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ABSTRACT

In this paper we propose a novel approach for multivariate convex
regression by using as approximation model a maximum of hyper-
planes, which we represent as a multivariate max-plus tropical poly-
nomial. Our approach uses concepts from tropical geometry and
finds an optimal solution for the model parameters (that minimizes
a data fitting error norm) by solving systems of max-plus equations
using max-plus algebra and projections on weighted lattices. Our
method has lower complexity than most other methods for fitting
piecewise-linear (PWL) functions and we apply it to optimal PWL
regression for fitting max-plus tropical surfaces to arbitrary data that
constitute polyhedral shape approximations.

Index Terms— multivariate convex regression, piecewise-linear
surface fitting, tropical geometry, max-plus algebra

1. INTRODUCTION

In multidimensional signal modeling and machine learning a fun-
damental nonlinear regression problem is fitting piecewise-linear
(PWL) functions to data. Approximations with PWL functions have
proven analytically and computationally very useful in many fields
of science and engineering, including splines, nonlinear circuits and
systems modeling, machine learning, convex optimization, geomet-
ric programming, and statistics. Two major problems in this area are
representation, i.e. finding a better class of functions with analytical
expressions to represent them, and their parameter estimation for
modeling a nonlinear system or fitting some data. Further, while
these problems are well-explored in the 1D case, they remain rela-
tively underdeveloped for multi-dimensional data.

The authors of [1, 2] have introduced the so-called canoni-
cal representation for continuous PWL functions, consisting of
an affine function plus a weighted sum of absolute-value affine
functions (defining linear partitions) and extensively studied its ap-
plication for nonlinear circuit analysis and modeling. This has the
advantages over the conventional representation that it is global,
explicit, analytic, compact (smaller number of model functions and
corresponding parameters), and computationally efficient (easy to
store and program). However, it is complete only for 1D PWL
functions. In higher dimensions it needs multi-level nestings of
the absolute-value functions. Tarela et al [3], by combining their
previous work on representing PWL functions with lattice gener-
alizations of Boolean polynomials with the general f − φ model
for PWL functions of [4], developed a constructive way to generate
min-max combinations of affine functions which provide a complete
representation of continuous PWL functions in arbitrary dimensions.
Wang [5] completed the construction of a canonical representation
for arbitrary continuous PWL functions in n-dimensions by start-
ing from the lattice presentation of [3], producing an equivalent

representation as a difference of two convex functions, each being
max-affine, and then converting each max-affine function to a canon-
ical representation that involved n-level nestings of absolute-value
functions.

A more recent approach is to focus on the class of convex PWL
functions represented by a maximum of affine functions (i.e. hy-
perplanes) and use them for data fitting. Starting from early least-
squares solutions, some representative recent approaches to solve
this convex regression problem include [6, 7, 8, 9]. In all these ap-
proaches, there is an iteration that alternates between partitioning the
data domain and locally fitting affine functions (using least-squares
or some linear optimization procedure) to update the local coeffi-
cients. For a known partition the convex PWL function is formed
as the max of the local affine fits. Then, a PWL function generates
a new partition which can be used to refit the affine functions and
improve the estimate. This iteration is viewed in [9] as a Gauss-
Newton algorithm, similar to the K-means algorithm. The order K
of the model can be increased until some error threshold is reached.
Generalizations of the above max-affine representation for convex
functions include works that use softmax instead of max, via the
log-sum-exp models for convex and log-log convex data [7, 10].

In this paper we focus on multivariate convex PWL functions
which, if represented as maximum of hyperplanes, can be identified
with max-plus tropical polynomials. This allows us to use concepts
and tools from the mathematical fields of tropical geometry and max-
plus algebra to optimally solve a fundamental regression problem of
approximating the shape of surfaces by fitting tropical polynomials
to data, possibly in the presence of noise.

Tropical Geometry [11, 12] uses a max-plus and min-plus semir-
ing arithmetic, which are also used in other fields including: max-
plus control and optimization [13, 14, 15, 16, 17, 18]; finite automata
[19]; convex analysis [20]; morphological image analysis [21, 22,
23]; speech recognition [24]; neural networks [25, 26, 27, 28].

