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Abstract Tropical geometry and mathematical morphology share the same max-
plus and min-plus semiring arithmetic and matrix algebra. In this chapter we sum-
marize some of their main ideas and common (geometric and algebraic) structure,
generalize and extend both of them using weighted lattices and a max-? algebra with
an arbitrary binary operation ? that distributes over max, and outline applications to
geometry, machine learning, and optimization. Further, we generalize tropical geo-
metrical objects using weighted lattices. Finally, we provide the optimal solution of
max-? equations using morphological adjunctions that are projections on weighted
lattices, and apply it to optimal piecewise-linear regression for fitting max-? tropical
curves and surfaces to arbitrary data that constitute polygonal or polyhedral shape
approximations. This also includes an efficient algorithm for solving the convex
regression problem of data fitting with max-affine functions.

1 Introduction

As stated in [60], tropical geometry is a “marriage between algebraic geometry and
polyhedral geometry”. It is a relatively recent field in mathematics and computer
science. However, the scalar arithmetic of its analytic part pre-existed in the form of
max-plus and min-plus semiring arithmetic used in finite automata, nonlinear func-
tional and image analysis, convex analysis, nonlinear control and optimization. In
this chapter we explore the parts it shares with morphological image analysis, ex-
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tend both of them using weighted lattices, and apply max-plus algebra to optimally
fitting of tropical curves and surfaces to data.

Combinations of max-plus, or its dual min-plus, arithmetic with corresponding
nonlinear matrix algebra and signal convolutions have been used in operations re-
search and scheduling [24]; discrete event systems, max-plus control and optimiza-
tion [2, 3, 4, 14, 22, 32, 35, 40, 70, 91]; convex analysis [80, 59]; morphological
image analysis [41, 65, 71, 81, 82]; nonlinear PDEs of the Hamilton-Jacobi type
and vision scale-spaces [13, 42]; speech recognition and natural language process-
ing [48, 73]; neural networks [17, 18, 30, 36, 74, 77, 78, 85, 96, 97, 98]; idempotent
mathematics (nonlinear functional analysis) [58, 57].

Max-plus (a.k.a. ‘max-sum’) arithmetic forms an idempotent semiring denoted
as (Rmax,max,+) where Rmax = R∪{−∞} and the real number addition and mul-
tiplication are replaced by the max and sum operations, respectively. As an idempo-
tent semiring it is covered by the theory of dioids [35]. The dual min-plus semiring
(Rmin,min,+), where Rmin =R∪{+∞}, has been called ‘tropical semiring’ and has
been used in finite automata [49, 83], speech and language recognition using graph-
ical models [73], and tropical geometry [60, 72]. In idempotent mathematics [58],
convex optimization [12], and the theory of dioids [35], the following Log-Sum-Exp
approximation is often used for the max and min operations:

agθ b := θ · log(ea/θ + eb/θ ) = φ
−1
θ

[φθ (a)+φθ (b)]
afθ b := (−θ) log(e−a/θ + e−b/θ )

(1)

where φθ (a) := exp(a/θ), and θ > 0 is usually called a ‘temperature’ parameter.
In the limit as θ → 0 we obtain the max and min operations:

limθ↓0 agθ b = max(a,b)
limθ↓0 afθ b = min(a,b) (2)

This approximation and limit is the Maslov Dequantization [69] of real numbers,
and generates a whole family of semirings Sθ = (Rmax,gθ ,+), θ > 0, whose op-
erations are the generalized ‘addition’ gθ and ‘multiplication’ +. This makes Sθ

isomorphic to the semiring of nonnegative real numbers R≥0 equipped with stan-
dard addition and multiplication. This isomorphism is enabled via the logarithmic
mapping φ

−1
θ

(a) = θ log(a) : R≥0 → Sθ . In the limit θ ↓ 0 we get S0 which is the
max-plus semiring.

Max and min operations (or more generally supremum and infimum) form the
algebra of lattices, which has been used to generalize Euclidean morphology [81],
based on Minkowski set operations and their extensions to functions via level sets,
to more general morphological operators on complete lattices [82, 41, 43, 5]. The
scalar arithmetic of morphology on functions has been mainly flat; a few exceptions
include the max-plus convolutions and related operations which have appeared in
morphological image analysis [41, 64, 81, 84], image algebra [79], convex analysis
and optimization [6, 59], and nonlinear dynamical systems [4, 67]. Such non-flat
morphological operations and their generalizations to a max-? algebra have been
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systematized and extended using the theory of weighted lattices [66, 67]. This con-
nects morphology with max-plus algebra and tropical geometry.

Tropical geometry and the standard image operators of mathematical morphol-
ogy share the same max-plus and min-plus semiring arithmetic and matrix algebra.
In this chapter, whose preliminary version is based on [68], we begin in Section 2
with some elementary concepts from classic Euclidean image morphological oper-
ators based on Minkowski set and function addition, duality pairs in the form of
adjunctions (a.k.a. residuation pairs) and their formalization using lattice theory.
Then in Section 3 we show how approximation (2) converts the linear heat PDE
modeling the Gaussian scale-space in computer vision to PDEs generating multi-
scale max-plus morphological operators. We continue in Section 4 with elementary
concepts and objects of tropical geometry. Then, in Section 5 we summarize the
theory of weighted lattices, which form nonlinear vector spaces, and use them to
extend the max-plus mathematical morphology and tropical geometry using a max-
? algebra with an arbitrary binary operation ? that distributes over max. Further, we
generalize tropical geometrical objects using weighted lattices. Finally, in Section 6
we outline the optimal solution of max-? equations using morphological adjunc-
tions (a.k.a. residuation pairs) that are projections on weighted lattices, and apply it
in Section 7 to optimal convex piecewise-linear regression for fitting max-? tropical
curves and surfaces to arbitrary data that constitute polygonal or polyhedral shape
approximations. Throughout the chapter, we also outline applications to numerical
geometry, machine learning, and optimization.

Notation: For maximum (or supremum) and minimum (or infimum) operations
we use the well-established lattice-theoretic symbols of ∨ and ∧. We do not use the
notation (⊕,⊗) for (max,+) or (min,+) which is frequently used in max-plus al-
gebra, because in image analysis i) the symbol⊕ is extensively used for Minkowski
set operations and max-plus convolutions, and ii)⊗ is unnecessarily confusing com-
pared to the classic symbol + of addition. We use roman letters for functions, signals
and their arguments and greek letters mainly for operators. Also, boldface roman let-
ters for vectors (lowcase) and matrices (capital). If M = [mi j] is a matrix, its (i, j)-th
element is denoted as mi j or as [M]i j. Similarly, x = [xi] denotes a column vector,
whose i-th element is denoted as [x]i or simply xi.

2 Elements of Max-plus Morphology and Flat Lattices

We view images, signals, and vectors as elements of complete lattices (L ,∨,∧),
where L is the set of lattice elements equipped with two binary operations, ∨ and
∧, which denote the lattice supremum and infimum respectively. Each of these op-
erations induces a partial ordering ≤; e.g. for any X ,Y ∈L , X ≤Y ⇐⇒Y = X ∨Y .
The lattice operations satisfy many properties, the most fundamental of which are
summarized in the upper part of Table 1. The minimally required are properties
(L1,L1′)–(L5,L5′). Conversely, a set L equipped with two binary operations ∨ and
∧ that satisfy properties (L1,L1′)–(L5,L5′) is a lattice whose supremum is ∨, the
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infimum is ∧, and partial ordering ≤ is given by (L6). Existence (L7,L7′) of least
and greatest elements (O, I) and distributivity (L9,L9′) are optional properties. Com-
pleteness means that the supremum and infimum of any (even infinite) subset of L
exists and belongs to L . A lattice (L ,∨,∧) contains two weaker substructures:
a sup-semilattice (L ,∨) that satisfies properties (L1−L4) and an inf-semilattice
(L ,∧) that satisfies properties (L1′−L4′). Their correspondence is a view of the
inherent duality in a lattice.

Table 1 Axioms of Weighted Lattices [67]

Sup-Semilattice Inf-Semilattice Description

L1. X ∨Y ∈W L1′. X ∧Y ∈W Closure of ∨,∧
L2. X ∨X = X L2′. X ∧X = X Idempotence of ∨,∧
L3. X ∨Y = Y ∨X L3′. X ∧Y = Y ∧X Commutativity of ∨,∧
L4. X ∨ (Y ∨Z) = L4′. X ∧ (Y ∧Z) = Associativity of ∨,∧

(X ∨Y )∨Z (X ∧Y )∧Z
L5. X ∨ (X ∧Y ) = X L5′. X ∧ (X ∨Y ) = X Absorption between ∨,∧
L6. X ≤ Y ⇐⇒ L6′. X ≤′ Y ⇐⇒ Consistency of ∨,∧

Y = X ∨Y Y = X ∧Y with partial order ≤
L7. O∨X = X L7′. I∧X = X Identities of ∨,∧
L8. I∨X = I L8′. O∧X = O Absorbing Nulls of ∨,∧
L9. X ∨ (Y ∧Z) = L9′. X ∧ (Y ∨Z) = Distributivity of ∨,∧

(X ∨Y )∧ (X ∨Z) (X ∧Y )∨ (X ∧Z)

WL10. a?X ∈W WL10′. a?′ X ∈W Closure of ?,?′

WL11. a? (b?X) = WL11′. a?′ (b?′ X) = Associativity of ?,?′

(a?b)?X (a?′ b)?′ X
WL12. a? (X ∨Y ) = WL12′. a?′ (X ∧Y ) = Distributive scalar-vector

a?X ∨a?Y a?′ X ∧a?′Y mult over vector sup/inf
WL13. (a∨b)?X = WL13′. (a∧b)?′ X = Distributive scalar-vector

a?X ∨b?X a?′ X ∧b?′ X mult over scalar sup/inf
WL14. e?X = X WL14′. e′ ?′ X = X Scalar Identities
WL15. ⊥?X = O WL15′.>?′ X = I Scalar Nulls
WL16. a?O = O WL16′. a?′ I = I Vector Nulls

Examples of complete lattices used in computer vision include i) the lattice of
Euclidean shapes, i.e. subsets of Rd , equipped with set union and intersection,
and ii) the lattice Fun(E,R) of functions with (arbitrary) domain E and values in
R = R∪ {−∞,+∞}, equipped with the pointwise supremum and pointwise infi-
mum of extended real numbers. For data processing, we also consider operators
ψ : L →M between two complete lattices. The set of all such operators becomes
a complete lattice if equipped with the supremum, infimum, and partial ordering
defined pointwise for the operators’ outputs.

