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Abstract

Neural Network pruning is an increasingly popular way for producing compact and
efficient models, suitable for resource-limited environments, while preserving high perfor-
mance. While the pruning can be performed using a multi-cycle training and fine-tuning
process, the recent trend is to encompass the sparsification process during the standard
course of training. To this end, we introduce Feather, an efficient sparse training mod-
ule utilizing the powerful Straight Through Estimator as its core, coupled with a new
thresholding operator and a gradient scaling technique, enabling robust, out-of-the-box
sparsification performance. Feather’s effectiveness and adaptability is demonstrated using
various architectures on the CIFAR dataset, while on ImageNet it achieves state-of-the-art
Top-1 validation accuracy using the ResNet-50 architecture, surpassing existing methods,
including more complex and computationally heavy ones, by a considerable margin.

1 Introduction
Machine learning applications have benefited tremendously in the past decade from the use of
Deep Neural Networks (DNNs), especially in the field of computer vision [22]. While DNNs
are more than capable at achieving state-of-the-art (SoA) results, they rely upon having very
large numbers of trained parameters and thus require huge amounts of computational and
memory resources [14, 20, 34]. Those requirements often prohibit the use of powerful DNNs
in mobile and resource-limited devices, resulting in a gap between the achieved SoA results
and the ones coming from the deployed technology. Recognizing that DNNs are heavily
over-parametrized [32], network pruning (i.e. the process of removing network parameters)
has been studied extensively in the recent years as a way of drastically reducing the model’s
size and computational footprint [3, 5, 15, 24].

Broadly the pruning methodology can be categorized in terms of (a) the granularity
of the sparsified elements, (b) the pruning criterion and (c) the timeframe the sparsity
is induced. Based on granularity methods are divided between structured or unstructured.
Structured methods remove groups of parameters such as kernels and filters [23, 28], attaining
sparsity that is more easily utilized by commodity hardware for computational gains, while
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unstructured freely remove individual parameters, generally leading to more accurate sparse
models [11, 12]. As pruning criterion, a large number of methods associate parameter
importance with large magnitude values and prune elements with magnitudes smaller than
some threshold value [11, 12, 40]. This simple criterion, judging a weight’s importance based
on its magnitude, is efficient to compute and is found to be effective in the pruning literature,
achieving high sparsity ratios with minimal performance loss [9, 12]. An alternative way
involves estimating how pruning an element will affect the training loss, however requires
calculating Hessian information which is computationally expensive [1, 7, 13]. Finally,
considering at what stage of the training process the pruning takes place, the different
algorithms are usually divided into dense-to-sparse and sparse-to-sparse training [21]. The
former, starting with a dense network produce the requested sparse version at the end of
the pruning procedure [12, 21, 40]. Some methods of this type require multiple pruning
and retraining cycles [29] and thus prolong the required training time. Sparse-to-sparse
methodologies aim to reduce training times even further by starting training an already
sparse network[6, 26, 27] although the achieved performances generally fall behind of those
using dense-to-sparse training methods [21].

More recently, a number of works [18, 30, 33, 35] which are built around the concept
of the Straight Through Estimator (STE) [2] have demonstrated that SoA results can be
achieved by pruning DNNs along the normal course of training. Sparse training with the STE
is performed by computing the forward pass using the thresholded (pruned) version of the
weights while updating the dense weights during the backward pass, treating the thresholding
function (that performs the pruning) as the identity.

In our work, we focus on improving sparse training with the STE by addressing a
number of overlooked shortcomings of the method, eventually introducing a novel pruning
module. We propose (i) a new thresholding function used for magnitude pruning and (ii) a
straightforward way to control gradient flow of the pruned weights. More specifically, instead
of using hard or soft thresholding [8], which previous STE based methods mostly use, we
propose a family of thresholding functions that lie in between the aforementioned two and
combine their advantages, namely reduced bias between the thresholded weights and their
dense counterparts and a smooth transition region near the threshold. Complementary to
the proposed thresholding approach, we suggest scaling the gradients attributed to pruned
parameters by a parameter 𝜃 ∈ (0,1), aiming on improving the stability of the pruning mask,
a factor that we find to be crucial when targeting very high sparsity ratios.