In this paper, whose preliminary version is based on [29] and
whose full theoretical details can be found in [30], we begin in Sec-
tion 2 with some elementary concepts from weighted lattices, max-
plus algebra, and tropical geometry. Then, in Section 3 we out-
line the optimal solution of max-plus equations using projections
on weighted lattices, and apply it in Section 4 to optimal piecewise-
linear regression for fitting max-plus tropical surfaces to arbitrary
data that constitute polyhedral shape approximations.

2. BACKGROUND CONCEPTS

Notation: For max and min operations we use the well-established
lattice-theoretic symbols of ∨ and ∧. We use roman letters for func-
tions, signals, and their arguments, and greek letters mainly for op-
erators. Also, boldface roman letters for vectors (lowcase) and ma-
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trices (capital). If M = [mij ] is a matrix, its (i, j)-th element is also
denoted as mij or as [M]ij . Similarly, x = [xi] denotes a column
vector, whose i-th element is denoted as [x]i or simply xi.

Weighted Lattices and Max-plus Algebra: Max and min op-
erations (or more generally supremum and infimum) form the al-
gebra of lattices. Max-plus arithmetic forms an idempotent semir-
ing (Rmax,∨,+) where Rmax = R ∪ {−∞} and the real num-
ber addition and multiplication are replaced by the max and sum
operations, respectively. We combine the max-plus and min-plus
scalar arithmetic into an algebraic structure called complete lattice-
ordered double monoid (clodum) which consists of the extended re-
als R = R ∪ {−∞,+∞} equipped with the maximum (∨), mini-
mum (∧), and addition (+) operations. Then, we consider nonlinear
vector spaces, called complete weighted lattices (CWLs) [31], where
the traditional vector addition of linear spaces is replaced by vector
supremum and its dual infimum, and the multiplication of vectors by
scalars is replaced by addition of vectors with scalars from R. In this
paper we work on the finite-dimensional CWL Rn

, equipped with
the lattice pointwise operations of partial ordering x ≤ y, supre-
mum x ∨ y = [xi ∨ yi] and infimum x ∧ y = [xi ∧ yi] between
any vectors x,y ∈ Rn

. Vector transformations from Rn
to Rm

that
obey a max-plus (resp. min-plus) superposition are lattice dilations
δ (resp. erosions ε) and can be represented as a max-plus product
� (resp. min-plus product �′) of a matrix A ∈ Rm×n

with an input
vector x ∈ Rn

; these tropical matrix products are defined as:

[A�B]ij ,
∨
k

aik + bkj , [A�
′ B]ij ,

∧
k

aik +′ bkj (1)

Thus, δA(x) , A � x is a dilation, and εA(x) , A �′ x is its
dual erosion vector operator. More general clodums, using a max-?
algebra where the operation ? distributes over max, and correspond-
ing CWLs are developed in [31].

Tropical Polynomial Curves and Surfaces: Consider the ana-
lytic expressions for a Euclidean line and parabola:

p1(x) = ax+ b, p2(x) = ax2 + bx+ c (2)

‘Tropicalization’ (i.e. replacing sum with max and multiplication
with addition) yields corresponding max-plus tropical polynomials:

pmax
1 (x) = max(a+x, b), pmax

2 (x) = max(a+2x, b+x, c) (3)

The graphs of all the above can be seen in Fig. 1. The equations for
the min-plus case are identical as in (3) by replacing max with min.

Consider the equations of the following tropical planes repre-
sented as 2D max-plus and min-plus polynomial of degree 1:

f1(x, y) = min(5+x, 7+y, 9), f2(x, y) = max(0+x, 2+y, 7),
(4)

whose graphs can be seen as surfaces in Fig. 1. As a next example, to
the general Euclidean conic polynomial ax2+bxy+cy2+dx+ey+f
there corresponds the following two-variable max-plus tropical poly-
nomial of degree 2:

pt−conic(x, y) = max(a+2x, b+x+y, c+2y, d+x, e+y, f) (5)

Its min-plus version is shown in Fig. 1.
In [30] we explain analytically how the tropical polynomials re-

sult from a dequantization [18] of real algebraic geometry [12].