Monotone Operators:
A lattice operator ψ : L →M is called increasing or isotone if it is order pre-

serving; i.e. if, for any X ,Y ∈L , X ≤Y =⇒ ψ(X)≤ ψ(Y ). (We use the same sym-
bol for the partial order in L and M although they may be different, hoping that
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the difference will be clear from the context.) Examples of increasing operators are
the lattice homomorphisms which preserve suprema and infima. If a lattice homo-
morphism is also a bijection, then it becomes an automorphism. Four fundamental
types of increasing operators are: dilations δ and erosions ε that satisfy respectively
δ (
∨

i Xi) =
∨

i δ (Xi) and ε(
∧

i Xi) =
∧

i ε(Xi) over arbitrary (possibly infinite) col-
lections; openings α that are increasing, idempotent (α2 = α), and antiextensive
(α ≤ id), where id denotes the identity operator; closings β that are increasing,
idempotent, and extensive (id≤ β ).

A lattice operator ψ is called decreasing or antitone if it is order-inverting, i.e.
X ≤ Y =⇒ ψ(X) ≥ ψ(Y ). Dual homomorphisms interchange suprema with in-
fima and hence are decreasing operators. For example, anti-dilations δ

a
satisfy

δ
a
(
∨

i Xi) =
∧

i δ
a
(Xi). A lattice dual automorphism is a bijection that interchanges

suprema with infima. For example, a negation ν is a dual automorphism that is also
involutive, i.e. ν2 = id.

Residuation and Adjunctions:
An increasing operator ψ : L →M between two complete lattices is called

residuated [10, 9] if there exists an increasing operator ψ] : M →L such that

ψψ
] ≤ id≤ ψ

]
ψ (3)

ψ] is called the residual of ψ , is unique, and is the closest to being an inverse of
ψ . Specifically, the residuation pair (ψ,ψ]) can solve inverse problems of the type
ψ(X) = Y either exactly since X̂ = ψ](Y ) is the greatest solution of ψ(X) = Y if
a solution exists, or approximately since X̂ is the greatest subsolution in the sense
that

X̂ = ψ
](Y ) =

∨
{X : ψ(X)≤ Y} (4)

On complete lattices an increasing operator ψ is residuated (resp. a residual ψ]) if
and only if it is a dilation (resp. erosion). Equivalently, ψ is residuated if ψ](Y ),
defined as in (4), exists for each Y . The residuation theory has been used for solving
inverse problems (mainly in matrix algebra) over the extended max-plus semiring
(R,∨,+) or other complete idempotent semirings which, as lattices, are made com-
plete [25, 24, 4, 23].

A pair (δ ,ε) of two operators δ : L →M and ε : M → L between two
complete lattices is called adjunction1 if

δ (X)≤ Y ⇐⇒ X ≤ ε(Y ) ∀X ∈L ,Y ∈M (5)

1 As explained in [5, 41, 43], the adjunction is related to a Galois connection, which is a pair of
two decreasing maps ψ and φ between complete lattices, such that Y ≤ ψ(X)⇐⇒ X ≤ φ(Y ); if
this holds, both ψ and φ are anti-dilations and their compositions ψφ and ψφ are closings [1].
As a name, ‘adjunction’ was introduced in [34] as equivalent to an isotone Galois connection. The
advantage of residuations and adjunctions over Galois connections is that the former can form new
adjunctions via composition, whereas this is not the case with (antitone) Galois connections. Sev-
eral authors define residuations (ψ,ψ]) on partially ordered sets; this however may not guarantee
the general existence of (4) and the fact that the (ψ,ψ]) are a dilation and erosion respectively,
unless the underlying sets become complete lattices.
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In any adjunction, δ is a dilation and ε is an erosion. The double inequality (5) is
equivalent to the inequality (3) satisfied by a residuation pair of increasing operators
if we identify the residuated map ψ with δ and its residual ψ] with ε . Further,
from (5) or (3) it follows that any adjunction (δ ,ε) automatically yields an opening
α = δε and a closing β = εδ , where the composition of two operators is written
as an operator product. To view (δ ,ε) as an adjunction instead of a residuation pair
has the advantage of the additional geometrical intuition and visualization afforded
by the dilation and erosion operators in image and shape analysis.

There is a one-to-one correspondence between the two operators of an adjunc-
tion; e.g., given a dilation δ , there is a unique erosion

ε(Y ) = δ
]
(Y ) =

∨
{X ∈L : δ (X)≤ Y} (6)

such that (δ ,ε) is an adjunction, and conversely. Thus, dilations and erosions on
complete lattices always come in pairs. In any adjunction (δ ,ε), ε is called the
adjoint erosion (a.k.a. upper adjoint) of δ , whereas δ is the adjoint dilation (a.k.a.
lower adjoint) of ε .

Example 1 (a) A classic example of a morphological set adjunction is the pair of
Minkowski set addition ⊕ and subtraction 	: for X ,B⊆ Rd

δ B(X) = X⊕B := {x ∈ Rd : Bs
+x∩X 6=∅}

εB(X) = X	B := {x ∈ Rd : B+x ⊆ X} (7)

where Bs = {−b : b ∈ B} and B+x := {b+x : b ∈ B}.
(b) A classic example of a morphological signal adjunction is the pair of Minkowski
function addition ⊕ and subtraction 	: for f ,g : Rd → R

δ g( f )(x) = f ⊕g(x) := sup{ f (y−x)+g(y) : y ∈ Rd}
εg( f )(x) = f 	g(x) := inf{ f (x−y)−g(y) : y ∈ Rd} (8)

Thus, f ⊕g is the supremal (max-plus) convolution of f by g and f 	g is the infimal
convolution of f (x) by −g(−x).

3 Tropical Dequantization and Vision Scale-Spaces

Before entering into tropical geometry and in order to exemplify the broad appli-
cability of the tropical dequantization procedure in Maslov [69], we show in this
section how the transformation (2) converts the classic linear heat partial differen-
tial equation (PDE) to a nonlinear PDE that generates multiscale erosions (min-plus
convolutions). Consider the 1D linear heat PDE

∂U
∂ t

=
θ

2
∂ 2U
∂x2 (9)
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which models a homogeneous linear diffusion. It is also well known in computer
vision because it models the Gaussian scale-space since its solution U(x, t), t ≥ 0, is
the multiscale convolution of some initial function f (x) = U(x,0) with multiscale
Gaussians Gσ (x) = exp(−x2/2σ2)/(σ

√
2π) of variance equal to σ2 = θ t:

U(x, t) =
1√

2πθ t

∫
R

f (x− y)exp
(
− y2

2θ t

)
dy (10)

As shown by Maslov [69], the substitution U = exp(−W/θ) converts the heat PDE
to Hopf’s nonlinear equation:

∂W
∂ t

+
1
2

(
∂W
∂x

)2

− θ

2
∂ 2W
∂x2 = 0 (11)

The heat PDE (10) obeys a linear superposition; i.e., if ui(x, t) is its solution for
initial condition fi(x), i = 1,2, and if f (x) = a1 f1(x)+ a2 f2(x), the total solution
becomes U(x, t) = a1u1(x, t)+ a2u2(x, t). However, the solution W = −θ logU of
the nonlinear PDE (11) obeys the following nonlinear superposition:

W (x, t) =−θ log[exp(−b1 +w1

θ
)+ exp(−b2 +w2

θ
)] =−θ log[c1u1 + c2u2] (12)

where wi(x, t) =−θ logui(x, t), i = 1,2, are solutions of (11) and ci = exp(−bi/θ).
If the heat diffusivity constant θ becomes very small, we can perform Maslov’s
dequantization as in (2) to convert the above log-sum-exp superposition to a tropical
(min-plus) superposition W = min(b1 +w1,b2 +w2) . Further, the limit of the PDE
(11) for θ → 0 yields another nonlinear PDE

∂S
∂ t

+
1
2

(
∂S
∂x

)2

= 0 (13)

which models the multiscale weighted erosion g(x)	 kt(x) of an initial function
g(x) = S(x,0) by multiscale parabolas kt(x) =−x2/2t:

S(x, t) = g(x)	 kt(x) =
∧
y

g(x− y)+ y2/2t (14)

Thus, classic morphological PDEs [13, 92] can be obtained from the linear heat
PDE (modeling Gaussian scale space) via tropicalization.
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4 Elements of Tropical Geometry

We first present some simple examples of tropical2 curves and surfaces which re-
sult from tropicalizing the polynomials that analytically describe their Euclidean
counterparts; here ‘tropicalization’ means replacing sum with max or min and mul-
tiplications with additions. Then, we explain this tropicalization as a dequantization
of real algebraic geometry.

4.1 Examples of Tropical Polynomial Curves and Surfaces

Tropical Polynomial Curves:
Consider the analytic expressions for a Euclidean line, parabola, and cubic curve:

p1(x) = ax+b, p2(x) = ax2 +bx+ c,
p3(x) = ax3 +bx2 + cx+d,

(15)

The equations for their corresponding max-plus tropical polynomials are:

pmax
1 (x) = max(a+ x,b), pmax

2 (x) = max(a+2x,b+ x,c),
pmax

3 (x) = max(a+3x,b+2x,c+ x,d), (16)

The equations for the min-plus case are identical as in (16) by replacing max with
min. The graphs of all the above can be seen in Fig. 1.