We demonstrate the effectiveness of our sparse training approach when applied to mag-
nitude based unstructured pruning frameworks, which reach a user-specified sparsity ratio
by incrementally pruning the network during training. In more detail, we perform extensive
experiments on both CIFAR [19] and ImageNet [4] datasets using a very simplistic global
thresholding pruning procedure as a backbone and additionally with a recently proposed
layer-wise pruning framework [30]. Our sparse training approach surpasses the (generally
more computationally expensive) current SoA unstructured pruning algorithms, significantly
improving the previously achieved generalization accuracies of the resulting sparse models.

Overall, the contributions of our paper can be summarized as follows:

• We introduce Feather, a versatile sparse training module that can be used to efficiently
and effectively prune neural networks up to extreme sparsity levels. The proposed mod-
ule was evaluated on different magnitude pruning backbones and achieved consistent
improvements over the prior state-of-the-art.

• We highlight the importance of a well-crafted thresholding function that finds a fine
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balance between the two standard ones, namely hard and soft operators.

• We highlight the correlation between scaling the gradients of the pruned weights and
the targeted sparsity ratio: high sparsity targets should be accompanied with lower
scaling values to provide high performing pruned models.

2 Proposed Method
In this work, we developed a novel pruning module, dubbed as Feather. The name symbolizes
its lightweight nature, the elegance with which it achieves sparsity, as well as the lightness
of the resulting pruned networks. It can be utilized in various magnitude pruning schemes,
including strategies where pruning can be performed globally or in a layer-wise fashion.
The setting of interest is magnitude pruning, where a weight is kept only if its magnitude
surpasses a threshold value 𝑇 , and a sparse training process is followed (i.e., perform the
pruning procedure along the standard course of training), as done in most of the SoA systems.
In essence, we capitalize on the effectiveness of modern STE-based approaches, carefully
addressing potential issues. Implementation-wise, the proposed module is applied at each
layer, replacing a typical pruning operation, affecting both the forward and the backward step.

In what follows, we first provide the necessary prerequisites for sparse training with STE
and then we describe the proposed module, emphasizing on the proposed modifications on
both the forward and the backward steps and highlighting the underlying motivations.

2.1 Preliminaries: Sparse Training
In this analysis we examine how the pruning and the subsequent weight update is performed
(during a training iteration) on a single layer under the STE framework.

First, let us consider a thresholding operator, the core of the magnitude pruning ap-
proaches, as a function P(𝑇 ) (𝑥) that performs the pruning given a threshold value 𝑇 . As
a general rule this function takes zero values when |𝑥 | ≤ 𝑇 and non-zero values otherwise.
Typical instantiations of this function are the hard and the soft thresholding operators.

A first approach is to directly back-propagate through the thresholding operator. By doing
so, the gradients belonging to the pruned weights will be zeroed thus excluding them from
the update step. Regrettably, due to the resulting sparse gradient, this approach may lead to
unwanted decay of immaturely trained weights and a slow exploration of the possible sparsity
patterns [18, 33].

Lately, to circumvent the aforementioned issues, a number of pruning methods [18, 30,
33, 35] have achieved SoA results relying on the concept of a Straight Through Estimator [2]
training approach. In a nutshell, with the STE formulation, the weight update and thresholding
equations are now decoupled into:

�̃�𝑘 = P(𝑇 ) (𝒘𝑘) (1)
𝒘𝑘+1 = 𝒘𝑘 −𝜂 · ∇L(�̃�𝑘), (2)

where𝒘 are the vectorized layer weights, �̃� the pruned weights after applying the thresholding
operation, L(𝒘) the loss function and 𝜂 the step size. The reported expressions correspond
to 𝑘-th iteration of a Gradient Descent formulation to highlight the effect of STE. The same
procedure is trivially extended to any optimizer required.
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Figure 1: (a) The proposed sparse training block, utilizing the new thresholding operator
and the gradient scaling mask (b) The proposed family of thresholding operators for varying
values of 𝑝. We adopt 𝑝 = 3, resulting to a fine balance between the two extremes, hard and
soft thresholding respectively.

The main idea is to consider the thresholding operator as the identity function during
back-propagation and update both pruned and unpruned weights based on the gradients of the
loss w.r.t. the sparse set of weights. During the forward pass however, only the sparse weights
are used so that the network is trained under the sparsity constrain. The key benefit of sparse
training with the STE is that it allows for pruned weights to become active again, if at some
point during the training they get a large enough magnitude. This process therefore promotes
the exploration of different sparsity patterns and is found to result to better performing sparse
networks [18, 33].