3. SOLVING MAX-? EQUATIONS AND OPTIMIZATION

Consider the scalar clodum (R,∨,∧,+), a matrix A ∈ Rm×n
and

a vector b ∈ Rm
. The set of solutions of the max-plus equation

A� x = b (6)

is either empty or forms an idempotent semigroup under vector ∨.
A related problem in applications of max-plus algebra to scheduling
is when a vector x represents start times, a vector b represents finish
times, and the matrix A represents processing delays. Then, if A �
x = b does not have an exact solution, it is possible to find the
optimum x such that we minimize a norm of the earliness subject
to zero lateness. The optimum will be the solution of the following
constrained minimization problem:

Minimize ‖A� x− b‖p s.t. A� x ≤ b (7)

where the norm || · ||p is any `p norm with p = 1, 2, . . . ,∞. While
the two above problems have been solved in [32] for the max-plus
case and for p = 1 or p =∞, in [31] a more general result has been
found using adjunctions for the general case of an arbitrary clodum.

Theorem 1 ([32]) (a) If Eq. (6) has a solution, then its greatest
solution is

x̂ = ε(b) = A∗ �′ b = [
∧
i

bi − aij ], A∗ , −AT (8)

(b) The unique solution to problem (7) is (8) for p = 1 and p =∞.
(c) If 2µ = ‖A � x̂− b‖∞ = ‖A � (A∗ �′ b)− b‖∞ is the `∞
error corresponding to the greatest subsolution, then

x̃ = µ+A∗ �′ b (9)

is the unique optimum solution of the unconstrained problem of min-
imizing ‖A� x− b‖∞.

The computational complexity to find both optimal solutions x̂
and x̃ is O(mn) additions.

Consider the vector dilation δ(x) = A�x; then ε(x) = A∗�′

x is its adjoint vector erosion. A main idea for solving (7) is to
consider vectors x that are subsolutions, i.e. δ(x) = A � x ≤ b,
and find the greatest such subsolution x̂ = ε(b), which yields either
the greatest exact solution of (6) or an optimum subsolution. This
creates a lattice projection onto the max-plus span of the columns
of A via the lattice opening δ(ε(b)) ≤ b that best approximates b
from below. Details can be found in [31]. Projections on idempotent
semimodules, which are weaker algebraic structures than weighted
lattices, have been studied in [33, 13].

4. OPTIMAL FITTING TROPICAL POLYNOMIALS TO
DATA AND SHAPE APPROXIMATION

We focus on convex PWL regression via the max-affine model,
which has a tropical interpretation, and propose a direct non-iterative
and low-complexity approach to estimate its parameters by using the
optimal solutions of max-plus equations of Sec. 3. We note that
the max-affine representation is not limited to PWL functions only,
because we can represent any convex function as a supremum of
a (possibly infinite) number of affine functions via the Fenchel-
Legendre transform [34, 20]. Closely related ideas are based on
lattice-theoretic slope transforms [35] that generalize this result to
non-convex functions and approximate representations.
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Fig. 1. (a)-(d) Euclidean and tropical 1D polynomials. (e)-(f) Tropical planes in (4). (g) Min-plus version of tropic conic in (5).

4.1. Optimal Fitting Tropical Lines and Planes

We examine a classic problem in machine learning, fitting a line to
data by minimizing an error norm, in the light of tropical geometry.
Given data (xi, fi) ∈ R2, i = 1, ...,m, if we wish to fit a Euclidean
line f(x) = ax + b by minimizing the `2 error norm, the optimal
solution (least squares estimate - LSE) for the parameters a, b is

âLS =
m
∑

i xifi − (
∑

i xi)(
∑

i fi)

m
∑

i(xi)
2 − (

∑
i xi)

2
, b̂LS =

1

m

∑
i

(fi−âLSxi)

(10)
Suppose now we wish to fit a general tropical line f(x) = max(a+
x, b) by minimizing some `p error norm. The equations and solution
for finding the optimal parameters w = (a, b) become: x1 0

...
...

xm 0


︸ ︷︷ ︸

X

�

[
a
b

]
︸ ︷︷ ︸

w

=

 f1
...
fm


︸ ︷︷ ︸

f

=⇒
[
â

b̂

]
︸ ︷︷ ︸

ŵ

=

[ ∧
i fi − xi∧

i fi

]
︸ ︷︷ ︸

X∗�′f

(11)
This vector ŵ yields (after max-plus ‘multiplication’ with X) the
greatest lower estimate (GLE) of the data f . Thus, the above ap-
proach allows to optimally fit (w.r.t. any `p error norm) tropical
lines to arbitrary data from below. In addition, we can obtain the
best (unconstrained) approximation with a tropical line that yields
the smallest `∞ error. This minimum max absolute error (MMAE)
solution is, by Theorem 1, w̃ = ŵ+µwhere µ = 1

2
‖X�ŵ−f‖∞.