Tropical Polynomial Surfaces:
Consider the equations of the following tropical planes represented as 2D max-plus
and min-plus polynomial of degree 1:

f1(x,y) = max(0+ x,2+ y,7), f2(x,y) = min(5+ x,7+ y,9), (17)

whose graphs can be seen as surfaces in Fig. 2.
As a next example, to the general Euclidean conic polynomial

pconic(x,y) = ax2 +bxy+ cy2 +dx+ ey+ f (18)

there corresponds the following two-variable max-plus tropical polynomial of de-
gree 2:

pmax
conic(x,y) = max(a+2x,b+ x+ y,c+2y,d + x,e+ y, f ) (19)

2 The adjective ‘tropical’ was coined by French mathematicians, including Dominique Perrin and
Jean-Eric Pin, to honor their Brazilian colleague Imre Simon who was one of the pioneers of min-
plus algebra as applied to automata. However, we give it an alternative and substantial meaning
in connection with its Greek origin word ‘τροπικός’, which comes from the Greek word ‘τροπή’

which means “turn” or “changing the way/direction”, to literally express the fact that tropical
curves and surfaces bend and turn.
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(a) Euclidean line (b) Euclidean parabola (c) Euclidean cubic

(b− a)

b

a

(d) Max-plus line
(c− b) (b− a)

c

(2b− a)

(e) Max-plus parabola
(d− c) (c− b) (b− a)

d

2c− b

3b− 2a

(f) Max-plus cubic

(b− a)

b

a

(g) Min-plus line
(b− a) (c− b)

(2b− a)

c

a

(h) Min-plus parabola
(b− a) (c− b) (d− c)

d

a

2c− b

3b− 2a

(i) Min-plus cubic

Fig. 1 Euclidean and tropical 1D polynomials up to 3rd degree.
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0

10

0

10

(7, 5, 7)

(−2, 5, 7)

(7,−5, 7)

x

y

z

(a) Surface f1 (max-plus)

0 5 10
0

10

0

10

(4, 12, 9)

(4, 2, 9)

(14, 2, 9)

x

y

z

(b) Surface f2 (min-plus)

Fig. 2 Surfaces of the two tropical planes in (17).

The min-plus version of a tropical conic is shown in Fig. 3.
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2y + c

2x+ a x+ y + b

y + d

x+ f

e

Fig. 3 Surface (graph) of the 2D min-plus tropical polynomial function p(x,y) = min(a+2x,b+
x+ y,c+2y,d + x,e+ y, f ) and its tropical quadratic curve. (Inspired by Fig. 1.3.2 of [60].)

4.2 Tropical Polynomials as Dequantization of Algebraic Geometry

The algebraic side of tropical geometry [60] results from a transformation of ana-
lytic Euclidean geometry where the traditional arithmetic of the real field (R,+,×)
involved in the analytic expressions of geometric objects is replaced by the arith-
metic of the min-plus tropical semiring (Rmin,∧,+); some authors use its max-plus
dual semiring (Rmax,∨,+). We use both semirings as dual parts of the weighted
lattice (R,∨,∧,+) (explained in Sec. 5). This transformation converts Euclidean
objects into polygonal lines on the plane and polyhedra in higher dimensions. A
geometric explanation and visualization of this transformation is obtained from
Viro’s graphing of polynomial curves on log-log paper [93]. Consider the mono-
mial curve v = cua, c > 0, on the positive quadrant of the (u,v) plane and consider
the log-log transformation of both coordinates composed with a uniform scaling
by θ > 0: x = θ logu, y = θ logv. Then, on the (x,y) plane the curve becomes
the line y = b/θ + ax, where b = logc. If we have a K-term polynomial curve
v = P(u) = ∑

K
k=1 ckuak with ck = exp(bk) > 0 and ak ∈ R (i.e. a posynomial [11])

then we convert it to

Pθ (x) = θ log[
K

∑
k=1

exp(bk/θ)exp(akx/θ)] (20)

As θ ↓ 0 this yields via Maslov dequantization a K-term 1D max-plus tropical
polynomial

p(x) =
K

max
k=1

[akx+bk] (21)
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While each Pθ (x) is a smooth function, their limit p(x) is a max-affine function and
represents a piecewise-linear (PWL) convex function. Note: if we perform dequanti-
zation with negative exponents as in (1),(2) we obtain a min-plus polynomial which
is a PWL concave function.

The above procedure extends to multiple dimensions or higher degrees and
shows us the way to tropicalize any classic d-variable polynomial (linear combi-
nation of power monomials) ∑k ckuak1

1 · · ·u
akd
d defined over Rd

>0 where ck > 0 and
ak = (ak1, ...,akd)

T is traditionally some nonnegative integer3 vector but herein we
allow ak ∈ Rd : replace the sum with max and log the individual terms so that the
multiplicative coefficients become additive and the powers become real multiples
of the indefinite log variables. Thus, a general d-variable max-plus polynomial
p : Rd → R has the expression:

p(x) =
K∨

k=1

aT
k x+bk, x = (x1, . . . ,xd)

T (22)

where K = rank(p) is the number of terms of p. Its graph (hypersurface) is a max of
K hyperplanes with intercepts bk = logck ∈ R and real slope vectors ak ∈ Rd . The
total degree of p is deg(p) = maxk ‖ak‖1 where ‖ak‖1 = |ak1|+ · · ·+ |akd |. Thus, the
curves or surfaces of real algebraic geometry, which is essentially polynomial ge-
ometry, become via dequantization the graphs of convex PWL functions represented
by tropical (max-plus) polynomials.

4.3 Tropical Curves and Newton Polytopes

To the zero set of a classic polynomial there corresponds the tropical curve or sur-
face of a max-plus tropic polynomial p : Rd → R

V (p) , {x ∈ Rd : more than one terms of p(x) attain the max} (23)

The above also defines the tropical curve of min-plus polynomials by replacing max
with min. Thus, V (p) consists of the singularity points (of non-differentiability) of
p(x). Examples for two-variable tropic polynomials are shown in Fig. 4 for degree-1
polynomials and in Fig. 3 for a degree-2 polynomial. The max-plus line y=max(a+
x,b) of Fig. 1 and the tropical curve of the max-plus polynomial max(a+x,b+y,c)
of Fig. 4 are special cases of the general family of the 12 max-plus line types of
R2

max given in [23] by

max(a+ x,b+ y,c) = max(a′+ x,b′+ y,c′), a,b,c,a′,b′,c′ ∈ Rmax, (24)

3 Traditionally, ‘tropical polynomials’ assume that the parameters aki are nonnegative integers. If
we also allow negative integers, we get ‘Laurent tropical polynomials’. As in [14], we allow any
real coefficients; this may be called ‘tropical posynomials’ [16].
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where not all the coefficients are needed. This is a tropical version of the Euclidean
line equation ax+by+ c = 0.

x > max(b+ y, c)− a

c > max(a+ x, b+ y)

y > max(a+ x, c)− b

c− a

c

(a) Max-plus curve

x < min(b+ y, c)− a c < min(a+ x, b+ y)

y < min(a+ x, c)− b

c− a

c

(b) Min-plus curve

Fig. 4 Tropical curve of (left) the max-plus polynomial p(x,y) = max(a+ x,b+ y,c) and (right)
its dual min-plus polynomial p′(x,y) = min(a+ x,b+ y,c).

Another interesting geometric object related to a max-plus polynomial p is its
Newton polytope which is the convex hull (denoted by conv(·)) of the set of points
represented by its slope coefficient vectors:

Newt(p) , conv({ak : k = 1, ..., rank(p)}) (25)

This satisfies several important properties [17]:

Newt(p1∨ p2) = conv(Newt(p1)∪Newt(p2)) (26)
Newt(p1 + p2) = Newt(p1)⊕Newt(p2) (27)

Examples are shown in Fig. 5. Thus, the Newton polytope of the sum (resp. max) of
two tropical polynomials is the Minkowski sum (resp. the convex hull of the union)
of their individual polytopes.

(0, 0)

(0, 1)(−1, 1)

(−1, 0)

P1

(3, 1)(1, 1)

(1, 2)

P2

(a) Polytopes

conv(P1 ∪ P2)

(0, 0)

(−1, 1)

(−1, 0)

P1

(3, 1)

(1, 2)

P2

(b) Newton (max)

P1 ⊕ P2

(0, 3)

(0, 1)

(1, 3)

(3, 2)

(3, 1)
P1

P2

(c) Newton (sum)

Fig. 5 Newton polytopes of (a) two max-polynomials p1(x,y) = max(x+ y,3x+ y,x+ 2y) and
p2(x,y) = max(0,−x,y,y− x), (b) their max p1∨ p2, and (c) their sum p1 + p2.
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4.4 Tropical Halfspaces and Polytopes

In pattern analysis problems on Euclidean spaces Rd+1 we often use halfspaces
H (a,b) := {x ∈ Rd : aT x≤ b}, polyhedra (finite intersections of halfspaces), and
polytopes (compact polyhedra formed as the convex hull of a finite set of points).
Replacing linear inner products aT x with max-plus versions yields tropical halfs-
paces [31] with parameters a = [ai],b = [bi] ∈ Rd+1:

T (a,b) , {x ∈ Rd
max : max(ad+1,

d∨
i=1

ai + xi)≤max(bd+1,
d∨

i=1

bi + xi)} (28)

where min(ai,bi) =−∞ ∀i. Thus, for each i, only one coefficient is needed either in
the left or in the right side of inequality (28). Replacing max with min yields trop-
ical halfspaces with dual boundaries that are min-plus hyperplanes. Examples of
polytopes in the plane that are polygonal regions formed by min-plus tropical half-
planes are shown in Fig. 6. Obviously, their separating boundaries are tropical lines.
Such regions in multiple dimensions were used in [17, 18, 96] as morphological
perceptrons.

−2 0 2 4
0

1

2

3

4

Rr≥

Rr≤

x

y

(a) Single region

0 5
0

1

2

3

4

RP

Rb≥

Rg≥

Rr≤

x

y

(b) Multiple regions

Fig. 6 Regions Rc≥ and Rc≤ formed by min-plus tropical halfspaces in R2, where c denotes the
color of the tropical boundary and ≥ 0 (resp. ≤ 0) the set of points above (resp. below) the bound-
ary. (a) The red boundary is the min-plus tropical line y = min(1+ x,2). (b) The green and blue
boundaries are respectively the tropical lines y = min(4+ x,1) and y = min(x− 3,3). RP is the
polytope formed by the intersection of three tropical halfplanes.

As an example in 3D space, in Fig. 7 we can see two different views of the
intersection of the tropical halfspaces corresponding to the two tropical polynomial
in (17). This is a polytope that is the polyhedral region formed by intersecting the
halfspace above the surface of the 2D max-plus polynomial f1 with the halfspace
below the surface of the min-plus polynomial f2.

The examples in Fig. 6 and Fig. 7 show that polytopes can be formed as the in-
tersection of tropical halfspaces. Such polytopes can serve as decision regions in
pattern classification problems. We note that the number of corresponding tropical



14 P. Maragos and E. Theodosis

0 5 10
0

10

0

10

x

y

z

(a) First view

0
5

100

10

0

10

x

y

z

(b) Second view

Fig. 7 Intersection of halfspaces of the 2D max-plus and min-plus tropical polynomials in (17).

halfspaces required for polytope formation is smaller than the number of their linear
boundaries. See, for instance, the polytope RP in Fig. 6(b). This observation remains
valid in higher dimensions too; namely, decision regions can be formed with fewer
tropical lines or hyper-planes than their Euclidean counterparts. Intuitively, the non-
linearity of a tropical halfspace lets us form more complex decision regions with
possibly fewer parameters.

