonlinear superposition princi-
ple which has direct conceptual analogies with the well-known linear superposition.
Specifically, we define δ to be a dilation V-translation-invariant (DVI) system iff
for any ci ∈ K, Fi ∈ W

δ

(
∨

i∈J

ci � Fi

)
=
∨

i∈J

ci � δ(Fi ), (34)

for any (finite or infinite) index set J . We also define ε to be an erosion V-translation-
invariant (EVI) system iff

ε

(
∧

i∈J

ci �′ Fi

)
=
∧

i∈J

ci �′ ε(Fi ) (35)

Compare the two above nonlinear superpositions with the linear superposition
obeyed by a linear system Γ :

Γ

(
∑

i∈J

ai · Fi
)

=
∑

i∈J

ai · Γ (Fi ) (36)

where J is a finite index set, ai are constants from a field (of real or complex numbers)
and Fi are field-valued signals from a linear space.

The structure of a DVI or EVI system’s output is simplified if we express it via
the system’s impulse responses, defined next. Given a dilation system δ, its impulse
response map is the map H : E → Fun(E,K) defined at each y ∈ E as the output
function H(x, y) from δ when the input is the impulse qy(x). Dually, for an erosion
operator ε we define its dual impulse response map H ′ via its outputs when excited
by dual impulses: for x, y ∈ E

H(x, y) � δ(qy)(x), H ′(x, y) � ε(q ′
y)(x) (37)

7 A dimension theory for semimodules has been developed in [65]. Further, the concept of an upper basis
has been used in [15] to define the dimension of finite-dimensional subspaces of max-plus matrix algebra.
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Applying a DVI operator δ or an EVI operator ε to (33) and using the definitions in
(37) proves the following unified representation for all V-translation-invariant dilation
or erosion systems.

Theorem 1 (a) A system δ onW is DVI, i.e., obeys the sup-� superposition of (34), if
and only if its output can be expressed as

δ(F)(x) =
∨

y∈E
H(x, y) � F(y) (38)

where H is its impulse response map in (37). (b) A system ε on W is EVI, i.e., obeys
the inf-�′ superposition of (35), if and only if its output can be expressed as

ε(F)(x) =
∧

y∈E
H ′(x, y) �′ F(y) (39)

where H ′ is its dual impulse response map in (37).

The result (38) for the max-plus dioid is analyzed in [2]. In the case of a signal space
where E = Z, the operations in (38) and (39) are like time-varying nonlinear convolu-
tions where a dilation (resp. erosion) system’s output is obtained as supremum (resp.
infimum) of various impulse response signals produced by exciting the system with
impulses at all points and weighted by the input signal values via a �-‘multiplication.’

3.3 Weighted lattice of vectors

Consider now the nonlinear vector spaceW = Kn , equipped with the pointwise partial
ordering x ≤ y, supremum x∨ y = [xi∨yi ] and infimum x∧ y = [xi∧yi ] between any
vectors x, y ∈ W . Then, (W,∨,∧, �, �′) is a complete weighted lattice. Elementary
increasing operators are the vector V-translations τa(x) = a � x = [a � xi ] and their
duals τ ′

a(x) = a �′ x, which ‘multiply’ a scalar a with a vector x componentwise.
A vector transformation on W is called (dual) V-translation invariant if it commutes
with any vector (dual) V-translation.

By defining as ‘impulse functions’ the impulse vectors q j = [q j (i)] and their
duals q ′

j = [q ′
j (i)], where the index j signifies the position of the identity, each vector

x = [x1, . . . , xn]T has a basis representation as a max of V-translated impulse vectors
or as a min of V-translated dual impulse vectors:

x =
n∨

j=1

x j � q j =
n∧

j=1

x j �′ q ′
j (40)

More complex examples of increasing operators on this vector space are the max-�
and the min-�′ ‘multiplications’ of a matrix M with an input vector x,

δM(x) � M � x, εM(x) � M � ′ x (41)
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which are, respectively, a vector dilation and a vector erosion. These two nonlinear
matrix–vector ‘products’ are the prototypes of any vector transformation that obeys a
sup-� or an inf-�′ superposition, as proven next.

Theorem 2 (a) Any vector transformation on the complete weighted latticeW = Kn

is DVI, i.e., obeys the sup-� superposition of (34), iff it can be represented as a
matrix–vector max-� product δM(x) = M � x where M = [mi j ] with mi j =
{δ(q j )}i .

(b) Any vector transformation on Kn is EVI, i.e., obeys the inf-�′ superposition of
(35), iff it can be represented as a matrix–vector min-�′ product εM(x) = M � ′ x
where M = [mi j ] with mi j = {ε(q ′

j )}i .
Proof This is a special case of Theorem 1 where the domain points x, y ∈ E become
indices i, j ∈ {1, . . . , n} and the impulse response values H(x, y) become matrix
elementsmi j . Thus, the operations (38) and (39) become the max-� and min-�′ products
(41) of input vectors with the matrix M = [mi j ]. ��.

Given a vector dilation δ(x) = M � x with matrix M = [mi j ], there corresponds
a unique adjoint vector erosion ε so that (δ, ε) is a vector adjunction on W , i.e.,

δ(x) ≤ y ⇐⇒ x ≤ ε( y) (42)

(We seek adjunctions because they can easily generate projections.)
We can find the adjoint vector erosion by decomposing both vector operators based

on scalar operators (η, ζ ) that form a scalar adjunction on K:

η(a, v) ≤ w ⇐⇒ v ≤ ζ(a, w) (43)

If we use as scalar ‘multiplication’ a commutative binary operation η(a, v) = a � v

that is a dilation on K, its scalar adjoint erosion becomes

ζ(a, w) = sup{v ∈ K : a � v ≤ w} (44)

which is a (possibly noncommutative) binary operation onK. Then, the original vector
dilation δ(x) = M � x is decomposed as

{δ(x)}i =
∨

j

η(mi j , x j ) = mi j � x j , i = 1, . . . , n (45)

whereas its adjoint vector erosion is decomposed as

{ε( y)} j =
∧

i

ζ(m ji , yi ), j = 1, . . . , n (46)

The latter can be written as a min-ζ matrix–vector multiplication

ε( y) = MT�′
ζ y (47)
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where the symbol �′
ζ denotes the following nonlinear product of a matrix A = [ai j ]

with a matrix B = [bi j ]:
{A�′

ζ B}i j �
∧

k

ζ(aik, bkj )

Further, if K is a clog, it can be shown that ζ(a, w) = a∗ �′ w and hence

ε( y) = M∗ � ′ y, (48)

where M∗ is the adjoint (i.e., conjugate transpose)8 of M = [mi j ]:
M∗ � [m ji

∗] (49)

Examples 4 (a) In the max-plus clog (R,∨,∧,+), consider the max-sum product
(19) of a matrix M and a vector x:

M =
⎡

⎣
1 0.4 0

0.3 1 0.5
0.7 0.2 1

⎤

⎦ , x =
⎡

⎣
− 0.2
− 0.6
− 0.3

⎤

⎦ �⇒ δs(x) = M � x =
⎡

⎣
0.8
0.4
0.7

⎤

⎦ = y

(50)

Let us apply to the result y the adjoint erosion. By (48) and (20),

M∗ =
⎡

⎣
− 1 − 0.3 − 0.7

− 0.4 − 1 − 0.2
0 − 0.5 − 1

⎤

⎦ �⇒ εs( y) = M∗ �′ y = x (51)

Thus, in this example we have εsδs = id.
(b) In the clodum ([0, 1],∨,∧, min, max), let us use a vector dilation δ f as in (45)

with max–min arithmetic (common in fuzzy systems), i.e., with η(a, v) = a �v =
min(a, v), to multiply the same matrix M = [mi j ] as above with a different vector
z so as to reach the same result y:

z =
⎡

⎣
0.8
0.4
0.4

⎤

⎦ �⇒ [
δ f (z)i

] =
⎡

⎣
∨

j

min(mi j , z j )

⎤

⎦ = y (52)

To apply now the adjoint vector erosion (46), we need first to find the adjoint scalar
erosion:

ζ(a, w) = sup{v ∈ [0, 1] : min(a, v) ≤ w} =
{

w, w < a
1, w ≥ a

(53)

8 Despite its notation [15,21], M∗ is not the elementwise conjugate of the matrix M but is obtained via
transposition and elementwise conjugation of M. To avoid the above ambiguity, we prefer the terminology
‘adjoint’ which is based on some conceptual similarities with the adjoint of a linear operator in Hilbert
spaces [21].
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Then, by (46) we can construct the adjoint vector erosion ε f , from which we obtain
ε f ( y) = z; i.e., again the adjoint vector erosion happened to be the inverse of the
vector dilation.

