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ABSTRACT

In this paper, we describe an interactive generative music system,
designed to handle polyphonic guitar music. We formulate the prob-
lem of chord progression generation as a prediction problem. Thus,
we propose utilization of an LSTM-based network architecture in-
corporating neural attention that is able to learn a mapping between
symbolic representations of polyphonic chord progressions and fu-
ture chord candidates. Furthermore, we have developed a virtual
air-guitar controller, utilizing a Kinect device, that uses the above ar-
chitecture in order to change in real time the guitar chord mapping,
depending on the performer’s previous performance. The whole sys-
tem was evaluated both objectively and subjectively. The goal of the
objective evaluation was to measure the ability of the system to cor-
rectly generate chord candidates for existing chord progressions, as
well as identify the type of errors. The subjective evaluation mainly
focused on the longer-term behavior of the system, regarding the mu-
sical coherence and the variety of the generated progressions. The
results were encouraging regarding the ability of our system to gen-
erate sound chord progressions, while highlighting a number of is-
sues that require to be resolved.

Index Terms— chord progression generation, human- computer
interaction, LSTM networks, interactive performance system, chord
prediction

1. INTRODUCTION

In recent years, the rapid progress in the fields of artificial intelli-
gence and machine learning has led to an influx of development
in automatic music generation. While earlier attempts in the field
leaned on the use of Hidden Markov Models (HMMs) [1] in or-
der to capture the temporal dependencies in sound evolution, vari-
ous deep network architectures, such as Recurrent Neural Networks
(RNNs) [2, 3], Generative Adversarial Networks (GANs) [4] and
autoencoder architectures [5] have been more recently utilized in or-
der to create music generation systems. These systems are able, for
instance, to handle polyphony [4] and learn to synthesize music us-
ing composer-specific characteristics [6]. In specific, LSTM-based
autoencoders have found use in a plethora of applications, further
including polyphonic music generation [7] and learning long-term
temporal dependencies in music [8].

Despite the above, one area that still has lots of unrealized po-
tential is the integration of interaction in computer music generation.
This interaction can take a number of forms, usually including the
ability to interfere with a number of musical parameters [6], which
can aid in collaborative music synthesis between a human performer
and a generative AI. Furthermore, the appearance of non-intrusive

Fig. 1. Top: Snapshot of the developed environment for interact-
ing with a virtual air guitar, Bottom: Example of interactive chord
progression generation using our system.

motion sensors such as Microsoft Kinect or Leap Motion have made
easier the development of advanced multimodal interfaces, through
which a performer can interact with virtual music instruments that
can be either simulations, or augmentations, of real-world instru-
ments [9] or abstract explorations of musical spaces [10].

The work in this paper lies in the intersection between interac-
tive and generative music systems, suited for interactive polyphonic
guitar music generation. We formulate the generation of chord pro-
gressions from symbolic representations as a prediction problem.
As such, we experiment with LSTM-based neural networks, map-
ping chord sequences to their most probable following chords. In
the same vein, we incorporate neural attention mechanisms [11] in
our system, investigating their effect in the overall performance.

Furthermore, the chord progression generator has been incorpo-
rated into a multimodal interface [12] that facilitates interaction be-
tween a performer and a virtual air-guitar, using a Kinect device (see
Fig. 1 Top). Depending on specific gestures from the performer’s
part, a different candidate chord is triggered, according to which the
set of candidate chords is updated in real time (see Fig. 1 Bottom). In
this context, this work could be considered an example of “Creative
MIR” [13].
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The rest of the paper is organized as follows: A literature review
in interactive generative music systems is conducted in Sec. 2. In
Sec. 3, we present the architectures we experimented with, address-
ing the various design choices, and describe the process we followed
with regards to the dataset. An objective evaluation of the chord
progression generator is carried out and described in Sec. 4, while
in Sec. 5 we present a subjective evaluation of the interactive sys-
tem as a whole. Finally, conclusions and some possible future work
directions are described in Sec. 6.

2. RELATED WORK

Interactive and generative music systems can be combined in two
ways – either by introducing the ability to alter some implicit [6, 14]
or explicit [15] musical features on otherwise automatic generative
systems, or by the addition of generative elements in interactive se-
tups and installations. An example of such a strategy is described
in [16], where, following an initial mapping between control vectors
and musical parameters provided by the performer, the system learns
to generate music that is compatible with any user gesture that corre-
sponds to any potential control vector. Jive [17] is a generative music
system based on an evolutionary algorithm, where the user can inter-
act with it by providing scores to the system’s musical output, thus
helping the output to evolve towards their preferences.