5 Weighted Lattices: Nonlinear Vector Spaces and Extensions of
Tropical Algebra and Geometry

5.1 Clodum: Extending Tropical Scalar Arithmetic

A lattice (K ,∨,∧) is often endowed with a third binary operation, called symbol-
ically the ‘multiplication’ ?, under which (K ,?) is a group, or a monoid, or just a
semigroup [7]. Even if we have only a sup-semilattice (K ,∨) (i.e. an idempotent
commutative semigroup) we can consider its supremum ∨ as an idempotent ‘addi-
tion’ and equip it with an additional ‘multiplication’ operation ? so that the structure
(K ,∨,?) becomes an idempotent semiring. Such ordered monoids have been stud-
ied in detail in [7, 99, 35] and form the algebraic basis of max-plus algebra.

Consider now an algebra (K ,∨,∧,?,?′) with four binary operations, which we
call a lattice-ordered double monoid, where (K ,∨,∧) is a lattice, (K ,?) is a
monoid whose ‘multiplication’ ? distributes over ∨, and (K ,?′) is a monoid whose
‘multiplication’ ?′ distributes over ∧. These distributivities imply that both ? and ?′

are increasing. To the above definitions we add the word complete if K is a com-
plete lattice and the distributivities involved are infinite. We call the resulting alge-
bra a complete lattice-ordered double monoid, in short clodum [64, 66, 67]. Previous
works on minimax or max-plus algebra have used alternative names for structures
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similar to the above definitions which emphasize semigroups and semirings instead
of lattices [4, 24, 35]; see [67] for similarities and differences. We precisely define
an algebraic structure (K ,∨,∧,?,?′) to be a clodum if:
(C1) (K ,∨,∧) is a complete distributive lattice. Thus, it contains its least ⊥ :=∧

K and greatest element > :=
∨

K . The supremum ∨ (resp. infimum ∧) plays
the role of a generalized ‘addition’ (resp. ‘dual addition’).
(C2) (K ,?) is a monoid whose operation ? plays the role of a generalized ‘mul-
tiplication’ that is also a scalar dilation, i.e. distributes over the supremum of any
(possibly infinite) collection of elements:

a? (
∨

i

xi) =
∨

i

a? xi (29)

The operation ? has an identity element e which acts as the ‘multiplicative unit’. It
also has as null the least element of K .
(C3) (K ,?′) is a monoid with identity e′ whose operation ?′ plays the role of a
generalized ‘dual multiplication’ that is also a scalar erosion, i.e. distributes over
the infimum of any (possibly infinite) collection of elements:

a?′ (
∧

i

xi) =
∧

i

a?′ xi (30)

It has as null the greatest element of K .
Remarks: (i) As a lattice, K is not necessarily infinitely distributive, although

herein all our examples will be such.
(ii) The clodum ‘multiplications’ ? and ?′ do not have to be commutative.
(iii) The least (greatest) element ⊥ (>) of K is both the ‘zero’ element for the ‘ad-
dition’ ∨ (∧) and an absorbing null for the ‘multiplication’ ? (?′).
(iv) We avoid degenerate cases by assuming that ∨ 6= ? and ∧ 6= ?′. However, ? may
be the same as ?′, in which case we have a self-dual ‘multiplication’.

A clodum K is called self-conjugate if it has a lattice negation a 7→ a∗ such that

(
∨

i

ai)
∗
=
∧

i

ai
∗ , (

∧
i

bi)
∗
=
∨

i

bi
∗ , (a?b)∗ = a∗ ?′ b∗ (31)

The first two above properties are generalization of De Morgan’s laws in Boolean
algebras. We assume that the suprema and infima in (31) may be over any (possibly
infinite) collections.

If ? = ?′ over G = K \ {⊥,>} where (G,?) is a group and (G,∨,∧) a condi-
tionally complete lattice, then the clodum K becomes a richer structure which we
call a complete lattice-ordered group, in short clog. In any clog the distributivity
between ∨ and ∧ is of the infinite type and the ‘multiplications’ ? and ?′ are com-
mutative. Then, for each a ∈G there exists its ‘multiplicative inverse’ a−1 such that
a?a−1 = e. Further, the ‘multiplication’ ? and its self-dual ?′ (which coincide over
G) can be extended over the whole K by involving the null elements. A clog be-
comes self-conjugate by setting a∗ = a−1 if ⊥< a <>, >∗ =⊥, and ⊥∗ =>. In a
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clog K the ? and ?′ coincide in all cases with only one exception: the combination
of the least and greatest elements.

Example 2 (a) Max-plus clog (R,∨,∧,+,+′): ∨/∧ denote the standard sup/inf on
R, + is the standard addition on R playing the role of a ‘multiplication’ ? with +′

being the ‘dual multiplication’ ?′; the operations + and +′ are identical for finite
reals, but a+(−∞) = −∞ and a+′ (+∞) = +∞ for all a ∈ R. Thus, + and +′ are
respectively the ‘lower addition’ and ‘upper addition’ used in convex analysis [75];
in all cases, they are commutative:

a+b = a+′ b, ∀a,b ∈ R
a+(−∞) =−∞, a+′ (+∞) = +∞, ∀a ∈ R (32)

For this clog, the identities are e = e′ = 0, the nulls are ⊥=−∞ and >=+∞, and
the conjugation mapping is a∗ =−a.
(b) Max-times clog ([0,+∞],∨,∧,×,×′): The identities are e = e′ = 1, the nulls are
⊥= 0 and >=+∞, and the conjugation mapping is a∗ = 1/a. The scalar multipli-
cations × and ×′ coincide over (0,+∞), but a×0 = 0 and a×′ (+∞) = +∞ for all
a ∈ [0,+∞].
(c) Max-min clodum ([0,1],∨,∧,min,max): As ‘multiplications’ we have ?= min
and ?′ = max. The identities and nulls are e′ = ⊥ = 0, e = > = 1. A possible con-
jugation mapping is a∗ = 1−a. Additional clodums that are not clogs are discussed
in [64, 67] using more general fuzzy intersections and unions.
(d) Max-softmin clodum (R,∨,∧,fθ ,gθ ), θ > 0: As ‘multiplication’ we have
?=fθ and as ‘dual multiplication’ ?′=gθ , defined in the log-sum-exp approxima-
tion (1). The identities and nulls are e′ =⊥=−∞, e=>=+∞, and the conjugation
mapping is a∗ =−a. By varying θ > 0 we obtain a family of clodums whose ‘mul-
tiplications’ ? and ?′ are smooth (‘soft’) versions of the min and max operations
respectively. In the limit as θ ↓ 0 this family converges to a max-min clodum over
R.
(e) Matrix max-? clodum: (K n×n,∨,∧, ? , ? ′ ) where K n×n is the set of n×n ma-
trices with entries from a clodum K , ∨/∧ denote here elementwise matrix sup/inf,
and ? , ? ′ denote max-? and min-?′ matrix ‘multiplications’:

C = A ? B = [ci j], ci j =
n∨

k=1

aik ?bk j , D = A ? ′ B = [di j], di j =
n∧

k=1

aik ?
′ bk j

This is a clodum with non-commutative ‘multiplications’. For the max-plus clog
(R,∨,∧,+,+′), these matrix ‘multiplications’ are defined and denoted as

[A�B]i j ,
n∨

k=1

aik +bk j , [A�′B]i j ,
n∧

k=1

aik +
′ bk j (33)
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5.2 Complete Weighted Lattices: Nonlinear Vector Spaces

Consider a nonempty collection W of mathematical objects, which will be our
space; examples of such objects include the vectors in Rd

or signals in Fun(E,R).
Also, consider a clodum (K ,∨,∧,?,?′) of scalars with commutative operations
?,?′ and K ⊆ R. We define two internal operations among vectors/signals X ,Y in
W : their supremum X ∨Y : W 2→W and their infimum X ∧Y : W 2→W , which
we denote using the same supremum symbol (∨) and infimum symbol (∧) as in the
clodum, hoping that the differences will be clear to the reader from the context. Fur-
ther, we define two external operations among any vector/signal X in W and any
scalar c in K : a ‘scalar multiplication’ c ?X : (K ,W )→ W and a ‘scalar dual
multiplication’ c ?′ X : (K ,W )→ W , again by using the same symbols as in the
clodum. Now, we define W to be a weighted lattice space over the clodum K if
for all X ,Y,Z ∈W and a,b∈K all the axioms of Table 1 hold. Note that, under ax-
ioms L1-L9 and their duals L1′-L9′, W is a distributive lattice with a least element
O and a greatest element I. These axioms bear a striking similarity with those of a
linear space. One difference is that the vector/signal addition (+) of linear spaces
is now replaced by two dual superpositions, the lattice supremum (∨) and infimum
(∧); further, the scalar multiplication (×) of linear spaces is now replaced by two
operations ? and ?′ which are dual to each other. Only one major property of linear
spaces is missing from the weighted lattices: the existence of ‘additive inverses’. We
define the space W to be a complete weighted lattice (CWL) if (i) W is closed
under any (possibly infinite) suprema and infima, and (ii) the distributivity laws be-
tween the scalar operations ? (?′) and the supremum (infimum) are of the infinite
type. Note that a commutative clodum is a complete weighted lattice over itself.

5.3 Vector and Signal Operators on Weighted Lattices

We focus on CWLs whose underlying set is a space W = Fun(E,K ) of functions
f : E → K with values from a clodum (K ,∨,∧,?,?′) of scalars as in Exam-
ples 2(a),(b),(c). Such functions include d-dimensional vectors if E = {1,2, ...,d} or
d-dimensional signals of continuous (E = Rd) or discrete domain (E = Zd). Then,
we extend pointwise the supremum, infimum, and scalar multiplications of K to
functions: e.g., for F,G∈W , a∈K and x∈E, we define (F∨G)(x) := F(x)∨G(x)
and (a ?F)(x) := a ?F(x). Further, the scalar operations ? and ?′, extended point-
wise to functions, distribute over any suprema and infima, respectively. If the clo-
dum K is self-conjugate, then we can extend the conjugation (·)∗ to functions F
pointwise: F∗(x) := (F(x))∗.