2.2 Proposed Sparse Training Module
The aforementioned STE pipeline was a stimulus for the proposed module; our primary goal
was to maintain the simplicity of the original idea, and thus we concentrated on enhancing
two fundamental elements: the thresholding operator during the forward step and the gradient
manipulation during the backpropagation step. Overall the proposed enhancements aim to
assist the training process by promoting convergence to well-performing yet highly sparse
solutions. The functionality of Feather, the proposed module, is summarized in Figure 1(a),
where the depicted components will be described in detail in what follows.

2.2.1 STE Thresholding Operator

Focusing on the thresholding operator used during the forward pass, the most straightforward
way to define a magnitude pruning step is through the hard thresholding function, which is
discontinuous at the threshold value. This discontinuity might result to training instabilities
when weights pass from pruned to active states and vice versa, since the gradient revived
might not justify the value after thresholding. To addressing this matter, a recent method [35]
suggested that the soft thresholding operator is preferable in the context of STE, while soft
thresholding is a common choice in pruning approaches in general [21]. Soft thresholding,
although suppressing the discontinuity, induces a constant bias (equal to the threshold value)
between the active weights and their dense counterparts, updated during the STE back-
propagation phase. Note that by its nature the STE introduces an inconsistency between the
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forward and the backward pass, since during the former the sparse set of weights is used
whereas during the later the computed gradients are used to update the dense weights.

Motivated by works in the area of sparse regression, aiming on finding thresholding
operators that lie in between hard and soft thresholding [10, 25], we propose the following
family of operators to be used with STE:

P(𝑇 ) (𝑤) =
{

sign(𝑤) · ( |𝑤 |𝑝 −𝑇 𝑝)1/𝑝 , if |𝑤 | > 𝑇

0, otherwise (3)

The behavior of P(𝑇 ) is depicted in Figure 1(b), for varying values of the power parameter 𝑝.
Intuitively, as 𝑝 grows we deviate from the soft (𝑝 = 1) and approach the hard thresholding
operator. Under that point of view, the proposed operator can be considered a generalization
of the existing two. Note that the proposed function, when avoiding extreme selections for 𝑝,
tries to balance between the two aforementioned properties: continuity and bias. Based on
that, we suggest a value of 𝑝 = 3 being a reasonable compromise that adequately addresses
both issues. We provide further validating experiments in the supplementary material.

In a final note, we want to emphasize that our proposed thresholding operator, apart
from having an intuitive explanation for the resulting improved performance (as empirically
evaluated in Section 4), due to its simplicity it practically imposes no training overhead and
can be used off-the-self in pruning frameworks in conjunction with the STE.

2.2.2 STE and Gradient Scaling

The main motivation behind the STE is to allow gradient flow to pruned weights and thus en-
able the exploration of multiple sparsity patterns during sparse training. As stated before, this
is achieved by treating the thresholding function as the identity during the back-propagation.
However, in certain cases it might be beneficial to limit the variations of the mask and favor
a more stable sparsity pattern. We find that a rather straightforward, yet intuitive way to
control the mask’s stability is to scale the gradients of the pruned weights by a constant value
𝜃 ∈ [0,1], effectively modifying the update step of Eq. 2 into:

𝒘𝑘+1 = 𝒘𝑘 −𝜂 ·𝒎𝑘 ⊙∇L(�̃�𝑘), (4)

where 𝒎𝑘 ∈ {𝜃,1}𝑁 such that 𝑚𝑖,𝑘 = 1 if 𝑤𝑖,𝑘 > 𝑇 and 𝑚𝑖,𝑘 = 𝜃 otherwise, with ⊙ denoting
element-wise product.

At the two extreme points, 𝜃 = 0 and 𝜃 = 1, the method aligns with the non-STE and
the standard STE approaches. For in-between values of 𝜃, pruned weights continue to
receive gradient updates but with scaled down magnitudes, and therefore are, to some extent,
promoted to decay, resulting to a more stable (but not completely fixed) mask.