A number of works have been published in recent years by Ma-
genta in the field of music generation, including Attention RNN
[18], which is trained using one-hot encoded sequences of musical
events. Similarly, Piano Genie [5] is an interactive piano controller,
trained as an end-to-end encoder-decoder with monophonic piano
sequences, and possessing a discretized intermediate latent layer.

Another work that lies in the boundary of polyphonic music gen-
eration and interactivity – in the form of co-improvisation between a
human performer and an AI – is that of Dong et al. [4, 19]. The main
idea of this work is that, given a complete melody sheet for a spe-
cific band instrument, melody sheets for the rest of the instruments
can be generated. In [4], Generative Adversarial Networks (GANs)
were utilized in order to create the melodic sheets in the form of bi-
nary pianorolls, while in an extension of this work in [19], the output
layer was augmented with the use of binary neurons.

Finally, a number of research works have been recently carried
out regarding guitar tablature generation. For instance, [20] reports
in the development of an intelligent tablature creator, using a ge-
netic algorithm in order to find the optimal hand positioning for each
chord with regards to minimizing the hand movement, while [21]
employs a probabilistic model that generates guitar solo tablatures
from pre-defined chords and keys.

3. METHODOLOGY

3.1. Overall Architecture

The overall architecture of our system is presented in Fig. 2. An
LSTM-based neural network is employed, in order to generate can-
didate chords from chord progression sequences. Whenever a chord
event is triggered, the input chord progression of the generator is
updated, and a new set of candidate chords is calculated.

To facilitate the interaction between a performer and the sys-
tem, a multimodal interface has been developed, deploying a Kinect
sensor. Whenever a performer stands in front of the sensor, a skele-
tonized avatar appears in the computer screen, including a virtual air
guitar, mounted around their waist. The performer can excite the vir-
tual instrument by performing plucking gestures with their dominant

Fig. 2. An overview of the whole system architecture.

Fig. 3. The E:major guitar chord (left), and its pianoroll notation
(right).

hand, moving it vertically at the height of their waist. The proposed
candidate chords are placed in the fretboard of the air-guitar, in de-
scending order, and whenever a plucking gesture is recognized, a
chord is played, depending on the positioning of the subdominant
hand of the performer in the fretboard [12].

3.2. Dataset and Feature Representation

For the training of our system, we used a modification of the Mc-Gill
Billboard dataset [22], which contains chord sequences of all weekly
no. 1 Billboard hits between 1958–1992, along with a number of
other features, such as the dominant instrument in each song.

In order to get a technically correct representation of chord pro-
gressions, we initially acquired the chord progression from each
song, using the song’s temporal scale as the resolution of the chord
progression. Next, we reduced the size of the dataset, pruning all
songs where the guitar was not the dominant instrument. Finally,
after removing duplicates, we were left with a total of 442 songs, or
192,869 chords.

A total of 560 unique chords were present in the dataset, and
thus, a simplified chord vocabulary was used, consisting of the fol-
lowing chord types: maj, min, 7th, dim, aug, sus2, sus4, ext (9ths,
11ths, etc), 5th (power chords) and 1st (bass notes). All 12 possible
chord chromas were considered, thus reducing the vocabulary size
to 121 chords, including silence.

To represent the various guitar chords, we use the pianoroll no-
tation, where the input takes the form of an array, where columns
correspond to time intervals, and rows to specific notes. The appear-
ance of a specific note in a chord event is denoted by a value of 1
in the corresponding array cell, otherwise, that cell is set to 0. An
example pianoroll representation for a chord is portrayed in Fig. 3.

3.3. Candidate Chord Generator Architecture

A block diagram architecture of the LSTM network we utilized in
order to generate candidate chords is presented in Fig. 4. We split
the problem of candidate chord generation in two: namely, we train
an auxiliary network to detect when the chord progression changes to
a different chord, and an LSTM-based network using as training data
only the chord progression sequences where a chord switch occurs.
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Fig. 4. A layer-level overview of the proposed chord switch detec-
tion (top) and candidate chord progression generator (bottom) net-
works.

The auxiliary network consists of two Dense layers, of 100 neu-
rons each, and a final neuron that predicts on whether a chord switch
will occur in the following timestep. For chord progressions of
length l, the input of the auxiliary network is a binary vector s, with
l − 1 elements, that equals:

s[t] =

{
1, Ct+1 6= Ct

0, otherwise.
(1)

On the other hand, the candidate chord generator consists of a
neural attention mechanism, three uni-directional LSTM layers, of
128 units each, as well as a final Dense layer, consisting of neurons
equal to the input representation size. The fact that chord progres-
sions in popular music have a somewhat repetitive structure, often
repeating the same chords after 8 or 16 quarters, motivated us to
include the attention mechanism in our architecture.