Elementary increasing operators on W are those that act as vertical transla-
tions (in short V-translations) of functions. Specifically, pointwise ‘multiplications’
of functions F ∈ W by scalars a ∈ K yield the V-translations τa and dual V-
translations τ ′a, defined by [τa(F)](x) := a ? F(x) and [τ ′a(F)](x) := a ?′ F(x).
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A function operator ψ on W is called V-translation invariant if it commutes with
any V-translation τ , i.e., ψτ = τψ. Similarly for dual translations.

Every function F(x) admits a representation as a supremum of V-translated im-
pulses placed at all points or as infimum of dual V-translated impulses:

F(x) =
∨
y∈E

F(y)?qy(x) =
∧
y∈E

F(y)?′ q′y(x) (34)

where qy(x) = e at x = y and ⊥ else, whereas q′y(x) = e′ at x = y and > else. By
using the V-translations and the representation of functions with impulses, we can
build more complex increasing operators. We define operators δ as dilation V-
translation invariant (DVI) and operators ε as erosion V-translation invariant
(EVI) iff for any ci ∈K , Fi ∈W

DVI : δ (
∨

i

ci ?Fi) =
∨

i

ci ?δ (Fi), EVI : ε(
∧

i

ci ?
′ Fi) =

∧
i

ci ?
′ ε(Fi) (35)

The structure of a DVI or EVI operator’s output is simplified if we express it via
the operator’s impulse responses. Given a dilation δ on W , its impulse response
map is the map H : E → Fun(E,K ) defined at each y ∈ E as the output function
H(x,y) from δ when the input is the impulse qy(x). Dually, for an erosion operator
ε we define its dual impulse response map H ′ via its outputs when excited by dual
impulses: for x,y ∈ E

H(x,y) , δ (qy)(x), H ′(x,y) , ε(q′y)(x) (36)

Applying a DVI operator δ or an EVI operator ε to (34) and using the definitions
in (36) yields the following unified representation, which is proven in [4, 62] for the
max-plus case and in [64] for the more general max-? and max-?′ cases.

Theorem 1 (a) An operator δ on W is DVI iff its output can be expressed as

δ (F)(x) =
∨
y∈E

H(x,y)?F(y) (37)

(b) An operator ε on W is EVI iff its output can be expressed as

ε(F)(x) =
∧
y∈E

H ′(x,y)?′ F(y) (38)

On signal spaces, the operations (37) and (38) are shift-varying nonlinear convo-
lutions.

5.3.1 Weighted Lattice of Vectors

Consider now the nonlinear vector space W = K d , equipped with the pointwise
partial ordering x≤ y, supremum x∨y = [xi∨ yi], and infimum x∧y = [xi∧ yi] be-
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tween any vectors x,y ∈ W . Then, (W ,∨,∧,?,?′) is a complete weighted lattice.
Elementary increasing operators are the vector V-translations τa(x) = a?x= [a?xi]
and their duals τ ′a(x) = a ?′ x, which ‘multiply’ a scalar a with a vector x elemen-
twise. A vector transformation on W is called (dual) V-translation invariant if it
commutes with any vector (dual) V-translation. By defining as ‘impulses’ the im-
pulse vectors q j = [q j(i)] and their duals q′j = [q′j(i)], where the index j signifies the
position of the identity, each vector x = [x1, ...,xd ]

T has a representation as a max of
V-translated impulse vectors or as a min of V-translated dual impulse vectors. More
complex examples of increasing operators on such vector spaces are the max-? and
the min-?′ ‘multiplications’ of a matrix A with an input vector x,

δ A(x) , A ? x, εA(x) , A ? ′ x (39)

which are the prototypes of any vector transformation that obeys a sup-? or an inf-?′

superposition.

Theorem 2 [66, 67] (a) Any vector transformation on the complete weighted lattice
W =K n is DVI iff it can be represented as a matrix-vector max-? product δ A(x) =
A ? x where A = [ai j] with ai j = [δ (q j)]i, i, j = 1, . . . ,n.
(b) Any vector transformation on K n is EVI iff it can be represented as a matrix-
vector min-?′ product εA(x) = A ? ′ x where A = [ai j] with ai j = [ε(q′j)]i.

The above theorem also holds for vector transformations between CWLs of dif-
ferent dimensionality, say from K n to K m, in which case the corresponding matrix
A∈K m×n is rectangular4. Given such a vector dilation δ (x) =A ? x : K n→K m,
there corresponds a unique erosion ε : K m →K n (equal to the residual operator
δ

]
) so that (δ ,ε) is a vector adjunction, i.e. δ (x) ≤ y⇐⇒ x ≤ ε(y). We can find

the adjoint vector erosion by decomposing both vector operators based on scalar
operators (η ,ζ ) that form a scalar adjunction on K :

η(a,v)≤ w⇐⇒ v≤ ζ (a,w) (40)

If we use as scalar ‘multiplication’ a commutative binary operation η(a,v) = a ? v
that is a dilation on K , its scalar adjoint erosion becomes

ζ (a,w) = sup{v ∈K : a? v≤ w} (41)

which is a (possibly non-commutative) binary operation on K . Then, the original
vector dilation δ (x) = A ? x is decomposed as

[δ (x)]i =
n∨

j=1

η(ai j,x j) =
n∨

j=1

ai j ? x j, i = 1, ...,m (42)

whereas its adjoint vector erosion (i.e. the residual δ
]

of δ ) is decomposed as

4 For the rest of Sec. 5.3.1 and throughout Sec. 6, whenever we deal with matrix algebra we will
use m×n as notation for the size of matrices.
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[δ
]
(y)] j = [ε(y)] j =

m∧
i=1

ζ (ai j,yi), j = 1, ...,n (43)

The latter can be written as a min-ζ matrix-vector multiplication

ε(y) = AT2′
ζ

y (44)

where the symbol 2′
ζ

denotes the following nonlinear product of a matrix A = [ai j]

with a matrix B = [bi j]:
[A2′

ζ
B]i j ,

∧
k

ζ (aik,bk j)

Further, if K = (∨,∧,?,?′) is a clog, then ζ (a,w) = a∗ ?′w and hence

ε(y) = A∗ ? ′ y, [ε(y)] j =
m∧

i=1

ai j
∗ ?′ yi, j = 1, ...,n (45)

where A∗ = [a ji
∗] is the adjoint matrix (i.e. conjugate transpose) of A = [ai j].

5.3.2 Weighted Lattice of Signals

Consider the set W = Fun(E,K ) of all signals f : E →K with domain E = Rd

or Zd and values from K . The signal translations are the operators τ y,v( f )(x) =
f (x− y)? v and their duals. A signal operator on W is called (dual) translation in-
variant iff it commutes with any such (dual) translation. This translation-invariance
contains both a vertical translation and a horizontal translation (shift). Consider now
operators ∆ on W that are dilations and translation-invariant. Then ∆ is both DVI
in the sense of (35) and shift-invariant. We call such operators dilation translation-
invariant (DTI) systems. Applying ∆ to an input signal f decomposed as supre-
mum of translated impulses yields its output as the sup-? convolution ©? of the
input with the system’s impulse response h = ∆(q), where q(x) = e if x = 0 and ⊥
else:

∆( f )(x) = ( f©? h)(x) =
∨
y∈E

f (y)?h(x− y) (46)

Conversely, every sup-? convolution is a DTI system. As done for the vector opera-
tors, we can also build signal operator pairs (∆ ,E ) that form adjunctions. Given ∆

we can find its adjoint E from scalar adjunctions (η ,ζ ). Thus, by (40) and (41), if
η(h, f ) = h? f , the adjoint signal erosion becomes

E (g)(y) =
∧
x∈E

ζ [h(x− y),g(x)] (47)

Further, if K is a clog, then E becomes an inf-?′ correlation:
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E (g)(y) =
∧
x∈E

g(x)?′ h∗(x− y) (48)

5.4 CWL Generalizations of Tropical Lines and Planes

In the same way that weighted lattices generalize max-plus algebra and extend it
to other types of clodum arithmetic, we can extend the basic objects of max-plus
tropical geometry (i.e. tropical lines and planes) to other max-? geometric objects.
For example, over a clodum (K ,∨,∧,?,?′), we can generalize max-plus tropical
lines y = max(a+x,b) as y = max(a?x,b). Figure 8(a)-(d) shows some generalized
tropical lines where the ? operation is sum (+), product (×), min (∧), and softmin
(fθ ). In the first three cases, shown in Figs. 8(a)-(c), the generalized tropical lines
are PWL functions. However, in Fig. 8(d) a portion of the max-softmin line is curv-
ing. To further illustrate this curving and create a symmetry between the max and
min operations, we show in Fig. 8(e) a smooth function

s(x) = (afθ x)gθ b
= θ log[exp(− log(e−a/θ + e−x/θ )+ eb/θ ]

(49)

that goes beyond the max-? framework and is actually a softmax-softmin.

(b− a)

b

a

(a) Max-plus line
b/a

b

(b) Max-product line

b

b
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a 1

1

0

(c) Max-min line

θ = 0.1

θ = 0.5

θ = 1

b

b

a

a

(d) Max-softmin line

θ = 0.1

θ = 0.5

θ = 1

b a

b

a

(e) Softmax-softmin line

Fig. 8 (a)-(d) Max-? tropical lines y = max(a ? x,b): (a) Max-plus: y = max(a+ x,b), (b) Max-
times: y = max(a · x,b), (c) Max-min: y = max(a∧ x,b), (d) Max-softmin: y = max(afθ x,b).
(e) Softmax-softmin line: s(x) = (afθ x)gθ b. In Figs. (d) and (e) the parameter θ varies.
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Similarly, we can generalize max-plus tropical planes z = max(a+ x,b+ y,c) to
max-? as z = max(a?x,b?y,c). Figure 9 shows a max-? plane where ?= min. This
is an interesting geometrical polyhedral object that consists of portions of planes,
either sloped or horizontal, at several levels.
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Fig. 9 Max-min plane z = max(min(x,11),min(y,8),5).

Further, we can generalize max-plus halfspaces (28) to max-? tropical halfs-
paces:

T (a,b) ,
{

x ∈K d : aT ?

[
x
e

]
≤ bT ?