In our experiments (Section 4.1) we find that scaling the gradients becomes beneficial
when targeting very high sparsity ratios (e.g. 98% and above) where, due to having very few
active weights, too frequent mask variations appear to destabilize the network. For more
conservative ratios, using 𝜃 < 1 appears not to improve the results and even lead to a small
decline in accuracy at some cases.

To this end, based on experimental evidence, essentially relying on a profiling approach,
we define an “automatic” way to set 𝜃. In more detail, we select 𝜃 = 𝑔(𝑆) as a simple step
function, where 𝜃 = 1 if the final target sparsity 𝑆 is under 95% and 𝜃 = 0.5 when 𝑆 ≥ 95%.
The value of 𝜃 is selected at the beginning of training and remains constant throughout
the training process. Interestingly, no performance gains were observed by adopting more
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complex scheduling tactics (e.g. having a gradual smooth transition over 𝜃 from 1 to a lower
value) during training. Note that ideally a more complex function could be defined given an
exhaustive profiling procedure, but we considered such ideas out of scope for this work.

3 Application on Pruning Frameworks
Our proposed sparse training module is versatile and not restricted to a particular pruning
framework. We will demonstrate its effectiveness using two distinct frameworks, both a
global and a layer-wise magnitude pruning backbone, as described bellow.

Global Magnitude Pruning: Most pruning methods that utilize the STE (or some variant
of it) use global thresholding, in the sense that a single threshold 𝑇 is selected for all layers,
computed by sorting all weights, in order to prune the network up-to a specified sparsity ratio
[18, 33, 35]. Common practice is to incrementally increase the requested ratio throughout the
training process, thus giving the network time to adjust to different sparsity levels [21, 40].
A popular sparsity schedule was proposed in [40], where the network is trained densely for
a small number of warm up epochs followed by a cubical increase of the sparsity ratio, until
it reaches the final target ratio, which is then kept constant for the rest of the training epochs.
For simplicity and since the exact sparsity schedule is not the focus of this work, we reach
the final target ratio at 50% of the epochs, without having a densely training warm up phase
which we found not to have an effect to the final performance.

Layer-wise Magnitude Pruning: To further reveal the efficacy of Feather, we adopted
a considerably different pruning framework and pair it with the proposed module. We
considered the Adaptive Sparsity Loss framework (ASL) [30], which tackles the magnitude
pruning problem in an explicit layer-wise formulation. Specifically, ASL considers the
per-layer pruning thresholds as trainable parameters which are included in an additional
loss term (Sparsity Loss), constructed based on assumptions for the per-layer distributions.
The thresholds are consequently learned during training by minimizing the extra loss term,
resulting into a learned non-uniform per-layer sparsity. The overall sparsity of the DNN
is constrained, via the loss, to a specific target sparsity. It should be noted that STE is
also a core element of this approach. In this work, we used an enhanced version, referred
to as ASL+, where we addressed existing shortcomings of the original ASL, including the
addition of a sparsity scheduler, similar to the one defined in the global pruning counterpart,
an element missing from [30], as well as a sorting-based correction step of the per-layer
threshold to compensate for the approximate nature of the distribution-motivated sparsity
loss. The alluring aspect of ASL is the ability to further define more complex sparsity-related
goals through appropriately crafted sprasity losses, but such extension is outside the scope of
this work.

4 Experimental Evaluation
The present section provides the experimental validation of the proposed method’s effec-
tiveness. First, we perform ablation studies to showcase the efficacy of each element of our
approach. Then, we provide comparisons with relevant baselines and SoA unstructured prun-
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ing algorithms. Specifically, we experiment with modern compact architectures ResNet-20
[14], MobileNetV1 [16] and DenseNet40-24 [17] on CIFAR-1001 [19]. Furthermore, we
provide large-scale experiments on the ImageNet [4] dataset using the ResNet50 [14] archi-
tecture in order to further verify the generalization abilities of our method and its performance
edge over the current SoA. The reported results are obtained using SGD optimizer along with
a Cosine Annealing scheduler, while the training hyperparameters are the typically used in
literature for such settings (described in detail in the supplementary material).