Dually, given a vector erosion ε′( y) = M � ′ y we can obtain its adjoint vector
dilation δ′ by starting from the ‘dual multiplication’ ζ(a, w) = a �′ w as a scalar
erosion and finding its adjoint scalar dilation

η(a, v) = inf{w : a �′ w ≥ v} (54)

Then the min-ζ matrix–vector multiplication ε′( y) = M � ′ y with

{ε′( y)}i =
∧

j

ζ(mi j , y j ) = mi j �′ y j , i = 1, . . . , n (55)

has as adjoint a max-η matrix–vector multiplication δ′(x) with

{δ′(x)} j �
∨

i

η(m ji , xi ), j = 1, . . . , n (56)

We can write this as a max-η matrix–vector multiplication

δ′(x) = MT�ηx (57)

where the symbol �η denotes the following nonlinear product of a matrix A = [ai j ]
with a matrix B = [bi j ]:

{A�ηB}i j �
∨

k

η(aik, bkj )

Further, if K is a clog, it can be shown that η(a, v) = a∗ � v and hence

δ′(x) = M∗ � x (58)

3.4 Weighted lattice of signals

Consider the set W = Fun(Z,K) of all discrete-time signals f : Z → K with values
from K. Equipped with pointwise supremum ∨ and infimum ∧, and two pointwise
scalar multiplications (� and �′), this becomes a complete weighted lattice W with
partial order the pointwise signal relation ≤. The signal translations are the operators
τk,v( f )(t) = f (t − k) � v, where (k, v) ∈ Z × K and f (t) is an arbitrary input
signal. Similarly, we define dual signal translations τ ′

k,v( f )(t) = f (t − k) �′ v. A
signal operator on W is called (dual) translation invariant iff it commutes with any
such (dual) translation. Note that, the above translation-invariance contains both a
vertical translation and a horizontal translation; the horizontal part is the well-known
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time-invariance. Consider two elementary signals, called the impulse q and the dual
impulse q ′:

q(t) �
{
e, t = 0
⊥, t �= 0

, q ′(t) �
{
e′, t = 0
�, t �= 0

Then every signal f has a basis representation as a supremum of translated impulses
or as infimum of dual translated impulses:

f (t) =
∨

k

f (k) � q(t − k) =
∧

k

f (k) �′ q ′(t − k) (59)

Consider now operators � on W that are dilations and translation invariant. Then
� is both DVI in the sense of (34) and time invariant. We call such operators dilation
translation-invariant (DTI) systems. Applying � to an input signal f decomposed
as in (59) yields its output as the sup-� convolution ©� of the input with the system’s
impulse response h = �(q):

�( f )(t) = ( f ©� h)(t) =
∨

k∈Z
f (k) � h(t − k) (60)

Conversely, every sup-� convolution is a DTI system. As done for the vector operators,
we can also build signal operator pairs (�, E) that form adjunctions:

�( f ) ≤ g ⇐⇒ f ≤ E(g) (61)

Given � we can find its adjoint E from scalar adjunctions (η, ζ ). Thus, by (43) and
(44), if η(h, f ) = h � f , the adjoint signal erosion becomes

E(g)(t) =
∧

�∈Z
ζ [h(� − t), g(�)] (62)

Further, if K is a clog, then

E(g)(t) =
∧

�∈Z
g(�) �′ h∗(� − t) (63)

Dually, if we start from an operator E on W that is erosion and translation invariant,
thenE is both EVI in the sense of (35) and time invariant. We call such operators erosion
translation-invariant (ETI) systems. Applying E to an input signal g decomposed
as in (59) yields the output as the inf-�′ convolution ©� ′ of the input with the system’s
dual impulse response h′ = E(q ′):

E(g)(t) = (g©� ′h′)(t) =
∧

k∈Z
g(k) �′ h′(t − k) (64)

Setting ζ(h′, g) = h′ �′ g and using (43), (54) yields the adjoint signal dilation

123



Math. Control Signals Syst. (2017) 29:21 Page 25 of 49 21

�( f )(t) =
∨

�∈Z
η[h′(� − t), f (�)] (65)

which, if K is a clog, becomes

�( f )(t) =
∨

�∈Z
f (�) � h′∗(� − t) (66)

An outcome of the previous discussion is:

Theorem 3 (a) An operator � on a CWL W of signals is a dilation translation-
invariant (DTI) system iff it can be represented as the sup-� convolution of the
input signal with the system’s impulse response h = �(q).

(b) An operator E on W is an erosion dual-translation-invariant (ETI) system iff it
can be represented as the inf-�′ convolution of the input signal with the system’s
dual impulse response h′ = E(q ′).

The above result for the max-plus clog was obtained in [44].

4 State and output responses

Based on the state-space model of a max-� dynamical system (2), we can compute its
state response and output response if we know its transition matrix:

�(t2, t1) �
{
A(t2) � · · · � A(t1 + 1) if t2 > t1
In if t2 = t1

(67)

for t2 ≥ t1, where In is the n×n identity matrix in max-� matrix algebra that has values
equal to the identity element e on its diagonal and least element (null) ⊥ off-diagonally.
The importance of � is obvious by noticing that for a null input, the solution of the
homogeneous state equation

x(t) = A(t) � x(t − 1) (68)

equals

x(t) = �(t, 0) � x(0) (69)

The transition matrix obeys a semigroup property:

�(t2, t1) � �(t1, t0) = �(t2, t0), t0 ≤ t1 ≤ t2 (70)

4.1 Time-varying systems

By using induction on (2), we can find the state and output responses of the general
time-varying causal system; for t = 0, 1, 2, . . .,
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x(t) = �(t, 0) � x(0) ∨
(

t∨

k=0

�(t, k) � B(k) � u(k)

)

y(t) = C(t) � �(t, 0) � x(0)︸ ︷︷ ︸
yni (t) � ‘null’-input resp.

∨
(

t∨

k=0

C(t) � �(t, k) � B(k) � u(k)

)
∨ D(t) � u(t)

︸ ︷︷ ︸
yns (t) � ‘null’-state resp.

(71)

where the supremum
∨t

k=0 is null if t < 0. Henceforth, without loss of generality in
(71), we shall assume that in practice u(0) is null (i.e., the input starts being active
from t ≥ 1) and use x(0) as the system’s effective initial condition. (Otherwise, we
use x(−1) as initial condition.) Thus, the output response is found to consist of two
parts: (i) the ‘null’-input response which is due only to the initial conditions x(0) and
assumes a null input, i.e., equal to u(t) = ⊥, and (ii) the ‘null’-state response which
is due only to the input u(t) and assumes null initial conditions, i.e., x(0) = ⊥.

We observe that the ‘null’-state response is essentially a time-varying sup-� matrix
convolution

yns(t) =
t∨

k=0

H(t, k) � u(k) (72)

of the input with a weight matrix

H(t, k) � C(t) � �(t, k) � B(k) ∨ q(t − k) � D(k)

The response (72) is a matrix version of the scalar time-varying sup-� convolution in
(38).

The representation of the responses of time-varying max-� systems over idempotent
dioids via the transition matrix has been developed in [40].

4.2 Time-invariant systems

Most of the results in this section are well known for time-invariant max-� systems
over idempotent dioids, especially in the max-plus case [2]. We present them using
monotone operators over weighted lattices.

Let the matrices A, B,C, D be constant. Then, the max-� state equations become:

x(t) = A � x(t − 1) ∨ B � u(t)

y(t) = C � x(t) ∨ D � u(t) (73)

Since the transition matrix simplifies to

�(t2, t1) = A(t2−t1) (74)
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where A(t) denotes the t-fold max-� matrix product of A with itself for t ≥ 1 and
A(0) = In , the solutions of the constant-matrix state equations become

x(t) = A(t) � x(0) ∨
(

t∨

k=0

A(t−k) � B � u(k)

)

y(t) = C � A(t) � x(0)︸ ︷︷ ︸
yni (t)=‘null’-input resp.