[
x
e

]}
(50)

Examples of max-plus tropical halfspaces are shown in Fig. 6 and Fig. 7. The slopes
of their bounding line segments or faces are either zero or equal to 1. Max-product
halfspaces can give boundaries that are piecewise-linear but have arbitrary slopes.
Max-min halfspaces have piecewise-linear boundaries with more corner points or
edges; see examples in Fig. 8(c) and Fig. 9. Finally, a totally different generalization
results if we replace the ‘multiplication’ ? in a generalized tropical line with the
(log-sum-exp) softmin operation of (1), as shown in Fig. 8(d)-(e), in which case the
line segments of a tropical line will become partially or totally smooth exponential
curves.

6 Solving Max-??? Equations and Optimization

6.1 `p Optimal Subsolutions of Max-??? Equations

Consider a scalar clodum (K ,∨,∧,?,?′), a matrix A ∈ K m×n and a vector b ∈
K m. The set of solutions of the max-? matrix equation

A ? x = b (51)
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over K is either empty or forms an idempotent semigroup under vector ∨, because
if x1,x2 are two solutions then x1∨x2 is also a solution. A related problem in appli-
cations of max-plus algebra to scheduling is when a vector x represents start times,
a vector b represents finish times, and the matrix A represents processing delays.
Then, if A ? x = b does not have an exact solution, it is possible to find the opti-
mum x such that we minimize a norm of the earliness subject to zero lateness. We
generalize this problem from max-plus to max-? algebra. The optimum will be the
solution of the following constrained minimization problem:

Minimize ‖A ? x−b‖p s.t. A ? x≤ b (52)

where the norm || · ||p is any `p norm with p = 1,2, . . . ,∞. While the two above
problems have been solved in [24] for the max-plus case and for p = 1 or p = ∞,
we provide next a more general result using adjunctions for the general case when
K is just a clodum or a general clog and || · ||p is any Minkowski norm.

Theorem 3 ([67]) Consider a vector dilation δ (x) = A ? x : K n →K m over a
clodum K and let ε be its adjoint vector erosion. (a) If Eq. (51) has a solution, then

x̂ = ε(b) = [
m∧

i=1

ζ (ai j,bi)] (53)

is its greatest solution, where ζ is the scalar adjoint erosion of ? as in (41).
(b) If K is a clog, the solution (53) becomes

x̂ = A∗ ? ′ b = [
m∧

i=1

ai j
∗ ?′ bi] (54)

(c) The solution to the optimization problem (52) for any `p norm || · ||p is generally
(53), or (54) in the case of a clog.

A main idea for solving (52) is to consider vectors x that are subsolutions in the
sense that δ (x) = A ? x≤ b and find the greatest such subsolution x̂ = ε(b), which
yields either the greatest exact solution of (51) or an optimum subsolution in the
sense of (52). This creates a lattice projection onto the max-? span of the columns
of A via the opening δ (ε(b))≤ b that best approximates b from below. Also, note
that since y = δ (ε(b)) = [yi] is the greatest lower estimate of b = [bi], bi− yi is
nonnegative and minimum for all i, and hence the norm ‖b− y‖p is minimum for
any p = 1,2, . . . ,∞.

As a final note, in the max-plus case it is also possible to search and find sparse
solutions of either the exact equation (51) or the approximate problem (52), as done
in [90], where sparsity here means a large number of −∞ values in the solution
vector.
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6.2 Projections on Weighted Lattices

The optimal subsolution of (52) can be viewed in the max-plus case as a nonlinear
‘projection’ of b onto the column-space of A [25]. To understand this, note first
that any adjunction (δ ,ε) automatically yields two lattice projections, an opening
α = δε and a closing β = εδ , such that

α2 = α ≤ id≤ β = β
2

where the composition of two operators is written as an operator product. We call
them ‘projections’ because, in analogy to projection operators on linear spaces, they
preserve the structure of the lattice space w.r.t. the partial ordering (due to their
isotonicity) and they are idempotent.

Projections on idempotent semimodules5 have been studied in [23] for the gen-
eral case and in more detail for the max-plus case in [3]. Let X be a complete
idempotent semimodule, and let S be a subsemimodule of X . Then a canonical
projector on S is defined as the nonlinear map [23]

PS : X →X , PS (x) ,
∨
{v ∈S : v≤ x} (55)

Its definition implies that PS is a lattice opening, i.e. increasing, antiextensive, and
idempotent. Further, there is a concept of ‘distance’ on such semimodules which
allows to use a nonlinear projection theorem for best approximations. We shall out-
line these ideas only for the max-plus case, i.e. for X = Rn

viewed as complete
semimodule over the complete max-plus semiring Rmax ∪{∞}. Specifically, let us
consider the Hilbert projective metric

dH(x,y) , −[(x\y)+(y\x)], x\y := max{a ∈ R : x+a≤ y} (56)

between any vectors x,y ∈ Rn
. Note that this is only a semimetric and for finite-

valued vectors it assumes the simpler expression (called range semimetric in [24])

dH(x,y) = max
i
(xi− yi)−min

i
(xi− yi), x,y ∈ Rn (57)

Then, given a subsemimodule S of Rn
, it follows that for any vector x∈Rn

, PS (x)
is the best approximation (but not necessarily unique) of x by elements of S . Specif-
ically [23, 3], the projection PS (x) of x onto S is that element of S within the

5 Idempotent semimodules are like vector spaces with idempotent vector ‘addition’ ∨ whose vec-
tor and scalar arithmetic are defined over idempotent semirings. If in our definition of a weighted
lattice, one focuses only on one vector ‘addition’, say the vector supremum, and its corresponding
scalar ‘multiplication’, then the weaker algebraic structure becomes an idempotent semimodule
over an idempotent semiring (K ,∨,?). This has been studied in [23, 35, 58] where often closure
under infinite suprema is assumed; in such cases, an ‘infimum’ operation can be also indirectly de-
fined (since a complete sup-semilattice with a least element is a complete lattice), which makes the
space a complete lattice, but this indirect infimum may be different than the direct (conventional)
infimum of the original lattice (if it exists).
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shortest distance from x than any other element of S ; i.e.,

dH(x,PS (x)) = dH(x,S ) (58)

where the distance between a vector x and the subspace S is defined by dH(x,S ) :=
inf{dH(x,v) : v ∈S }. Note the analogy with Euclidean spaces Rn where the linear
projection of a point x ∈ Rn to a linear subspace S is given by the unique point
y ∈S such that x−y is orthogonal to S .

Now, if we consider the optimization problem (52) and define the subsemimodule
S in (55) as the max-plus span of the columns of matrix A, then the canonical
projection of b onto it equals

PS (b) = A� x̂ = A�A∗�′ b≤ b (59)

which is a lattice opening δ (ε(b))≤ b.

6.3 `∞ Optimal Solution of Max-plus Equations

The solution (54) is the greatest subsolution of problem (52). Thus, in the max-
plus case (see (33) for the definitions of max-plus and min-plus matrix products),
x̂ = A∗�′ b is the optimal solution of

Minimize ‖A�x−b‖∞ (60)

under the constraint x≤ b. The proof results since x̂ is the greatest solution of A�
x ≤ b, as shown by Cuninghame-Green [24]. It can also be directly seen from the
adjunction

A�x = δ A(x)≤ b⇐⇒ x≤ εA∗(b) = A∗�′ b (61)

The following is actually a stronger result that is not biased to be a subsolution but
provides the unconstrained optimal solution of (60).

Theorem 4 ([24]) If 2µ = ‖A� x̂−b‖∞ = ‖A� (A∗�′ b)−b‖∞ is the `∞ error
corresponding to the greatest subsolution of A�x = b, then

x̃ = µ +A∗�′ b (62)

is the unique optimum solution of (60).

The computational complexity to find both optimal solutions x̂ and x̃ is O(mn)
(additions in the max-plus case), where m is the number of equations and n the
number of unknowns.

Unfortunately, the `∞ optimality of x̃ does not carry over in the case of a general
clodum, as shown for the max-min clodum in [26].
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7 Optimal Fitting Tropical Polynomials to Data and Shape
Approximation

Herein we apply tropical geometry and max-? algebra to a fundamental regression
problem of approximating the shape of curves and surfaces by fitting tropical poly-
nomials to data, sampled from their functional form possibly in the presence of
noise.

7.1 Piecewise-Linear Function Representation and Data Fitting

Piecewise-Linear (PWL) functions f : Rd → R are defined as follows: (i) Their
domain is divided into a finite number of polyhedral regions separated by linear
(d−1)-dimensional boundaries that are hyperplanes or subsets of hyperplanes; (ii)
They are affine over each region and continuous on each boundary. Approximations
with PWL functions have proven analytically and computationally very useful in
many fields of science and engineering, including splines [27], nonlinear circuits
and systems modeling [21], machine learning [8, 88], convex optimization [12], ge-
ometric programming [11, 54, 61], statistics [38], and recently tropical geometry
[60, 93]. A conventional representation of PWL functions requires simplicial sub-
division of their domain and interpolation of the PWL function on the subdivided
domain; this is local, without a closed-formula, and requires many parameters for
storage and processing. Thus, two major problems are representation, i.e. finding
a better class of functions with analytical expressions to represent them, and their
parameter estimation for modeling a nonlinear system or fitting some data. Fur-
ther, while these problems are well-explored in the 1D case, they remain relatively
underdeveloped for multi-dimensional data.

Chua and his collaborators [53, 20, 52] have introduced the so-called canonical
representation for continuous PWL functions, consisting of an affine function plus
a weighted sum of absolute-value affine functions (defining linear partitions) and
extensively studied its application for nonlinear circuit analysis and modeling. This
has the advantages over the conventional representation that it is global, explicit, an-
alytic, compact (smaller number of model functions and corresponding parameters),
and computationally efficient (easy to store and program). However, it is complete
only for 1D PWL functions. In higher dimensions it needs multi-level nestings of
the absolute-value functions; the depth of this nesting depends on the geometry of
the partitions of the domain and the order of intersections of the partition boundaries
[51, 37, 52, 56, 50].

Tarela et al [87], by combining their previous work [86] on representing contin-
uous PWL functions with lattice generalizations of Boolean polynomials of lines or
hyperplanes, which extended similar work by [95], with the general f − φ model
for PWL functions of [55], developed a constructive way to generate min-max (and
their dual max-min) combinations of affine functions which provide a complete rep-
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resentation of continuous PWL functions in arbitrary dimensions. This is called the
lattice representation. Another work for max-min representation of PWL functions
is [76]. Wang [94] completed the construction of a canonical representation for ar-
bitrary continuous PWL functions in d dimensions by starting from the lattice pre-
sentation of [87], which is a min-max of affine functions, producing an equivalent
representation as a difference of two convex functions, each being max-affine, and
then converting each max-affine function to a canonical representation that involved
d-level nestings of absolute-value functions.