4.1 Ablation Studies
The ablation studies were performed on the CIFAR-100 dataset, using the global magnitude
pruning framework as the backbone to the Feather pruning module. We note that similar be-
haviors were observed using the Feather in conjunction with the layer-wise ASL+ framework.
All figure data points represent averages of 3 runs and the corresponding standard deviations
are shown as shaded regions.
Impact of Thresholding Operator: The effectiveness of the proposed thresholding func-
tion (with 𝑝 = 3) is empirically evaluated and compared against that of the hard and soft
threshold functions in Figure 2, while no gradient scaling was considered for this experiment
(we used typical STE). The proposed threshold enables the training of more accurate sparse
networks, especially at high pruning ratios (95% and above). Notably, the hard thresholding
approach achieves considerably low results with the MobileNetV1 network, while the soft
threshold with the other two. Overall, our approach consistently leads to better trained net-
works, regardless the architecture and the sparsity ratio, supporting our claims of effectively
combining the strengths of both soft and hard thresholding.

Figure 2: Study of the effect of the thresholding operator on the final sparse model accuracy.
The proposed threshold steadily outperforms the hard and soft operators.

Impact of Gradient Scaling: In Figure 3 we investigate the relation between the value of
the parameter 𝜃 ∈ [0,1], that scales the gradient of the pruned weights, and the final model
accuracy when requesting different sparsity ratios. Note that the under-performing case of
𝜃 = 0 is equivalent to a non-STE variant. Across all considered models, a clear trend can be
seen; When targeting lower sparsity levels, best results are achieved with values of 𝜃 close to
unity, whereas at more extreme sparsity ratios (such as 98% and 99%) the optimal values of
𝜃 seem to shift towards the middle of its range.

1The channels of ResNet-20 are doubled for the experiments on CIFAR, as also done in [36, 39].
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This observed dependency is the motivation behind an automatic selection of 𝜃, as
described in Section 2.2.2, where 𝜃 = 0.5 for 𝑆 ≥ 95% and 𝜃 = 1 otherwise. Note that this
selection just aligns with the reported trend and is not optimal for every case reported. Despite
this being a very “crude” selection, it is very effective, as the forthcoming experimental
evaluations hint. Nonetheless the takeaway of this experiment is not a simple function of two
modes, but bringing this relation to the spotlight. Based on this observation, we pave the
way towards more complex functions or, more interestingly, towards having different scales
per layer, relying on the per-layer sparsity rather than the overall sparsity. The later idea,
a possible future direction of practical value, simply states that under-pruned layers can be
more flexible to sparsity pattern variations than the overly pruned ones.

Figure 3: Study of the effect of gradient scaling. Under conservative final sparsity, 𝜃 near
unity is preferable, while when targeting high sparsity, models benefit from 𝜃 near the middle
of its range.

Gradient Scaling under different Thresholding Functions: Finally, we compare the impact
of gradient scaling using the three different types of thresholding operators. Figure 4 shows
that, regardless the choice of operator, using a scale 𝜃 ∈ (0,1) is beneficial to the final accuracy
at the high sparsity regimes. Nevertheless, our threshold maintains the lead in performance
compared to the two standard ones.

Figure 4: Gradient scaling improves the final accuracy at high sparsity, regardless the
thresholding operator, while maximum performance is achieved if combined with the pro-
posed threshold.

4.2 Comparison to SoA
CIFAR-100: For these experiments, we directly compare our results with the ones of ST-3
[35] and Spartan [33], being the two most recent and best performing sparse training ap-
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Ratio 90% 95% 98% 99%
ResNet-20 (1.096M Params): 73.59 ±0.44

ST-3 [35] 72.81 ±0.13 71.72 ±0.20 67.53 ±0.53 58.32 ±0.17
Spartan [33] 72.56 ±0.35 71.60 ±0.40 67.27 ±0.31 61.70 ±0.21

Feather-Global 73.74 ±0.17 72.53 ±0.32 69.83 ±0.14 65.55 ±0.25
Feather-ASL+ 72.86 ±0.10 72.42 ±0.17 69.76 ±0.09 64.95 ±0.47

MobileNetV1 (3.315M Params): 71.15 ±0.17

ST-3 [35] 70.94 ±0.25 70.44 ±0.23 69.40 ±0.06 66.63 ±0.15
Spartan [33] 70.52 ±0.51 69.01 ±0.11 65.52 ±0.24 60.65 ±0.22