∨C �

(
t∨

k=0

A(t−k) � B � u(k)

)
∨ D � u(t)

︸ ︷︷ ︸
yns (t)=‘null’-state resp.

(75)

By representing the matrix–vector �-product as a dilation operator x �→ δA(x) =
A � x, we can express the state equations (73) with vector operators:

x(t) = δA[x(t − 1)] ∨ δB[u(t)]
y(t) = δC [x(t)] ∨ δD[u(t)] (76)

and the state and output responses (75) in operator form:

x(t) = δtA[x(0)] ∨
(∨t

k=0
δt−k
A δB[u(k)]

)

y(t) = δCδtA[x(0)] ∨ δC

(
t∨

k=0

δt−k
A δB[u(k)]

)
∨ δD[u(t)] (77)

For single-input single-output (SISO) systems, the mapping u(t) �→ yns(t) can
be viewed as a causal translation-invariant dilation system �. Hence, the ‘null’-state
response can be found as the sup-� convolution of the input with the system’s impulse
response h = �(q):

yns(t) = �(u)(t) = (u ©� h)(t) =
t∨

k=0

h(t − k) � u(k) (78)

The impulse response can be found from (75) by setting initial conditions equal to
null and the input u(t) = q(t):

h(t) =
⎧
⎨

⎩

⊥, t < 0
(C � B) ∨ D, t = 0
C � A(t) � B, t > 0

(79)

where in this case D is a scalar, C is a row vector and B a column vector. The last two
results can be easily extended to multi-input multi-output (MIMO) systems by using
an impulse response matrix as in (72).
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5 Solving max-� equations

Consider a scalar clodum (K,∨,∧, �, �′), a matrix A ∈ Km×n and a vector b ∈ Km .
The set of solutions of the max-� equation

A � x = b (80)

over K is either empty or forms a sup-semilattice. In [21] necessary and sufficient
conditions are given for the existence and properties of such solutions in the max-plus
case.

A related problem in applications of max-plus algebra to scheduling is when a
vector x represents start times, a vector b represents finish times and the matrix A
represents processing delays. Then, if A � x = b does not have an exact solution, it is
possible to find the optimum x such that we minimize a norm of the earliness subject
to zero lateness. We generalize this problem from max-plus to max-� algebra. The
optimum will be the solution of the following constrained minimization problem:

Minimize ‖A � x − b‖ s.t. A � x ≤ b (81)

where the norm || · || is either the �∞ or the �1 norm. While the two above problems
have been solved in [21] by using minimax algebra over the max-plus (R,∨,∧,+)

or other clogs, we provide next an alternative and shorter proof of both results using
adjunctions and for the general case when K may not be a clog.

Theorem 4 Consider a vector dilation δ(x) = A � x over a scalar clodumK and let
ε be its adjoint vector erosion. (a) If Eq. (80) has a solution, then

x̂ = AT�′
ζ b = [

∧

i

ζ(a ji , bi )] (82)

is its greatest solution, where ζ is the scalar adjoint erosion (44) of �. (b) If K is a
clog, the solution (82) becomes

x̂ = A∗ � ′ b (83)

(c) The solution to the minimization problem (81) is generally (82), or (83) in the
special case of a clog.

Proof (a), (c): We showed in (46, 47) that the adjoint vector erosion of δ(x) = A � x is
generally equal to ε( y) = AT�′

ζ y. Thus, the solution (82) has the form of an erosion,
which by (16) has the property

ε(b) =
∨

{x : δ(x) ≤ b}

This implies that

δ(ε(b)) =
∨

{δ(x) : δ(x) ≤ b}

123



Math. Control Signals Syst. (2017) 29:21 Page 29 of 49 21

The above immediately suggests that if ε(b) is a solution, then it is the greatest solution.
If not, then the difference b − δ(ε(b)) is nonnegative and has the smallest �∞ or �1
norm. (b) For a clog, the scalar adjoint erosion of � is ζ(a, w) = a∗ �′ w which gives
(82) the simpler expression (83). ��

A main idea behind the method for solving (81) is to consider vectors x that are
subsolutions in the sense that A � x ≤ b and find the greatest such subsolution. The set
of subsolutions forms a sup-semilattice whose supremum equals x̂, which yields either
the greatest exact solution of (80) or an optimum approximate solution in the sense
of (81). Another attractive aspect of the adjunction-based solution is that it creates a
lattice projection onto the max-� span of the columns of A via the opening δ(ε(b)) ≤ b
that best approximates b from below.

Examples 5 (a) Consider solving δs(x) = A � x = b in the max-plus clog
(R,∨,∧,+) with

A =
⎡

⎣
1 0.4 0

0.3 1 0.5
0.7 0.2 1

⎤

⎦ , b =
⎡

⎣
0.8
0.4
0.9

⎤

⎦ (84)

The algorithm (83) yields the greatest solution

x̂s = εs(b) = A∗ � ′ b = [− 0.2,− 0.6,− 0.1]T (85)

among all exact solutions, which have the form x = [− 0.2, c,− 0.1]T with c ≤
− 0.6. Note that in Example 4(a) we had the same matrix but a different b =
[0.8, 0.4, 0.7]T which gave a unique solution.

(b) Let us now try to solve δ f (x) = A � x = b in the max–min clodum
([0, 1],∨,∧, min, max) with the same A, b as above. Then, by working as in
Example 4(b) to construct the adjoint vector erosion, (82) yields

x̂ f = ε f (b) = AT�′
ζ b = [0.8, 0.4, 0.4]T (86)

where the specific ζ , i.e., the scalar adjoint erosion of a � v = min(a, v), is
given by (53). In this case, the algorithm gave an approximate solution since
A � x̂ f = [0.8, 0.4, 0.7]T ≤ b. However, it is the greatest subsolution. Note that
the same matrix but with a different b gave an exact solution in Example 4(b).

Further, by using adjunctions and duality, the CWL framework allows us to easily
formulate and solve a dual problem of solving the min-�′ equation

A � ′ y = b (87)

either exactly if it has a solution, or by finding supersolutions y in the sense that
A � ′ y ≥ b and picking the smallest such supersolution. Approximate solutions of
(87) can always be found by solving the following problem

Minimize ‖A � ′ y − b‖ s.t. A � ′ y ≥ b (88)
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where the norm || · || is either the �∞ or the �1 norm. The set of supersolutions forms a
semigroup under vector ∧ whose infimum yields either the smallest exact solution of
(87) if it exists or an optimum approximate solution in the sense of (88); this infimum
is

ŷ = AT�ηb (89)

where η is the scalar adjoint dilation (54) of �′. For a clog this becomes

ŷ = A∗ � b (90)

By viewing ε( y) = A � ′ y as a vector erosion, the operation in (89) or (90) is its
corresponding adjoint vector dilation δ. This adjunction yields as best approximation
the closing ε(δ(b)) ≥ b which is a lattice projection that comes optimally close to b
from above.

Solving the one-sided equation (80) has direct applications in providing the system
reachability and observability problems with exact or approximate solutions, as shown
in Sect. 8. There are also double-sided max-� equations of the type

A � x = B � y (91)

which model synchronization problems and can be solved by iterating the method (83)
between left and right side, as shown in [22]. This has been extended in [29,42] to one-
and two-sided equations whose matrix elements are intervals representing numerical
uncertainties.

6 Spectral analysis in max-� algebra

There has been significant progress on eigenvalue analysis for the max-plus semiring
(R ∪ {−∞},∨,+); see [15,21] and the references therein. Herein, we extend some
of the main results to any scalar clodum9 K even in cases where the ‘multiplications’
do not have inverses. The only constraint on the clodum K is to be radicable w.r.t.
operations �, �′: namely, for each a ∈ K and integer p ≥ 2 there is some x ∈ K such
that its p-fold �-multiplication with itself equals a, i.e., x�p � x � x � · · · � x = a.
Note that both the max-plus clog and the max–min clodum are radicable.