Figure 2 shows an example.
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Fig. 2. (a) Optimal fitting of a max-plus tropical line y = max(x−
2, 3) (shown in black dash curve) to data from the line corrupted
by additive i.i.d. Gaussian noise ∼ N (0, 0.25). Blue line: Eu-
clidean line fitting via least squares. Red line: best subsolution
(GLE). Green line: best unconstrained (MMAE) solution. (b) Same
experiment as in (a) but with uniform noise ∼ Unif[−0.5, 0.5].

The above approach can be extended to fitting tropical planes

f(x, y) = max(a+ x, b+ y, c) (12)

to given data (xi, yi, fi) ∈ R3, i = 1, ...,m, where fi = f(xi, yi)+
error, by minimizing some `p error norm. The equations to solve for
finding the optimal parameters w = (a, b, c)T become: x1 y1 0

...
...

...
xm ym 0


︸ ︷︷ ︸

X

�

 a
b
c


︸ ︷︷ ︸

w

=

 f1
...
fm


︸ ︷︷ ︸

f

(13)

By Theorem 1 the optimal subsolution is â

b̂
ĉ

 = ŵ = X∗ �′ f =

 ∧m
i=1 fi − xi∧m
i=1 fi − yi∧m

i=1 fi

 (14)

The MMAE solution is given by w̃ = ŵ + µ where µ = 1
2
‖X �

ŵ− f‖∞, but the data matrix X and vector f refer now to the plane.

4.2. Surface Regression by Fitting Tropical Polynomials

The above approach and solution can also be generalized to polyno-
mials of higher degree and to multi-dimensional data. We wish to fit
a n-dimensional max-plus tropical polynomial

f(x) = max(aT
1 x+b1,a

T
2 x+b2, . . . ,a

T
Kx+bK) =

K∨
k=1

aT
k x+bk

(15)
to given data (xi, fi) ∈ Rn+1, i = 1, ...,m, where fi = f(xi) +
error, by minimizing some `p error norm. The exact equations are

aT
1 x1 aT

2 x1 · · · aT
Kx1

aT
1 x2 aT

2 x2 · · · aT
Kx2

...
...

...
...

aT
1 xm aT

2 xm · · · aT
Kxm


︸ ︷︷ ︸

X

�


b1
b2
...
bK


︸ ︷︷ ︸

w

=


f1
f2
...
fm


︸ ︷︷ ︸

f

(16)
We assume that the slope vectors ak are given and we optimize for
the parameters {bk}. By Theorem 1, the optimal subsolution for
minimum `p error is b̂1

...
b̂K

 = ŵ = X∗ �′ f =


∧m

i=1 fi − aT
1 xi

...∧m
i=1 fi − aT

Kxi

 (17)

Note that X � ŵ ≤ f . Further, by Theorem 1, the unconstrained
solution that yields the minimum `∞ error is

w̃ = µ+ ŵ, µ =
1

2
‖X� ŵ − f‖∞ (18)



Our assumption for known slope vectors ak does not pose a signifi-
cant constraint in many cases where the degree of the polynomial is
relatively small, in which case we allow the ak to assume all integer
values up to the maximum degree. If this is not the case, another ap-
proach is to compute the derivatives (or gradients) of the given data,
cluster the data gradients using K-means and use the centroids of
the K clusters as our given slope vectors. Next we apply the above
approaches for optimally solving two cases with 2D examples.

As a 2D example with known slopes, let us fit the graph surface
of a symmetric max-plus tropical conic polynomial

p(x, y) =
∨

0≤|k+`|≤2, k·`≥0

bk` + kx+ `y (19)

to given data (xi, yi, fi) ∈ R3, i = 1, ...,m, where fi = p(xi, yi)+
error by minimizing some `p error norm. From our general result in
(18), the optimal unconstrained solution (for MMAE) is w̃ = µ+ŵ
where ŵ = X∗ �′ f and µ is half the `∞ error incurred by ŵ. The
MMAE solutions for the model are shown in Fig. 3 for fitting data
from a noisy paraboloid.