A more recent approach is to focus on the class of convex PWL functions rep-
resented by a maximum of affine functions (i.e. hyperplanes), that are essentially
max-plus topical polynomials as in (22), and use them for data fitting; we shall call
this class max-affine functions. Starting from early least-squares solutions [44, 46],
some representative recent approaches to solve this convex regression problem in-
clude [38, 39, 45, 54, 61]. In all these approaches, there is an iteration that alternates
between partitioning the data domain and locally fitting affine functions (using least-
squares or some linear optimization procedure) to update the local coefficients. For
a known partition the convex PWL function is formed as the max of the local affine
fits. Then, a PWL function generates a new partition which can be used to refit
the affine functions and improve the estimate. As explained in [61], this iteration
can be viewed as a Gauss-Newton algorithm to solve the above nonlinear least-
squares problem, similar to the K-means algorithm. The order K of the model can
be increased until some error threshold is reached. Generalizations of the max-affine
representation for convex functions include works that use softmax instead of max,
via the log-sum-exp models for convex and log-log convex data [45, 16, 15]. Other
iterative approaches for convex PWL data fitting include [89]. Closer to our work is
[47] which however solves max-plus equations using least squares and assumes that
the slope parameters ak in (22) are known. Reaching a local minimum of the `2 error
norm for approximately solving max-plus equations was approached in [47] both via
steepest descent (which was found computationally infeasible for large problems)
and via Newton’s method with undershooting (which could not guarantee conver-
gence to a local minimum). Very recently, [33] showed that, under certain assump-
tions, a carefully initialized alternating minimization algorithm converges linearly
for max-affine regression. Finally, [19] demonstrates how to efficiently solve large
scale convex regression – albeit with an unconstrained number of affine pieces. For
additional references, we refer the reader to the bibliography in the above works.

Next, we focus on convex PWL regression via the max-affine model, which has
a tropical interpretation, and propose a direct non-iterative and low-complexity ap-
proach to estimate its parameters by using the optimal solutions of max-plus (or
max-?) equations of Sec. 6. We also note that the max-affine representation is not
limited to PWL functions only, because we can represent any convex function as
a supremum of a (possibly infinite) number of affine functions via the Fenchel-
Legendre transform [29, 80, 59]. Closely related ideas are based on morphological
slope transforms [28, 42, 62, 63] that offer generalizations of this result to non-
convex functions and approximate representations via adjunctions.
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7.2 Optimal Fitting Tropical Lines and Planes

We first examine a classic problem in machine learning, i.e. fitting a line to data
by minimizing an error norm, and then we formulate it under the light of tropical
geometry. Given data (xi, fi) ∈ R2, i = 1, ...,N, if we wish to fit a Euclidean line
y = ax+b by minimizing the `2 error norm ‖f−ax−b‖2 where f = [ fi] and x = [xi],
the optimal solution, termed least squares estimate (LSE), for the parameters a,b is

âLS =
N ∑i xi fi− (∑i xi)(∑i fi)

N ∑i(xi)2− (∑i xi)2 , b̂LS =
1
N ∑

i
( fi− âLSxi) (63)

Suppose now we wish to fit a general tropical line p(x) = max(a?x,b) by minimiz-
ing some `p error norm. The equations to solve for finding the optimal parameter
vector w = [a,b]T become:  x1 e

...
...

xN e


︸ ︷︷ ︸

X

?

[
a
b

]
︸︷︷︸

w

=

 f1
...
fN


︸ ︷︷ ︸

f

(64)

By Theorem 3, the optimal (min `p error) subsolution for any clodum arithmetic is

ŵ =

[
â
b̂

]
=

[∧
i ζ (xi, fi)∧
i ζ (e, fi)

]
(65)

where ζ is the scalar adjoint erosion (41) of ?. This vector ŵ yields (after max-?
‘multiplication’ with X) the greatest lower estimate (GLE) of the data f. If K is a
clog, like in the max-plus and max-times cases, then ζ (xi, fi) = xi

∗ ?′ fi. Next we
write in detail the solution for the tropical line for the three special cases where the
scalar arithmetic is based either on the max-plus clog6, or the max-times clog, or the
max-min clodum7 (the shapes of these three corresponding tropical lines are shown
in Fig.8):

(â, b̂) =

 (
∧

i fi− xi,
∧

i fi), max-plus (?=+)
(
∧

i fi/xi,
∧

i fi), max-times (?=×)
(
∧

i max([[[ fi ≥ xi]]], fi),
∧

i fi), max-min (?= ∧)
(66)

where [[[·]]] denotes Iverson’s bracket in the max-min case. Thus, the above approach
allows to optimally fit (w.r.t. any `p error norm) general tropical lines to arbitrary
data from below. In addition, for the max-plus case we can obtain the best (uncon-
strained) approximation with a tropical line that yields the smallest `∞ error. This
minimum max absolute error (MMAE) solution is, by Theorem 4,

6 To cover all cases of combining finite and infinite scalar numbers in the max-plus clog
(R,∨,∧,+,+′), we should write the subtractions fi− xi in (66) as fi +

′ (−xi).
7 For the max-min clodum we assume that all data (xi, fi) lie in [0,1]2.
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w̃ = ŵ+µ, µ =
1
2
‖X� ŵ− f‖∞ =

1
2
‖X� (X∗�′ f)− f‖∞ (67)

Example 3 Suppose we have N = 200 data observations (xi, fi) from the tropical
line y = max(x−2,3), where the 200 abscissae xi were uniformly spaced in [−1,12]
and their corresponding values fi = yi+εi are contaminated with two different types
of zero-mean noise i.i.d. random variables εi, Gaussian noise ∼ N (0,0.25) and
uniform noise ∼ Unif[−0.5,0.5]. Figure 10 shows the two optimal solutions (66)
and (67) for fitting a max-plus tropical line, superimposed with the least-squares
Euclidean line fit. The parameter estimates and errors are in Table 2.

Line fit Method ‖error‖RMS ‖error‖∞ â b̂

Tropical GLE 0.598 0.988 -2.492 2.509
Tropical MMAE 0.288 0.494 -1.998 3.003
Euclidean LSE 0.968 2.135 0.560 1.849

Table 2 Errors and parameter estimates for optimally approximating a max-plus tropical line y =
max(x−2,3) both via a least-squares Euclidean line fit and via the tropical constrained (GLE) and
unconstrained (MMAE) solutions to fitting data corrupted by uniform noise.
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Fig. 10 (a) Optimal fitting via (66) or (67) of a max-plus tropical line y = max(x−2,3) (shown in
black dashed curve) to data from the line corrupted by additive i.i.d. Gaussian noise∼N (0,0.25).
Blue line: Euclidean line fitting via least squares. Red line: best subsolution (GLE). Green line:
best unconstrained (MMAE) solution. (b) Same experiment as in (a) but with uniform noise ∼
Unif[−0.5,0.5].

The above approach and tropical solution can also be extended to fitting planes.
Specifically, we wish to fit a general max-? tropical plane p(x,y)

p(x,y) = max(a? x,b? y,c) (68)
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to given data (xi,yi, fi) ∈ R3, i = 1, ...,N, where fi = p(xi,yi)+ error, by minimiz-
ing some `p error norm. As in (64), the equations to solve for finding the optimal
parameters w = [a,b,c]T become: x1 y1 e

...
...

...
xN yN e


︸ ︷︷ ︸

X

?

a
b
c


︸ ︷︷ ︸

w

=

 f1
...
fN


︸ ︷︷ ︸

f

(69)

If we can accept subsolutions, which yield approximations of the given data from
below, then by Theorem 3 the optimal subsolution for any clodum arithmetic is

ŵ =

 â
b̂
ĉ

=

∧i ζ (xi, fi)∧
i ζ (yi, fi)∧
i ζ (e, fi)

 (70)

In the special case of max-plus arithmetic, then ζ (xi, fi) = fi− xi and the best sub-
solution (for min `p error) becomes

 â
b̂
ĉ

= ŵ = X∗�′ f =

−x1 −x2 · · · −xN
−y1 −y2 · · · −yN

0 0 · · · 0

�′


f1
f2
...
fN

=

∧N
i=1 fi− xi∧N
i=1 fi− yi∧N

i=1 fi

 (71)

Furthermore, the minimum max absolute error (MMAE) solution is given by (67),
but the data matrix X and vector f refer now to the plane case.

7.3 Shape Regression by Optimal Fitting Tropical Max-plus
Polynomial Curves and Surfaces

For the max-plus case, the above approach and solution can also be generalized to
polynomial curves of higher degree and to multi-dimensional data. We wish to fit a
max-plus tropical polynomial

p(x) = max(aT
1 x+b1,aT

2 x+b2, . . . ,aT
Kx+bK) =

K∨
k=1

aT
k x+bk, x ∈ Rd (72)

to given data (xi, fi) ∈ Rd+1, i = 1, ...,N, where fi = p(xi)+ error, by minimizing
some `p error norm. The exact equations are
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aT

1 x1 aT
2 x1 · · · aT

Kx1
aT

1 x2 aT
2 x2 · · · aT

Kx2
...

...
...

...
aT

1 xN aT
2 xN · · · aT

KxN


︸ ︷︷ ︸

X

�


b1
b2
...

bK


︸ ︷︷ ︸

w

=


f1
f2
...
fN


︸ ︷︷ ︸

f

(73)

We assume that the slope vectors ak are given and we optimize for the parameters
{bk}. By Theorem 3, the optimal subsolution for minimum `p error is

 b̂1
...

b̂K

= ŵ=X∗�′ f=

−aT
1 x1 −aT

1 x2 · · · −aT
1 xN

...
...

...
...

−aT
Kx1 −aT

Kx2 · · · −aT
KxN

�′


f1
f2
...
fN

=


∧N

i=1 fi−aT
1 xi

...∧N
i=1 fi−aT

Kxi


(74)

Note that X� ŵ ≤ f. Further, by Theorem 4, the unconstrained solution that yields
the minimum `∞ error is

w̃ = µ + ŵ, µ =
1
2
‖X� ŵ− f‖∞ (75)

Our assumption for known slope vectors ak does not pose a significant constraint
in many cases. These include cases where the degree of the polynomial is relatively
small, or the ak assume all integer values up to the maximum degree, or the ak are
integer multiples of a fixed slope step. If the slopes are unknown, one approach is to
compute the derivatives (or gradients) of the given data, estimate the histogram of
the derivative values, and use this for automatic selection of the slope parameters.
Another approach is simply to cluster the data gradients using K-means and use
the centroids of the K clusters as our given slope vectors. In all these cases, setting
bk = −∞ for some k, removes the corresponding line or hyperplane from the max-
affine combination. Next we apply the above approaches for optimally solving two
cases (1D and 2D) with numerical examples.