Consider a n × n matrix A = [ai j ], n > 1. This can be represented by a directed
weighted graph Gr(A) that has n nodes and arcs connecting pairs of nodes (i, j) if
the corresponding weights ai j > ⊥. If Gr(A) is strongly connected, i.e., if there is
a path from every node to every other node, then A is called irreducible. Consider a
path on the graph, i.e., a sequence of nodes π = (i0, i1, . . . , it ) with length �(π) = t ;
its weight is defined by w(π) � ai0i1 � . . . � ait−1it . A path σ is called a cycle if

9 Although the main results [15] of max-plus eigenvalue analysis in the max-plus semiring assume all
scalars < +∞, in the more general max-� eigenvalue analysis over a clodum we allow scalars to equal
�; this has direct applications for cloda K = [0, 1] in fuzzy systems, like the max–min clodum, where
1 = e = �.
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i0 = it ; the cycle is elementary if the nodes i0, . . . , it−1 are distinct. For any cycle σ ,
we define its cycle mean10 by w(σ )�(1/�(σ )). Let

λ(A) �
∨

all cycles σ of A

w(σ )�(1/�(σ )) (92)

be the maximum cycle mean in Gr(A). Since Gr(A) has n nodes, only elementary
cycles with length ≤ n need be considered in (92). There is also at least one cycle
whose average weight coincides with the maximum value (92); such a cycle is called
critical. The existence of λ(A) is guaranteed if (K, �) is radicable.

The max-� eigenproblem for the matrix A consists of finding its eigenvalues λ and
eigenvectors v �= ⊥ such that

A � v = λ � v (93)

The maximum cycle mean λ(A) plays a fundamental role in this eigenproblem
for many reasons [15,21]: It is the largest eigenvalue of A and the only eigenvalue
whose corresponding eigenvectors may be finite. Thus, λ(A) is called the principal
eigenvalue of A. Some further properties include the following. Define the metric
matrix generated by A as the series

Γ (A) �
∞∨

k=1

A(k) (94)

If it converges, it conveys very useful information since its elements equal the weights
of the heaviest paths of any length for all pairs of nodes (like a graph of longest
distances), and its columns can provide eigenvectors [15,21]. However, its existence
is controlled by λ(A) as explained by

Theorem 5 Assume a n×n matrix A = [ai j ] with elements from a radicable clodum
K. (a) The infinite series (94) converges in finite time to a matrix Γ (A) = [γi j ] if
λ(A) ≤ e, in which case for all t ≥ 1

A(t) ≤ Γ (A) = A ∨ A(2) ∨ · · · ∨ A(n) (95)

(b) If all ai j < �, then both (95) holds and all γi j < � if and only if λ(A) ≤ e.
(c) If λ(A) ≤ e and A is irreducible, then all γi j > ⊥.

Proof We extend the results of [15,21] to a general radicable clodum. (a) If λ(A) ≤ e,
then a path π between any nodes i, j of length > n contains cycles, all whose weights
≤ e. By deleting these cycles, we can create only heavier subpaths π ′ of length ≤ n,
i.e., w(π ′) ≥ w(π). Given the finite only number of paths (without cycles) between

10 For the max-plus clog (R,∨, ∧, +) the mean of a cycle σ is given by w(σ )/�(σ ), for the max-product
clog ([0, ∞],∨, ∧, ×) it is given by w(σ )1/�(σ ), whereas for the max–min clodum ([0, 1], ∨,∧, min, max)

the cycle mean is simply wσ .
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any nodes i, j , if a path exists, then a heaviest such path also exists with length ≤ n
and weight γi j ; if no path exists, then γi j = ⊥. (b) If λ(A) ≤ e, then in part (a) we
proved convergence in finite time. Further, since all elements of A are < �, the finite-
length heaviest path between any nodes i, j will have weight γi j < �. If λ(A) > e,
then there exists a cycle with weight > e which will drive at least one element in
A(t) unbounded (i.e., �) as t → ∞ and hence there is no finite convergence. Thus,
(95) holds iff λ(A) ≤ e. (c) If A is also irreducible, i.e., Gr(A) is strongly connected,
then a path exists between any nodes i, j and hence each γi j > ⊥. The above results
also cover the case of cloda with e = � (like the max–min clodum) because then the
condition λ(A) ≤ e always holds. ��

By using duality between the max-� and min-�′ matrix subalgebras over a radicable
scalar clodum we can also solve the dual eigenproblem

A � ′ v′ = λ′ �′ v′ (96)

The dual principal eigenvalue, denoted by λ′(A), is the smallest of all dual eigenvalues
and can be found as the minimum cycle mean of A.

7 Causality, stability

Assume for brievity SISO systems. (Our results can be easily extended for MIMO
systems.) Assume also that systems’ matrices are constant. A useful bound for signals
f (t) processed by max-� systems is their supremal value

∨
t f (t). We call max-�

systems upper-stable if an upper bounded input and initial condition yields an upper
bounded output, i.e., if

x(0) < � and
∨

t

u(t) < � �⇒
∨

t

y(t) < � (97)

If initial conditions are null and (97) is satisfied, we call the system bounded-input
bounded-output (BIBO) upper-stable. Dually, min-�′ systems are called lower-stable
if a lower bounded input and initial condition yields a lower bounded output, i.e., if

x(0) > ⊥ and
∧

t

u(t) > ⊥ �⇒
∧

t

y(t) > ⊥ (98)

A max-� (min-�′) dynamical system with null initial conditions can be viewed as a DTI
(ETI) system mapping the input u to the output which is the sup-� (inf-�′) convolution
y = u ©� h (y = u ©� ′h′) of the input with the (dual) impulse response h (h′). The
following theorem provides us with simple algebraic criteria for checking the causality
and stability of DTI and ETI systems based on their impulse response.

Theorem 6 (a1) Consider a DTI system � and let h = �(q) be its impulse response.
Then: (a1) The system is causal iff h(t) = ⊥ for all t < 0. (a2) The system is BIBO
upper-stable iff

∨
t h(t) < �.
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(b) Consider an ETI system E and let h′ = E(q ′) be its dual impulse response. Then:
(b1) The system is causal iff h′(t) = � for all t < 0. (b2) The system is BIBO
lower-stable iff

∧
t h

′(t) > ⊥.

Proof Part (a): (a1) follows from the definition of causality since the output can be
written as �(u)(t) = ∨

k u(t − k) � h(k). (a2) Sufficiency: If u and h have suprema
< �, then their dilation y = u ©� h also has a supremum < � because

y(t) ≤
∨

k

u(k) �
∨

k

h(k), ∀t

Necessity: Assume now that � is upper-stable. Then
∨

t h(t) must be < �, because
otherwise we can find a bounded input yielding an unbounded output. For example,
the input u(t) = q(t) yields as output y(t) = h(t). Obviously, this u is bounded, but
if
∨

t h(t) = � we get an unbounded output. Part (b) follows by duality. ��
The stability of a linear dynamical system can be expressed via the eigenvalues of its

state transition matrix A. For max-� (min-�′) systems we derive below a conceptually
similar result that links the upper (lower) stability of the system with the (dual) principal
eigenvalue of A.

Theorem 7 (a) Consider a max-� system whose matrices do not contain any � ele-
ments. If λ(A) ≤ e, the system is upper-stable. (b) If a min-�′ system has matrices
without any ⊥ elements and λ′(A) ≥ e′, then the system is lower-stable.