The 3D data tuples in Fig. 3 are 500 observations from the noisy
paraboloid surface [6]

z = x2 + y2 + ε (20)

where ε ∼ N (0, 0.252) is zero-mean noise and the planar locations
xi, yi of the data points were drawn as i.i.d. random variables ∼
Unif[−1, 1]. Now, the model we are fitting has rank K and is

f(x, y) = max(a1x+ b1y + c1, ..., aKx+ bKy + cK), (21)

where (ak, bk) are computed using K-means on the numerical gra-
dients of the 2D data, and ck are computed using the tropical fitting
algorithm. See Fig. 3. The errors are given in Table 1.
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Fig. 3. 2D Tropical fitting using the optimal unconstrained (MMAE)
approach to data from (20). (a) Tropic conic with known integer
slopes. (b)-(d) Slopes found via K-means on gradients.

Computational Complexity: The prevailing trend in recent
methods to fitting m data points in Rn+1 using a max of K n-
dimensional hyperplanes aT

k x + bk, which we view as max-plus
tropical polynomials, is a variety of iterative nonlinear least-squares
algorithms. The number of model parameters is K(n + 1). The

GLE MMAE
K errorRMS ‖error‖∞ errorRMS ‖error‖∞

11 (conic) 0.6307 1.7049 0.4167 0.8524
10 0.6659 1.6022 0.3641 0.8011
25 0.5674 1.2779 0.3016 0.6389
50 0.5489 1.3068 0.3159 0.6534
100 0.5364 1.2828 0.3135 0.6414

Table 1. Minimum RMS error and minimum maximum absolute
error for the optimal unconstrained tropical fitting of the function
(20) using either a 2D tropical conic or a K-term optimal fit whose
gradients are found via K-means.

traditional least-squares estimator (LSE) [6] solves a quadratic pro-
gram with constraints and has a total complexity ofO((n+1)3m3).
Clearly, this becomes intractable for large number of data points
and, also, as the dimensionality increases. In [9, 7] the nonlinear
least-squares problems is solved iteratively where each iteration
involves some partitioning of the data into K clusters and least-
squares fitting of hyperplanes over the different K clusters. This has
a complexity of O((n+ 1)2mı) where ı is the number of iterations
until convergence; however, this least-squares partition algorithm
does not always converge, and even in cases of convergence the fit to
the data may be poor. The authors in [9, 7] propose running several
instances of their algorithm, with different random initializations, in
order to achieve a better fit to the data. The convex adaptive parti-
tioning algorithm proposed in [6] is consistent and has a complexity
of O(n(n + 1)2m log(m) log(log(m))); its most demanding part
is the least-squares fits, each of complexity O((n+ 1)2m).

In contrast, the complexity of our algorithm is dominated
only by the K-means computation, which has a complexity of
O(Kmni), where i is the number of K-means iterations. After the
K centroids ak have been computed, our algorithm simply does a
single pass over the data for the tropical regression to find the bk,
with total complexity O(Km). Therefore, the overall complexity of
our tropical regression algorithm is O(Kmni). In general, assum-
ing that the data have some clustering structure, the required number
of K-means iterations to find the slopes is small and thus our al-
gorithm can be considered “linear” in practice. In non-pathological
cases, we can assume that the iK is significantly smaller than m
and can be treated as a constant, resulting in an overall complexity
of O(mn), thus improving on the CAP algorithm bound [6], and
greatly improving on the traditional LSE. In terms of performance,
as long as the number of clusters is not too small (so that in each
cluster its elements are adequately represented by the centroid), then
the tropical algorithm will produce good PWL fits to the data.

5. CONCLUSIONS

Tropical geometry and max-plus algebra share a common idempo-
tent semiring arithmetic, which also has a dual counterpart. Both can
be extended and generalized using a weighted lattice algebra over
corresponding nonlinear vector spaces. Using this framework, we
developed optimal solutions (using adjunctions of vector dilations
and erosions that are lattice projections) for solving general max-
plus systems of equations and optimal fitting of tropical hyperplanes
to data. This tropical regression provides piecewise-linear (PWL)
approximations to surfaces at a linear complexity, which is signifi-
cantly lower than least-square estimates for PWL shape regression
of multi-dimensional data.
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