It is worth noting that we do not formulate the problem as a clas-
sification one, but as a regression one, since the network is trained to
generate chord pianorolls. In order to introduce an interactive com-
ponent in an otherwise generative architecture, we keep as poten-
tial outputs of the system a number of guitar chords, based on their
Euclidean distance between their representations and the network
output. For deploying the above architecture in the developed inter-
face, as a compromise between artistic expressivity and the sensing
capabilities of Microsoft Kinect, we set that number as equal to 5.
Moreover, when the switch detection mechanism does not predict a
chord change, these 5 chords are chosen as the previous chord and
the top 4 candidate chords.

However, this architecture has no intrinsic way to produce a
meaningful topological mapping of the output chords, since its fi-
nal output is a set of unordered vectors. In an attempt to solve this
problem, we calculate an one-dimensional mapping of the various
guitar chords, where each chord is assigned an integer index. To this
end, we utilize an evolutionary algorithm, intending to minimize the
following loss function, over all possible chords i, j in our corpus C:∑

i∈C

∑
j∈C

(
d sonic(i, j)

d spatial(i, j)

)
, (2)

where d sonic corresponds to the Euclidean distance between two
chord representations and d spatial is the distance of the two chords
in the mapped space. In practice, the system orders the predicted
chords using the mapping that minimizes the above quantity.

4. OBJECTIVE EVALUATION AND DISCUSSION

The dataset was split into training, validation, and testing data, in a
3:1:1 ratio, and the data were standardized before being fed to the

Fig. 5. Top-1 (left) and top-5 (right) chord prediction accuracy for
all of the tested architectures, with respect to the chord progression
length (in timesteps).

Fig. 6. Top-1 (left) and top-5 (right) chord prediction accuracy in the
cases where a chord switch occurs, for all of the tested architectures,
with respect to the chord progression length (in timesteps).

network. The proposed architecture (denoted as A+S) was evalu-
ated against a baseline model that includes neither the switch pre-
dictor nor the attention module (B), an architecture that includes the
switch predictor but not the attention module (S) and a model where
the attention module is connected directly to the latent space before
the last LSTM layer (SA+S). All architectures were trained for 20
epochs, using 5-fold cross validation, the Adam [23] optimizer with
a learning rate of 0.001, and batch size equal to 128. We used both
top-1 and top-5 chord prediction accuracy as metrics, since the in-
teractive component of our system is designed to handle 5 chords
simultaneously.

The results of this comparative analysis, for various input chord
progression lengths (in timesteps), are shown in Figures 5, 6. For
small sizes of the input chord progression, we can see that neither
the switch detection mechanism nor the attention module affect pos-
itively the overall prediction accuracy. Increasing the input chord
progression length to 8 and 16 timesteps yields a more concrete
effect in the chord prediction accuracy, that is mainly attributed to
the switch detection mechanism. However, while both architec-
tures without a neural attention mechanism seem to plateau at 16
timesteps, the switch-attention network (A+S) achieves higher chord
prediction when 32 timesteps are used. The attention mechanism
seems to be successful in identifying the most important instances
in the chord progression sequence in order to predict the follow-
ing chords. Finally, we may note that connecting the input attention
mechanism to the output of the second LSTM layer yields a behavior
similar to the cases where no attention mechanism is utilized.

In Fig. 6, the chord prediction accuracy in the cases where the
played chord is different to the one played at the previous timestep
is presented. We note that, rather expectedly, it is significantly lower
compared to the overall accuracy. In contrast to the overall accu-
racy, we can see that the baseline architecture does not outperform
the modified ones, for any input chord progression length. Finally,
as seen in Figs 5, 6, the top-5 accuracy follows the same trends as
the top-1 accuracy, with respect to both the input chord progression
length and network architecture.
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Setup Top-1 % Top-5 %
Acc. C.Acc. T.Acc. Acc. C.Acc. T.Acc.

B 79.40 81.26 85.00 82.20 86.28 93.81
S 81.05 82.74 85.96 84.56 91.44 97.54

A+S 82.60 84.34 86.6 86.21 91.17 97.24

Table 1. Top-1 and top-5 chord prediction accuracies, regarding the
chord (Acc.), the chord chroma (C.Acc.) and the chord type (T.Acc),
for the baseline (B), switch (S) and attention-switch (A+S) architec-
tures.

Setup Top-1 % Top-5 %
Acc. C.Acc. T.Acc. Acc. C.Acc. T.Acc.