Proof (a) By (79), if C = [ci ]T and B = [b j ],

h(t) = max
i

max
j

ci � a(t)
i j � b j (99)

where a(t)
i j is the (i, j) element of matrix A(t). By Theorem 5, we have A(t) ≤ Γ (A) =

[γi j ], and equivalently a(t)
i j ≤ γi j < � for all i, j, t ≥ 1. Thus,

∨

t

h(t) ≤ max
i, j

γi j � max
i

ci � max
j

b j < � (100)

Hence, by Theorem 6 the system is BIBO upper-stable. This upper bounds the null-
state response yns(t) of the output. Now if x(0) �= ⊥, the null-input response yni (t) =
C � A(t) � x(0) will also be upper bounded via a similar proof as above. Thus, the
system is upper-stable. Part (b) follows by duality. ��

From another viewpoint, the useful information in a signal f analyzed by a DTI
system exists only at times where f (t) is not null. Thus, its support (or effective
domain) is defined by Spt∨( f ) � {t : f (t) > ⊥}. An alternative useful bound for
signals f (t) processed by such systems is their supremal ‘absolute value’ over their
support:

M f �
∨

t∈Spt∨( f )

μ( f (t)) (101)
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where μ(a) � a∨a∗ is called the absolute value seminorm in [21] and is ‘sublinear’
over a self-conjugate clodum in the sense that μ(a∨b) ≤ μ(a)∨μ(b). We call max-�
systems BIBO absolutely stable iff a bounded input yields a bounded output in the
following sense:

Mu < � �⇒ My < � (102)

This is controlled by the system’s impulse response as shown next.

Theorem 8 Consider a DTI system � over a self-conjugate clodum whose matrices
do not contain any� elements. Let h = �(q) be its impulse response. Then, the system
is BIBO absolutely stable iff Mh < �.

Proof Sufficiency: If u and h have finite bounds Mu and Mh within their supports
U and H , respectively, then their sup-� convolution y = u ©� h is also absolutely
bounded because

μ(y(t)) ≤
∨

k∈U∩(Hs )+t

μ[u(k) � h(t − k)] ≤ Mu � Mh

for all t in the Minkowski set addition U ⊕ H = {k + � : k ∈ U, � ∈ H} of the two
supports, where (Hs)+t = {t − k : k ∈ H} denotes the reflected H translated by t .
Necessity: Assume that � is stable. Then Mh must be finite, because otherwise we
can find a bounded input yielding an unbounded output. For example, the bounded
input u(t) = q(t) yields the output y(t) = h(t) which is unbounded if Mh = �. ��

The next theorem links absolute stability with the principal eigenvalue of the system.

Theorem 9 Consider a max-� system over a clog whose matrices do not contain
any � elements. For matrix A = [ai j ] assume that it is irreducible, aii > ⊥ for
some i , and there is a unique critical cycle of length d corresponding to its finite
principal eigenvalue λ(A). Then: (a) If λ(A) = e, the impulse response of the system
is eventually periodic with period d. (b) The system is BIBO absolutely stable iff
λ(A) = e.

Proof (a) As shown for the max-plus case in [18] under the above hypotheses for
A, if λ(A) = 0, then A is order-d-periodical, i.e., there is an integer k0 such that
A(k+d) = A(k) ∀k ≥ k0. The proof of the above in [18] can be extended to general
clogs. Hence, by (79), there exists k0 such that h(k + d) = h(k) for all k ≥ k0. (b) Let
λ = λ(A). Then λ∗ � A is order-d-periodical and hence A(k+d) = λ�d � A(k) for all
k ≥ k0. Hence,

h(k + d) = λ�d � h(k), ∀k ≥ k0 (103)

Further, the absence of � values in the system’s matrices guarantees that h(k) does
not have any such values. Now, if λ = e, then h(k + d) = h(k) ∀k ≥ k0 and hence
Mh < �. In contrast, if λ �= e, then (103) will drive asymptotically (as k → ∞) the
values of μ(h(k)) unbounded, and hence Mh = �. ��
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8 Reachability, observability

Assume single-input single-output systems with constant matrices described by (75),
acting on a CWL over a clodum K. A max-� system is called reachable in k-steps
if the following system of nonlinear equations can be solved and provide the control
input sequence uk = [u(1), . . . , u(k)]T required to drive the system from the initial
state x(0) to any desired state x(k) in k steps:

x(k) = A(k) � x(0) ∨ Ck � uk (104)

where Ck = [A(k−1) � B, . . . , A � B, B] is called the controllability matrix. This
system of max-� equations can be solved using the methods of Sect. 5. However, we
can simplify it first by assuming that the input is dominating the initial conditions (e.g.,
by assuming inputs with sufficiently large values); then, the second term is greater than
the first term of the right hand side, and we can rewrite (104) as

Ck � uk = x(k) (105)

If there is an exact solution to (105), the system is called weakly reachable [27].
Because of some dimensional anomalies in minimax algebra [21], there is no guarantee
of exact solution even when Ck has adequate column rank11 (i.e., n max-� independent
columns) because the max-� span of its columns may be only a subset of Kn , unlike
the linear system case where full rank of Ck makes the system reachable in at most
k = n steps. Another difference with linear systems is that the max-� column rank
may not be the same with the row rank. Thus, by using k > n one may obtain a matrix
Ck that will give an exact solution. By Theorem 4, if there exists an exact solution, the
greatest solution is the lattice erosion

ûk = ε(x(k)) = CT
k �′

ζ x(k) (106)

where ε is the adjoint erosion of the dilation δ( y) = Ck � y. (See Sec.3.3.)
If K is a clog, the solution (106) becomes

ûk = C∗
k � ′ x(k) (107)

However, in certain applications Eq. (105) may be too strong of a condition and it
may be sufficient to solve an approximate reachability problem that has some opti-
mality aspects. Specifically, consider finding an optimal control input sequence uk as
solution to the following constrained optimization problem:

Min ‖Ck � uk − x(k)‖ s.t. Ck � uk ≤ x(k) (108)

11 The column (row) rank of a matrix over a clodum can be defined as the largest number of max-�
independent columns (rows). In [15,21,28] there are also weaker concepts of vector independence in
minimax algebra.
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where the norm ‖ ·‖ is either the �∞ or the �1 norm. Then the optimal solution is (106)
or (107).

Examples 6 Consider a max-sum system over the max-plus clog with

A =
⎡

⎣
− 4 − 1 − 3
− 4 − 3 0
1 − 2 − 1

⎤

⎦ , B =
⎡

⎣
− 1
2

− 1

⎤

⎦ (109)

The controllability matrix for k = 5 steps (shown below) has full column rank (5 and
larger than the row rank):

C5 =
⎡

⎣
− 1 1 − 2 − 1 1
2 − 1 0 2 1

− 1 0 2 1 0

⎤

⎦ (110)

(a) If x(5) = [1, 1, 1]T is the desired state, then this vector belongs to the max-plus
span of the columns of C5 since

C5 �

⎡

⎢⎢⎢⎢⎣

− 1
0

− 1
− 1
0

⎤

⎥⎥⎥⎥⎦
=
⎡

⎣
1
1
1

⎤

⎦ (111)

Thus, û = [− 1, 0,− 1,− 1, 0]T is the greatest solution among all possible 5-step
control sequences that can reach the same state, which have values [a, b,−1, d, 0]T

with a ≤ − 1, b ≤ 0, d ≤ − 1.
(b) However, if the desired state is x(5) = [− 3, 3, 0]T then this vector does not belong
to the column span of C5. Indeed, (107) yields û = [− 2,− 4,− 2,− 2,− 4]T which
is only a greatest subsolution of (105) since it can only reach [− 3, 0, 0]T which is a
lower state than desired.

The above ideas can also be applied to the observability problem. A max-� system
is observable if we can estimate the initial state by observing a sequence of output
values. By (75), this can be done if the following system of nonlinear equations can
be solved:

⎡

⎢⎣
y(1)

...

y(k)

⎤

⎥⎦ =
⎡

⎢⎣
C � A

...

C � A(k)

⎤

⎥⎦

︸ ︷︷ ︸
Ok

� x(0) ∨
⎡

⎢⎣
yns(1)

...

yns(k)

⎤

⎥⎦ (112)

Assuming that the first term of the right hand side containing the initial state domi-
nates the second term that contains the input (e.g., by assuming inputs with sufficiently
small values), we can rewrite the above as
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Ok � x(0) = yk = [y(1), . . . , y(k)]T (113)

This equation can be solved exactly or approximately by using the same methods as
for the reachability equation. Thus, if K is a clog, the general solution is

x̂(0) = Ok
∗ � ′ yk (114)

and has the property that it is the largest solution with Ok � x̂(0) ≤ yk .

9 Applications, special cases

9.1 Max-sum systems

One broad class of nonlinear dynamical systems is described by (2) or (6) by using the
max-plus clog (R,∨,∧,+) for scalar arithmetic and the max-sum � and min-sum �′
matrix products (19),(20), which are the basis of minimax algebra [21].