7.3.1 Optimal Fitting 1D Tropical Max-plus Polynomial Curves

We wish to fit a max-plus tropical polynomial curve

p(x) = max(b−r− rs0x, . . . ,b−1− s0x,b0,b1 + s0x, . . . ,br + rs0x)

=
r∨

k=−r

bk + ks0x (76)

with K = 2r+ 1 terms to given data (xi, fi) ∈ R2, i = 1, ...,N, where fi = p(xi)+
error, by minimizing some `p error norm. The tropical polynomial p(x) is a max-
imum of straight lines with intercepts bk ∈ Rmax and slopes ak = ks0 ∈ R that are
integer multiples (up to a maximum integer r) of a fixed slope step s0; a null inter-
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cept means that the corresponding line does not contribute to p(x). The above PWL
model is efficient if the function to approximate has both positive and nonnegative
slopes and over the approximation interval most of its slopes are integer multiples
of a slope step up to a maximum degree. If it has only nonnegative slopes, then we
do not include the terms with negative slopes.

Based on the PWL model (76), the equations to solve for finding the optimal
parameters {bk} become:

s0


−rx1 (1− r)x1 · · · 0 · · · (r−1)x1 rx1
−rx2 (1− r)x2 · · · 0 · · · (r−1)x2 rx2

...
...

...
...

...
...

...
−rxN (1− r)xN · · · 0 · · · (r−1)xN rxN


︸ ︷︷ ︸

X

�


b−r
b1−r

...
br


︸ ︷︷ ︸
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Example 4 See Fig. 11 for a numerical example where the data to fit resulted from
sampling the bottom half of the circular curve x2 +(y− 10)2 = 72 at N = 5 points
with abscissae (x1, . . . ,x5) = (−5.5,−2,1.5,4,6.5). The optimal fit was done using
a tropical polynomial as in (76) with r = 3 and s0 = 1, i.e. a max of 7 lines, yielding
a MMAE of maxi |p(xi)− yi|= 0.12.
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−3x −2x −1x

0x

1x 2x 3x

Fig. 11 Piecewise-linear curve approximation of a half circle (black solid line) by interpolating
5 samples with a tropical max-plus polynomial (blue solid line). The individual lines of the PWL
function are shown with dashed lines.

Example 5 As another 1D example, consider clean data (xi, fi) that are N = 100
points with abscissae xi uniformly sampled within the interval [−2,2] and ordinates
fi = f (xi) where f (x) is the convex function [45]

f (x) = max(−6x−6,
x
2
,

x5

5
+

x
2
) (78)
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The tropical model we are fitting is of the form p(x) = max(a1x + b1, ...,aKx +
bK) where the slopes ak are computed using the Jenks natural breaks optimization
(which is essentially a 1D K-means) algorithm applied to the numerical derivatives
of the data and the intercepts bk are computed using the 1D (d = 1) version of the
tropical fitting algorithms (74) and (75). See Fig. 12 for the curve approximations
and Table 3 for the corresponding errors.
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Fig. 12 Fitting max-plus tropical polynomials to samples from the function (78).

For the case K = 6 the estimates for the slopes and the MMAE solution for
intercepts yielded

(a1,a2,a3,a4,a5,a6) = (−5.92,0.64,3.07,6.43,10.08,14.11)
(b1,b2,b3,b4,b5,b6) = (−5.82,0.03,−2.5,−7.3,−13.4,−20.83) (79)

For the case K = 3, although our method yields about double the RMS error of the
method in [45], the latter is computationally more complex as explained later.
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GLE MMAE
K errorRMS ‖error‖∞ errorRMS ‖error‖∞

3 0.4101 0.9671 0.3535 0.4836
4 0.2048 0.5072 0.1799 0.2536
5 0.1230 0.7226 0.3004 0.3613
6 0.0801 0.1932 0.0625 0.0966

Table 3 Minimum RMS error and maximum absolute error for the optimal constrained (GLE) and
unconstrained (MMAE) tropical fitting of the function (78).

7.3.2 Optimal Fitting 2D Tropical Max-plus Polynomial Surfaces

As a 2D example with known slopes, let us fit the graph surface of a symmetric
max-plus tropical conic polynomial

p(x,y) =
∨

0≤|k+`|≤2, k`≥0

bk`+ kx+ `y (80)

to given data (xi,yi, fi) ∈R3, i = 1, ...,N, where fi = p(xi,yi)+error by minimizing
some `p error norm. The equations to solve for finding the optimal parameters bk`,
adjusted as in (76) so that they include both negative and positive slopes, become:
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(81)
By Theorems 3 and 4, the optimal subsolution (GLE) ŵ for minimum `p error and
the optimal unconstrained solution w̃ (for MMAE) equal

ŵ = X∗�′ f, w̃ = µ + ŵ (82)

where µ is half the `∞ error incurred by ŵ. The GLE and MMAE solutions for the
model are shown in Fig. 13 for fitting data from a noisy paraboloid surface.

Example 6 The data (xi,yi, fi) in Fig. 13 are 500 observations [38] from the
noisy paraboloid surface z = x2 + y2 corrupted by a zero-mean random noise
ε ∼N (0,0.252). Thus, fi = f (xi,yi) where
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Fig. 13 Piecewise-linear surface approximation of a noisy paraboloid with a 2D tropical max-plus
conic polynomial.

f (x,y) = z+ ε = x2 + y2 + ε (83)

and the planar locations xi,yi of the data points were drawn as i.i.d. random variables
∼ Unif[−1,1]. Now, the general model we are fitting has rank K and is

p(x,y) = max(a1x+b1y+ c1, ...,aKx+bKy+ cK), (84)

where the slopes (ak,bk) are computed using K-means on the numerical gradients of
the 2D data, and the intercepts ck are computed using the tropical fitting algorithm.
See Fig. 14 for the resulting approximations and Table 4 for the error norms.

GLE MMAE
K errorRMS ‖error‖∞ errorRMS ‖error‖∞

11 (conic) 0.6307 1.7049 0.4167 0.8524
10 0.6659 1.6022 0.3641 0.8011
25 0.5674 1.2779 0.3016 0.6389
50 0.5489 1.3068 0.3159 0.6534
75 0.5433 1.2950 0.3150 0.6475
100 0.5364 1.2828 0.3135 0.6414
250 0.5273 1.2786 0.3172 0.6393

Table 4 Minimum RMS error and maximum absolute error for the optimal constrained (GLE)
and unconstrained (MMAE) tropical fitting of the function (83) using either a 2D tropical conic or
K-term optimal fit whose gradients are found via K-means.

Regarding the performance in the case of unknown slopes, as long as the number
K of clusters is not too small (and thus there are many elements in the cluster that
are adequately represented by the centroid), then our tropical regression algorithm
will produce good PWL fits to the data as is evident for the 1D case in Fig. 12 for
K = 6 and the 2D case in Fig. 14 for K = 25.
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Fig. 14 2D Tropical fitting using the optimal constrained (GLE) and unconstrained (MMAE) ap-
proach to data from (83).

Computational Complexity

The prevailing trend in recent methods to fitting N data points in Rd+1 using as
model d-dimensional max-affine functions (i.e. max of K hyperplanes aT

k x+ bk),
which we view as max-plus tropical polynomials, is a variety of iterative nonlin-
ear least-squares algorithms. The number of model parameters is K(d + 1). The
traditional least-squares estimator (LSE) [44, 46] solves a quadratic program with
constraints and has a complexity of O((d+1)3N3). Clearly, this becomes practically
intractable for large number of data points and, also, as the dimensionality increases.
In [61, 45] the nonlinear least-squares problems is solved iteratively where each iter-
ation involves some partitioning of the data into K clusters and least-squares fitting
of hyperplanes over each cluster. This has a complexity of O((d + 1)2NiC) where
iC is the number of iterations until convergence; however, this least-squares parti-
tion algorithm does not always converge, and even in cases of convergence the fit
to the data may be poor. To overcome this obstacle, the authors in [61, 45] pro-
pose running several instances of their algorithm, with different random initializa-
tions, in order to achieve a better fit to the data. The convex adaptive partitioning
(CAP) algorithm proposed in [38] provides a consistent estimator with complexity
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O(d(d +1)2N log(N) log(log(N))), where its most demanding part is linear regres-
sion since each least-squares fit has complexity O((d +1)2N).

In contrast, the complexity of our algorithm for the case of unknown slopes is
O(dNKiK), where iK is the number of K-means iterations. After the K centroids
ak have been computed, our algorithm simply does a single pass over the data for
the tropical regression to find the bk, with total complexity O(dNK). Therefore,
the overall complexity of our tropical regression algorithm (both via the GLE and
the MMAE criteria) is O(dNKiK). In general, assuming that the true slopes data
have some clustering structure, the required number of K-means iterations will be
small and the cost of our algorithm will be practically ‘linear’. As such, in non-
pathological cases, we can assume that the product KiK is significantly smaller than
dN and can be treated as a constant, thus improving on both the CAP algorithm
and on the traditional LSE. Finally, note that for the case with known slopes our
algorithm has a very small complexity O(dN).

8 Conclusions

Max-plus tropical geometry and weighted mathematical morphology share a com-
mon idempotent semiring arithmetic, which also has a dual counterpart. Both can
be extended and generalized using max-? algebra over complete weighted lattices
(CWLs) which are nonlinear vector spaces. By using adjunctions and lattice projec-
tions, the CWL framework allows for optimal subsolutions w.r.t. all `p error norms
for general max-? systems of equations, which are applied to optimal fitting of trop-
ical lines or hyperplanes to data. Especially for the max-plus case this approach
yields the optimal solution w.r.t. to the `∞ error norm. This tropical regression pro-
vides convex piecewise-linear (PWL) approximations to curves and surfaces with
max-affine functions at a linear complexity with respect to the number of data and
their dimension, which is significantly lower than the complexity of least-squares
estimators for PWL shape regression, while achieving a comparable performance
w.r.t. the approximation error.
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