B 32.60 38.66 56.03 39.62 52.21 80.21
S 35.12 40.66 48.06 43.32 52.22 66.10

A+S 41.06 48.67 51.01 48.58 58.32 66.81

Table 2. Top-1 and top-5 chord prediction accuracies, regarding the
chord (Acc.), the chord chroma (C.Acc.) and the chord type (T.Acc),
for the baseline (B), switch (S) and attention-switch (A+S) architec-
tures, in the instances of chord change.

In an attempt to further study the behavior of the architectures,
we repeat the above experiment, for the baseline network (B), the
one using a chord switch detector (S) and the one further utilizing
attention (A+S), setting the input chord progression length equal to
32 timesteps. We do not only report on the percentage of instances
where the chord prediction is absolutely correct (Acc.), but we fur-
ther calculate the percentage of instances where the chord prediction
is correct with respect to either the chord chroma (C. Acc.), or the
chord type (T. Acc.). Again, we differentiate between overall accu-
racy percentages, and accuracy percentages in chord shift instances,
since the second case is significantly more challenging, while taking
into account both top-1 and top-5 accuracy percentages.

The results of the above analysis are presented in Tables 1, 2.
We may conclude that it is generally easier for the tested network ar-
chitectures to infer the type of the following chord, compared to its
chroma. This is especially apparent for the architectures not utiliz-
ing an attention mechanism, since their prediction accuracy regard-
ing the chord type is comparable - and, in the case of the baseline,
superior - to the one that utilizes it. This surprising result could be
explained, given that the baseline architecture has been trained using
the full dataset, where the chord type remains the same in the major-
ity of instances, which is actually the prevalent behavior in the chord
shift instances as well. Otherwise, there is no significant trend differ-
ence between the top-1 and top-5 accuracy percentages. Finally, we
observe that the comparative advantage of the attention-utilizing net-
work is increased when taking into account only the instances where
the chord progression shifts into a different chord.

5. SUBJECTIVE EVALUATION

In order to further study the long-term behavior of our system, we
designed a simple experiment. We deployed three different architec-
tures - the baseline (B), the baseline utilizing a switch mechanism
(S), and the attention-utilizing architecture (A+S) to our interactive
environment, using the tensorflow.js1 framework. Three distinct in-
put chord sequences were also provided as seeds for initializing the
networks. A total of 12 users, 9 male and 3 female, of an average age
of 27.33 years, out of whom 6 had prior musical knowledge, tested

1www.tensorflow.org/js

Architecture Musical Coh. Variety
B 3.58 1.83
S 3.33 3.08

A+S 3.08 3.67

Table 3. Results of the subjective evaluation of our system with
regards to perceived musical coherence and variety of proposed
chords, using a 5-point Likert scale.

our system for 10 minutes each, using all possible network configu-
rations, as well as a variety of potential seed sequences for each con-
figuration. The network architecture was changed and re-initialized
whenever either the users felt satisfied with their interaction with the
system, or the architecture converged to a specific set of proposed
chords. Afterwards, they were asked to evaluate the output of the
system with regards to the perceived musical coherence of the pro-
vided song, as well as the variety of the suggested chords over time,
in 5-point Likert scales.

The results are presented in Table 3. In the case of the subjec-
tive evaluation, the use of a neural attention mechanism in the chord
generator largely increased the variety of chords offered, steering
clear of proposing the same chord progressions in the long term.
This issue was especially evident in the case of the simple LSTM ar-
chitecture, whereas it was comparatively avoided in the architecture
utilizing the switch mechanism - likely because of the different train-
ing subset used for the generator network in this case. We further
note that the two architectures not utilizing the attention mechanism
yielded, albeit not significantly, more coherent chord progressions.
Finally, it was observed that the general behavior of the architectures
was relatively independent of the initial seed choices.

6. CONCLUSIONS AND FUTURE WORK

In this work, we studied the use of LSTM-based architectures uti-
lizing attention modules in the tasks of chord prediction and chord
progression generation. Whilst the results are relatively satisfying
with regards to the short-term prediction ability of our system, there
is still ground to cover in long-term chord progression generation, as
evidenced by the subjective evaluation results. Future expansions of
the current work could involve incorporation of recent breakthroughs
in natural language modeling techniques into chord prediction. Fur-
thermore, the final mapping between the generator’s output and the
proposed chords could be done by using a different chord represen-
tation or distance metric, so that the chord proposals are more per-
ceptually consistent. Finally, the whole generative system could be
more extensively evaluated with regards to adhering to musical pat-
terns.
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