Special cases of max-sum or min-sum dynamical systems have been used for
modeling, control and optimization in (i) discrete event dynamical systems (DES)
for applications including scheduling, manufacturing and transportation, (ii) shortest
path and related dynamic programming problems, and (iii) operations research; see
[2,15,16,18,19,23,27,30,37,38] and the references therein.

Next, we examine state-space formulations and stability issues for two classes of
max-sum or min-sum dynamical systems modeling recursive nonlinear filtering and
shortest path computation, which can be described by generalized versions of the
max-sum recursion (8) or its dual.

9.1.1 State-space models of recursive nonlinear filters

A very large class of discrete linear time-invariant systems used in control and signal
processing [14,53] is modeled via the following class of linear difference equations:

y(t) =
n∑

i=1

ai y(t − i) +
m∑

j=0

b ju(t − j) (115)

Replacing sum with maximum and multiplication with addition gives us the fol-
lowing nonlinear max-sum difference equation [44]

y(t) =
(

n∨

i=1

ai + y(t − i)

)
∨
⎛

⎝
m∨

j=0

b j + u(t − j)

⎞

⎠ (116)

The signal values and all coefficients ai , b j are from the max-plus clog. If some
ai = −∞, the term with y(t − i) is not used in the equation. Special (mainly nonre-
cursive) cases of such nonlinear difference equations have found many applications in

123



21 Page 38 of 49 Math. Control Signals Syst. (2017) 29:21

morphological signal and image processing [31,48,59,60], convex analysis [43,58],
and optimization [3,4].

The max-plus version of the general state equations (2) can model the dynamics of
recursive discrete-time filters described by the above max-sum difference equation.
Specifically, if m = 0, setting xi (t) = y(t − n + i − 1), i = 1, . . . , n, and choosing
matrices

A =

⎡

⎢⎢⎢⎢⎢⎣

−∞ 0 −∞ . . . −∞
−∞ −∞ 0 . . . −∞

...
...

...

−∞ −∞ −∞ . . . 0
an an−1 an−2 . . . a1

⎤

⎥⎥⎥⎥⎥⎦
, B = [b0]

C = [an, . . . , a1], D = [b0] (117)

models (116) as a max-sum special case of (2).
Consider now the following min-sum difference equation, which describes a dual

system to that of (116):

y(t) =
(

n∧

i=1

ai + y(t − i)

)
∧
⎛

⎝
m∧

j=0

b j + u(t − j)

⎞

⎠ (118)

Its dynamics can be modeled by the min-sum version of the general state equations
(6). For m = 0, it admits a state-space model as in (117), the only difference being
that the null elements in the system matrices should be +∞.

The system described by (116) or (117) is a dilation time-invariant (DTI) system
iff all its initial conditions are null (−∞) and is initially at rest, i.e., if u(t) = −∞
for t ≤ t0 then y(t) = −∞ for t ≤ t0. Similar conditions apply for (118) to make it
correspond to an erosion time-invariant (ETI) system.

Theorem 10 The max-plus principal eigenvalue of the matrix A in (117) is equal to
λ(A) =∨n

k=1 ak/k.

Proof The directed weighted graph of A has n nodes and n elementary cycles ( j, j +
1, . . . , n, j) for j = 1, . . . , n, each with average weight an− j+1/(n − j + 1). Hence,
λ(A) =∨n

k=1 ak/k. ��

Thus, the max-sum system corresponding to the recursive nonlinear filter described
by (116) is upper-stable iff all the coefficients ak are nonpositive and absolutely stable
if additionally at least one of them is zero. Such a numerical example is shown in
Fig. 2a, where Theorem 9 also applies and predicts a periodic impulse response.
Further, responses from stable and unstable DTI and ETI systems are shown in Fig. 2.
The stable outputs of Fig. 2c, d illustrate the applicability of recursive DTI (ETI) for
upper (lower) envelope detection, as explored in [44].
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Fig. 2 Responses of DTI or ETI systems described by the recursive max-sum equation (116) or its min-sum
version (118); in all cases m = 0, b0 = 0. a Impulse response (first 50 samples) of a n = 11th-order DTI
system for two coefficient sequences {ak }: in solid line ak = − sin(π(k − 1)/10)/10 for k = 1, . . . , 10
and a11 = 0, whereas in dash line a′

k = (|k − 6| − 5)/50 for k = 1, . . . , 10 and a′
11 = 0.1. b Dual impulse

response (first 50 samples) of a 11th-order recursive ETI system for two coefficient sequences: in solid line
ak = sin(π(k − 1)/10)/10 for k = 1, . . . , 10 and a11 = 0, whereas in dash line a′

k = (|k − 6| − 5)/50
for k = 1, . . . , 11. c Output signals from two DTI systems whose input (dashed line) are an amplitude-
modulated sine. The first output (solid blue line) is from the stable system y(t) = max[y(t − 1)+ a1, u(t)]
with a1 = − 0.008. The second output (dotted red line) is from the unstable system that generated the
unstable impulse response of (a). d Input signal as in (c) and output from the min-sum system y(t) =
min[y(t − 1) − a1, u(t)] (color figure online)

9.1.2 Dynamic programming

The max-sum or min-sum recursive equations can also express various forms of
dynamic programming, either of maximizing some gain or minimizing some cost
or distance [2,5]. For example, consider (8) and assume that ai j is the transition gain
from state i to state j between two consecutive time instants and that xi (t) represents
the maximum possible gain to reach state i in t steps starting from some initial state
at t = 0. Then (8) with a transposed transition matrix, i.e., the max-sum system

x(t) = AT � x(t − 1), x(0) = [0,−∞, . . . ,−∞]T, (119)
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models a dynamic programming algorithm where, starting from state 1 with zero
gain, we move from state to state aiming at solving the above optimization problem by
sequentially maximizing the gain. The optimum path can be found by backtracking.

Instead of max-sum, there is also a max-product example of dynamic programming
presented in Sect. 9.2.1. Other abstract models of dynamic programming have been
studied in [64].

9.1.3 Distance maps and min-plus recursions

The min-sum version of (8) models shortest path problems. Given a 2D rectangular
field f : V → R on a grid V of M × N pixels, its weighted distance transform is
defined by

D f (i, j) =
∧

(k,�)∈V
d(i − k, j − �) + f (k, �) (120)

where d(·) is the Euclidean distance. For various cases of f , the above distance compu-
tation problem is at the heart of several well-known optimization problems [25],[61].
If D f is available, we can solve the shortest path problem from any point by following
the gradient of the distance map.

If f equals q ′
S , which is the lower indicator function of a set S ⊆ V with values 0

on S and +∞ on V\S, then D f becomes the distance transform of the set S:

DS(i, j) = min
(k,�)∈S ‖i − k, j − �‖ (121)

which measures distances from S out into its containing field. Consider indexing
rowwise the 2D rectangular grid V of M × N pixels (i, j) as a 1D sequence of
points t = N (i − 1) + j , i = 1, . . . , M, j = 1, . . . , N . A good approximation to
the Euclidean distance function DS(t) is to compute the chamfer distance [11] by
propagating a 3 × 3 mask (8-pixel neighborhood) of local distance steps (a, b).