Feather-Global 71.55 ±0.30 71.03 ±0.20 69.44 ±0.29 67.64 ±0.45
Feather-ASL+ 71.10 ±0.31 71.26 ±0.10 69.42 ±0.12 67.86 ±0.03

DenseNet40-24 (0.714M Params): 74.70 ±0.51

ST-3 [35] 72.56 ±0.31 71.21 ±0.35 65.48 ±0.18 56.18 ±0.60
Spartan [33] 73.13 ±0.25 71.61 ±0.04 65.94 ±0.07 58.64 ±0.18

Feather-Global 73.75 ±0.36 72.36 ±0.21 69.06 ±0.23 63.40 ±0.44
Feather-ASL+ 73.92 ±0.19 72.47 ±0.12 69.08 ±0.19 62.94 ±0.14

Ratio 90% 95% 98% 99%
ResNet-50 (25.6M Params): 77.10

GMP [40] 73.91 70.59 57.90 44.78
DNW [37] 74.00 68.30 58.20 -
STR [21] 74.31 70.40 61.46 51.82
ProbMask [39] 74.68 71.50 66.83 61.07
OptG [38] 74.28 72.45 67.20 62.10
ST-3 [35] 76.03 74.46 70.46 63.88
Spartan [33] 76.17 74.68 - 63.87
Feather-Global 76.93 75.27 72.92 68.85

(a) CIFAR-100 (b) ImageNet

Table 1: Comparison of Top-1 accuracy on CIFAR-100 (a) and ImageNet (b).

proaches. The methods are both dense-to-sparse, global magnitude based pruning algorithms,
which gradually introduce sparsity during training, utilizing variants of the STE. Specifically,
ST-3 adopts soft thresholding and a weight rescaling technique similar to the one used by
dropout [31], while Spartan computes a soft top-k mask by solving a regularized Optimal
Transportation problem, therefore is more computationally expensive than our approach.

In particular, Table 1 (a) provides the results obtained on CIFAR-100 using the afore-
mentioned methods over three different architectures and four different levels of sparsity.
The reported results correspond to averages of 3 runs with the corresponding standard devia-
tions. The results demonstrate that sparse training with Feather yields steadily more accurate
models compared to both SoA methods, either using the simple global pruning approach or
combined with ASL+. Notably, the gap in accuracy between our approach and that of the next
best performing baseline grows up to 4% when considering the 99% sparse ResNet-20 and
DenseNet40-24 models. Another interesting remark is that Feather can result to 90% sparse
ResNet-20 and MobileNetV1 models with slightly better generalization accuracies that those
of their dense counterparts, trained using the same number of epochs. The last remark hints
that a well designed sparse training method can even be beneficial, not only for producing
compact models, but also for improving the generalization performances, when considering
relatively conservative sparsity ratios. Note that similar SoA results are observed using both
tested backbones, a point that further validates Feather’s versatility.
ImageNet: For the ImageNet experiments we include results from literature from an extended
number of pruning methods achieved using the same number of epochs (100) and data
augmentation. In particular, results from the relevant methods GMP [40], DNW [37], STR
[21], ProbMask [39], OptG [38], ST-3 [35] and Spartan [33] are presented in Table 1 (b).
We adopt the global pruning scheme combined with Feather module, being conceptually
the simplest approach, in order to highlight our method’s effectiveness compared to more
sophisticated baselines. As we can see, it provides considerably better results than those
from previous SoA, especially at very challenging pruning ratios over 98%. We want to
emphasize that the improved performance with Feather does not come at the cost of higher
training overheads or the need for complicated hyperparameter settings, in contrast to certain
baselines (e.g. [21, 39]). Instead, the resulting accuracy gains can be attributed to the
simple, yet carefully formulated modifications of the proposed module that fully utilizes the
STE-based sparse training approach.
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5 Conclusions
This paper proposes Feather, an effective and efficient sparse training module that can be
easily applied to pruning frameworks. In particular, as demonstrated by extensive experi-
ments on CIFAR and ImageNet datasets, using both a global and a layer-wise approach, it
results to improving the previous SoA results, especially at high pruning ratios. Furthermore,
ours method’s success indicates the large potential of properly understanding and conse-
quently improving the sparse training dynamics using an STE based approach, that despite
its simplicity is shown to be highly effective.
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