A serial implementation is an iterative algorithm where the 8-pixel neighborhood is
partitioned into two 4-pixel subneighborhoods, and each new array of results sequen-
tially passes through recursive infimal convolutions yi (t), i = 1, 2, 3, . . ., which for
odd i are a forward pass with the submask of Fig. 3a scanning rowwise the 2D field
from top to bottom and for even i are a backward pass with the reflected submask in the
reverse scanning order. The i th forward pass is described by the min-sum difference
equation

yi (t) = [
N+1∧

k=1

wk + yi (t − N + k − 2)] ∧ ui−1(t) (122)

where w1 = b, w2 = a, w3 = b, wN+1 = a and all other wk are +∞, u0 = q ′
S

and ui = yi for i ≥ 1. Its dynamics can be modeled by the min-sum version of the
general state equations (6). It admits a state-space model as in (117) with n = N + 1
states xk(t) = y(t − N + k − 2), the only differences being that the null elements
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a bb

a
(a) (b)

(c) (d)
Fig. 3 a Coefficient submask for forward pass of sequential distance transform. b Source set S and the
obstacle wall setW . cFirst (forward) pass of constrained distance transform with steps (a, b) = (24, 34)/25.
d Fourth (backward) pass and final result, shown with gray values modulo a constant

(−∞) in the sparse system matrices should be replaced with +∞, and all elements
in the last row of A and in C are +∞ except at four positions (k = 1, 2, 3, N + 1)
where they are equal to the corresponding local distances. The source set S could be
a small region from which we propagate distances; see Fig. 3b, c. If the field contains
impenetrable obstacles (like ‘walls’) W , distance maps can be produced that account
for this impenetrability, and then shortest paths can be found that avoid collision
with the walls, which is useful in robotics [63]. This can be done by imposing in
each iteration values +∞ at all points of the wall W . The algorithm (122) generally
converges to DS(t) = lim yi (t), and the number of required passes is two if there are
no obstacles; see Fig. 3d. For a 1D sequence S of points, we need only two passes as
the following example illustrates with recursions y1(t) = min[y1(t − 1) + 1, u0(t)]
and y2(t) = min[y2(t + 1) + 1, y1(t)]:

u0 ∞ 0 ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ 0
y1 ∞ 0 1 2 3 0 1 2 3 4 5 0
y2 1 0 1 2 1 0 1 2 3 2 1 0

Note that both recursive equations are stable min-plus systems.

9.2 Max-product systems

Another class of nonlinear dynamical systems is obtained by using the nonnegative
numbers K = [0,+∞] as scalars, the standard product (×) as scalar ‘multiplication,’
and the following max-product � and its dual �′ as generalized matrix ‘multiplica-
tions’ in (2) and (6):
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C = A � B = [ci j ] , ci j =
n∨

k=1

aik × bkj (123)

C = A �′ B = [ci j ] , ci j =
n∧

k=1

aik ×′ bkj (124)

The scalar multiplications × and ×′ coincide over (0,+∞), but a × 0 = 0 and
a ×′ (+∞) = +∞ for all a ∈ [0,+∞]. Henceforth, we shall use the same symbol
× for both scalar operations. Here the scalar arithmetic is based on the max-times
clog ([0,∞],∨,∧,×). This max-product formalism can model dynamical systems
whose inputs, states, and outputs are constrained to be nonnegative. Note that there is
an isomorphism between the max-sum and the max-product systems because, if we
have the following max-product state equations

x(t) = A � x(t − 1) ∨ B � u(t) (125)

and take logarithms of both sides elementwise, we obtain the max-sum equations

log x(t) = log A � log x(t − 1) ∨ log B � log u(t) (126)

Such systems have found applications in speech recognition and other natural language
processing tasks using finite-state automata [34,52], in computer vision [25], the max-
product algorithm in belief propagation [54] and related probabilistic graphical models
used in machine learning [7].

9.2.1 Viterbi algorithm and HMMs

Given a time sequence of observations (feature vectors) O = (ot )T
t=0, a fundamental

problem in their statistical modeling using hidden Markov models (HMMs) [55] with
n discrete states {1, . . . , n} is to find the best sequence of states ŝ = (s0, s1, . . . , sT )

that maximizes the probability Pr(O, s|θ), where θ = ([πi ], [ai j ], [pi ]) are the HMM
parameters: πi are the initial state probabilities at t = 0, ai j = Pr(st = j |st−1 =
i) are state transition probabilities, and pi (t) are the state-conditional observation
probabilities p(ot |st = i) often modeled by Gaussian Mixture models (GMMs).
Consider the highest probability of a single partial state sequence ending at state i at
time t and accounting for the first t + 1 observations:

xi (t) = max
s0,...,st−1

Pr[s0, . . . , st−1, st = i, o0, . . . , ot |θ] (127)

One solution is to use the Viterbi algorithm to find the max global score

P̂ = Pr(O, ŝ|θ) = max
i

xi (T ) (128)
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and then find the optimal state sequence via backtracking. This is essentially dynamic
programming and amounts to evolving the following system, for t = 1, . . . , T ,

xi (t) =
(∨n

j=1 a ji x j (t − 1)
)

· pi (t)
y(t) = ∨n

i=1 xi (t)
(129)

with xi (0) = πi pi (0). Then, this is a max-product system with matrices A(t) =
[a ji ]pi (t), C = [1, 1, . . . , 1] and zero input. The Viterbi score is given by the final
output P̂ = y(T ).

9.2.2 Attention control and multimodal saliencies

Assume a video sequence of audiovisual (AV) events each to be scored with some
degree of saliency in [0, 1] where ‘saliency’ is some bottom-up low-level sensory
form of attention by a human watching this video. The states x1, x2, x3, x4 rep-
resent time-evolving mono- or multimodal saliencies, where 1=audio, 2=visual,
3=audiovisual, and 4=nonsalient. Peaks in these saliency trajectories signify impor-
tant events, which can be automatically detected and produce video summaries that
agree well with human attention [24]. The following state equations are a possible
max-product dynamical model we have proposed for the evolution of these saliency
states [47]:

xi (t) =
⎛

⎝
4∨

j=1

a ji x j (t − 1)

⎞

⎠ � pi (t) ∨
⎛

⎝
4∨

j=1

bi j u j (t)

⎞

⎠ (130)

for state i = 1, 2, 3, 4. The constants ai j represent state transitions probabilities and
pi (t) = p(ot |st = i) denote the probabilities of observed low-level feature vectors ot
while being at the i th saliency state. We assume that the parameters ai j , bi j and pi (t)
are given.

Given a time sequence of such observations (ot ) one can fit HMMs to these data
using maximum likelihood. Then, the first term in the RHS of (130) models the evolu-
tion of the Viterbi dynamic programming algorithm (129) used in HMMs. For example,
if the inputs ui (t) are all null, then the single output y(t) = ∨

i xi (t) computes the
Viterbi score (128). One main difference of our system (130) with the Viterbi algo-
rithm (129) is that we have the probability-like signals ui (t) which can act as control
inputs coming possibly from previous human attention states or higher-level events,
e.g., detected human faces, voice activity, or text semantics. Another difference is
that the outputs of the dynamical system can be various min/max combinations of the
saliency states of various modalities, e.g., the single output

y(t) = c1x1(t) ∨ c2x2(t) ∨ d1u1(t) ∨ d2u2(t) (131)

forms a weighted max-product fusion of the audio and visual saliencies as well as the
two corresponding inputs. In such modality and input combinations, the max rule can
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Fig. 4 Evolution of audio (blue), visual (red) and audiovisual (green) bottom-up likelihoods computed from
observed features. We also see the human annotations and the 3-Best state paths using the max-product
dynamical system (130) with � being product operation and two control inputs u1(t) and u2(t) providing
binary information from voice and face detection, respectively (color figure online)

be replaced by min too. A third difference is that the data-controlled probabilities pi (t)
can enter not only via multiplication but also via any commutative binary operation �

that distributes over maximum. If � = max, then the pi (t) can be viewed as control
inputs. Finally, our CWL theoretical formulation allows us to also compute analytically
the responses of such max-product dynamical systems; see Sect. 4.

In our experiments [47], we estimated the state transition probabilities ai j using the
EM algorithm on some training data from movie videos. For estimating the observation
data probabilities pi (t), we fitted GMMs to audio and visual feature vectors extracted
from the video data at each frame t . Figure 4 shows the results (on testing data from
the same movie videos) of various approaches we have initiated to track the joint
audiovisual (AV) saliency state and compare it (i) with human annotations, i.e., binary
AV saliency manually annotated by a human who observed these movie videos, and
(ii) with an AV saliency automatically computed in [24] by fusing saliencies of the
audio and visual streams measured from monomodal cues. Our ongoing research goal
here is to develop a computational model that can track human attention in the form of
audiovisual saliency states based on multimodal sensory inputs. As shown in Fig. 4 and
explained numerically in [47], our results using the max-product dynamical system are
encouraging; they can track audiovisual saliencies with smaller error than bottom-up
feature-based local measurements and can improve with higher-level control input.

9.3 Max-Tnorm systems and fuzzy Markov chains

There are many types of nonlinear dynamical systems where the elements of the state,
input and output vectors represent probabilities or memberships. Examples include
probabilistic or fuzzy control systems [1,39,49], fuzzy image convolutions [8,45], as
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Table 4 T-norms, conorms and their adjoints

T-norm Adjoint t-norm T-conorm Adjoint t-conorm

T (a, v) ζ(a, w) U = T ∗(a, w) η(a, v)

min(a, v) max([w ≥ a], w)† max(a, w) min([v > a], v)

a · v min(w/a, 1) a + w − a · w max( v−a
1−a , 0)

†[P] is the Iverson bracket with value 1 (0) if P is true (false)

well as certain types of neural nets with max–min combinations of inputs [39,66]. The
dynamics of large classes of such systems can be described by the general model if
we restrict the set of scalars to be K = [0, 1] and use as scalar ‘multiplication’ a �b =
T (a, b) a fuzzy intersection norm [39], i.e., a binary operation T : [0, 1]2 → [0, 1]
that is i) commutative, ii) associative, iii) increasing and iv) satisfying the boundary
condition T (a, 1) = a for all a ∈ [0, 1]. This is also known as ‘triangular norm’
(t-norm) in statistics. We also require that T is continuous, which makes it a scalar
dilation [49]. As dual ‘scalar multiplication,’ we use a continuous binary operation
U (a, b) = a �′ b that satisfies (i)–(iii) and the dual boundary condition U (a, 0) = a.
This is a fuzzy union norm [39], also known as ‘t-conorm,’ and is a scalar erosion on
[0, 1].

Choosing in the general lattice dynamical model the above set of scalars and ‘mul-
tiplications’ among them creates the case of max-T norm and min-Unorm systems,
obtained by replacing in (2) and (6) the general max-� matrix multiplication and its
dual with the following versions:

C = A � B = [ci j ] , ci j =
n∨

k=1

T (aik, bkj ) (132)

C = A � ′ B = [ci j ] , ci j =
n∧

k=1

U (aik, bkj ) (133)

Usually we select U (a, b) = a �′ b = T ∗(a, b) where T ∗ is the conjugate norm
obtained via fuzzy complementation:

T ∗(a, b) = 1 − T (1 − a, 1 − b) (134)

then (T, T ∗) form a negation duality, but not an adjunction. The most well-studied
choice for the T norm and its dual norm T ∗ are the min and max operations, respec-
tively. Another known case is for T to equal the product operation. Table 4 shows
these cases and their adjoints so that (T, ζ ) and (η, T ∗) are scalar adjunctions. There
are also numerous other choices.

An application of the above ideas to state-space description and control of fuzzy
dynamical systems is presented in [49]. Further, dynamical systems with states x(t) ∈
[0, 1]n and transition rule based on the max–min matrix ‘multiplication’ (� = min)
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x(t + 1) = A � x(t) = A(t) � x(0), A = PT (135)

where P = [pi j ] ∈ [0, 1]n×n is the matrix of state transition probabilities or fuzzy
relations among states (i, j), have been called fuzzy Markov chains (FMCs) in [1] and
studied for decision-making. An advantage they have over classical Markov chains
(whose transition rule is based on the sum-product matrix multiplication) is that the
powers of the transition matrix always reach a stationary solution x(∞) in a finite
number of steps. Namely, the max–min powers of any matrix A either converge in
a finite time τ , i.e., A(τ+1) = A(τ ), or oscillate with a finite period ν after some
finite power τ . In the aperiodic case (ν = 1), if the limiting matrix A(τ ) has identical
columns, then the stationary solution x(∞) is independent of the initial state x(0) and
the FMC is called ergodic.

We can extend these results for more general FMCs by using alternative T -norms,
e.g., the product. Specifically, for both cases of Table 4 (i.e., when T is the minimum
or product operation on [0, 1]) Theorem 5 applies and in particular (95) always holds.
From this, we can deduce the finite convergence properties of generalized FMCs.
Further, if aii = 1 for all i , then it follows that A(t) ≤ A(t+1) for all t ≥ 1; hence from
(95) we can prove an aperiodic finite convergence since

Γ (A) = A(n) = A(t) ∀t > n (136)

Thus, A � Γ (A) = Γ (A). This implies that all columns of the metric matrix Γ (A)

are solutions of

A � x = x (137)

Such vectors are max-T eigenvectors of A whose principal eigenvalue is λ(A) = 1
and provide stationary solutions of the FMC. As a numerical example, consider the
transition matrix A and its powers of a max–min FMC:

A =
⎡

⎣
1 0.4 0

0.3 1 0.5
0.7 0.2 1

⎤

⎦ ≤ A(2) = A(3) = Γ (A) =
⎡

⎣
1 0.4 0.4

0.5 1 0.5
0.7 0.4 1

⎤

⎦ (138)

The columns of Γ (A) provide stationary solutions of this FMC, e.g.,

A � [1, 0.5, 0.7]T = [1, 0.5, 0.7]T. (139)

10 Conclusions

In this work, we have a developed a unified theory of nonlinear dynamical systems
of the max-� type and their dual min-�′ type over nonlinear vector and signal spaces
which we call complete weighted lattices (CWLs). Special cases include max-sum or
min-sum systems encountered in discrete event systems and shortest path problems,
max-product systems in statistical inference like the Viterbi algorithm, and the max-
fuzzy-norms systems encountered in certain types of neural nets and fuzzy control. We
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have studied several control-theoretical and signal processing aspects of such systems,
both by using CWLs for shorter proofs of known cases and by extending the theory
to more general cases. Further, we have also outlined several application areas that
are either new or not often encountered in the literature, which has emphasized so
far the max-plus case and its application to discrete events systems; examples include
state-space representation and stability analysis of geometric filtering, distance maps,
fuzzy Markov chains, a generalized Viterbi algorithm for HMMs with control inputs
and its application to tracking salient events in multimodal videos.

Overall, the unified formulation of the above systems and the corresponding CWL
framework provide several advantages over minimax algebra which include: capability
of handling both finite- and infinite-dimensional cases; coexistence over the same
space of the max-� and the dual min-�′ systems; lattice monotone operators that can
represent matrix–vector multiplications in both state-space and sup/inf input–output
signal convolutions; lattice adjunctions (pairs of dual operators) that yield optimal
solutions to max-� and min-�′ equations via lattice projections.

Acknowledgements The author wishes to thank the anonymous Reviewers for their constructive com-
ments. He also wishes to thank Petros Koutras at NTUA CVSP laboratory for producing Fig. 4 and Anastasios
Tsiamis at the University of Pennsylvania for Example 6.

References

1. Avrachenkov KE, Sanchez E (2002) Fuzzy Markov chains and decision-making. Fuzzy Optim Decis
Mak 1:143–159

2. Baccelli F, Cohen G, Olsder GJ, Quadrat J-P (1992) Synchronization and linearity: an algebra for
discrete event systems (web edition, 2001). Wiley, New York

3. Bellman R, Karush W (1961) On a new functional transform in analysis: the maximum transform. Bull
Am Math Soc 67:501–503

4. Bellman R, Karush W (1963) On the maximum transform. J Math Anal Appl 6:67–74
5. Bertsekas DP (2012) Dynamic programming and optimal control. Athena Scientific, Belmont (vol. I,

3rd ed., vol. II, 4th ed.)
6. Birkhoff G (1967) Lattice theory. American Mathematical Society, Providence, RI
7. Bishop CM (2006) Pattern recognition and machine learning. Springer, Berlin
8. Bloch I, Maitre H (1995) Fuzzy mathematical morphologies: a comparative study. Pattern Recognit

9(28):1341–1387
9. Blyth TS (2005) Lattices and ordered algebraic structures. Springer, Berlin

10. Blyth TS, Janowitz MF (1972) Residuation theory. Pergamon Press, Oxford
11. Borgefors G (1984) Distance transformations in arbitrary dimensions. Comput Vis Graph Image Pro-

cess 27:321–345
12. Brockett RW (1970) Finite-dimensional linear systems. Wiley, New York
13. Brockett RW (1994) Language driven hybrid systems. In: Proceedings of 33rd conference on decision

and control
14. Brogan WL (1974) Modern control theory. Quantum Publishers, New York
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