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MORPHOLOGICAL CORRELATION
AND MEAN ABSOLUTE ERROR CRITERIA
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ABSTRACT. In this paper the mean absolute error
criterion for signal matching/detection is linked with a mor-
phological signal correlation (a sum of minima). Several
properties of this nonlinear correlation are investigated, its
performance for signal detection is compared to the classi-
cal (sum of products) linear correlation, and its statistical
form is calculated for speckle patterns.

1 Signal Correlations and ¢, Norms

Consider two real-valued d-dimensional (d = 1,2,...) dis-
crete signals represented by the sequences f(n) and g(n),
n € Z°. For simplicity, assume temporarily that g is a sig-
nal pattern to be found in f. To find which shifted version
of g “best” matches f a standard approach has been to
search for the shift lag k that minimizes the mean squared
error (MSE)

Ey(k) = >_[f(n+k) — g(n))*

new

over some subset W of Z%. Since (a — b)? = a® + b® — 2ab
for any reals a,b, under certain assumptions this match-
ing criterion is equivalent to maximizing the linear cross-
correlation between f and g:

Yyo(k) = 2 f(n+k)g(n)

new

Such ideas have provided the foundations for many decades
of research in matched filtering and signal detection. The
popularity of the MSE criterion is mainly based on its
mathematical tractability. From a statistical viewpoint one
could also claim that this approach is optimal if one of the
signals f or g is corrupted by additive Gaussian noise dis-
tributions. But the perfect Gaussian assumption for real
data is a myth, and statisticians have found that even for
slight deviations from the Gaussian assumption other error
criteria are more robust. One such criterion is the mean
absolute error (MAE)

Ey(k) = 3 |f(n+k) —g(n)
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This MAE matching criterion has been applied to speech
signals for pitch period detection [1] and to images for tem-
plate matching. MAE criteria have also been applied to
solving optimization problems in rank order filtering [2].
What appears to have not been done is linking the MAE
matching criterion with some signal correlation. This paper
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provides such a missing link. Namely, since |a — b| = a +
b — 2min(a, b), under certain assumptions, minimizing E;
is equivalent to maximizing the nonlinear cross-correlation

By, (k) = f:%vmin[ f(n+ k), g(n)].

If W = Z¢, then the E; and E, error measures become
respectively the £, (squared) and ¢, norms of the error sig-
nal f — g. In practice, W is often a window, i.e., a finite
subset of Z%; then, in most cases, we can still view the errors
E,,E, as 4,_, > norms and the correlations -, pt as defined
for —oo < n,k < oo if we first window f or g or both.

In [3] we showed that maximizing p(k) is optimum for
image matching or object detection under a variety of MAE
matching criteria. In this paper we discuss some determin-
istic and statistical properties and applications of this non-
linear correlation, extending our work in [3]. To motivate
our next discussion consider a 2-D signal f representing the
image of Fig. 1a, and let g represent the windowed orchard
(an image template). Fig. 1b shows 7y, (k) normalized by
the product of the rms value of g and the local rms value of
f. Fig. 1c shows p, (k) normalized by the average of the
area of g and the local area of f. As observed in Fig. 1, the
detection of g in f is indicated by a much sharper peak in
Hs,(k) than in v, (k). In addition, the nonlinear correla-
tion 4 (a sum of minima) is faster than the linear (sum of
products) correlation ~.

2 Morphological Correlation

We call p, (k) = X3 _,, min[f(n + k),g(n)] a morpho-
logical cross~correlation and p,,(k) a morphological auto-
correlation of f, because it is directly related to a basic
operation of mathematical morphology [4]. Specifically,
fs(k) is equal to the area under the signal obtained by
eroding the function f by a 2-point structuring element
{0,k}. (The relation between linear autocorrelation of bi-
nary images and erosion was used in [4] for structural image
analysis via geometric probabilities.)
First note that

I‘l']g(k) < A(f) '2'_ A(g)

and g, (k) < p,0(0),
where A(f) = X, f(n) is the area under f.

Further, to relate -y and y we assume that both f and g
are nonnegative signals (an assumption easily met, e.g. by
adding a dc-offset to the signals or when dealing with image
signals), and we consider their binary threshold signals

1, f(n)>a
fa(n) ={ 0, f'gn; <a

where a spans all the continuous range of f. Then f can
be represented exactly by its threshold signals since

= [” fu(n)da.
§m) = [ fufn)da
Then we showed in (3] that the morphological correlation

between f and g is the average over all amplitudes a of the
binary correlations between f, and g,:

b ®) = [V ®Bda= [ 0. )

Note that for binary signals (but not otherwise) the mor-
phological and linear correlation coincide. Result (1) has a
counterpart result for the £, matching error norms || f —g||,,
p=1,2; i.e., as shown in [3],

1 = glly = [ lfo = galuda = [ (17~ gll:)*d

If f(n) L, F(w) = ¥, f(n)e " denotes a Fourier
transform pair, it is well-known that the Fourier transform
of Y, ,(k) is the energy spectral density (or spectrum) I'(w)
= |F(w)[*. Next we show something similar for the Fourier
transform, M(w), of the morphological correlation p 17(k)-

Namely, if f,(n) £, a(w) and g,(n) Z G,{(w), then
By, (k) Z, [3° Fo(w)G4(—w)da. This implies that

M(w) = f:p,,(k)e-f”"= /0°° |Fu(w)[fda. (2)

k=—o00

Observe that 5 [, M(w)dw = ,,(0) = T, f(n) = A(f).
Hence, in a very small frequency zone Aw where M(w) re-
mains approximately constant, we have that M(w)Aw ~
AA(f). This implies that M(w) measures how the area of
f(n) distributes over frequency. Therefore we call M(w) an
area spectral density (or area spectrum) and, as (2) implies,
it is the average (over all amplitudes a) of the energy spec-
tra of the binary signals f,(n). Since p, (k) is a real even
signal, M(w) is also real and even, but not necessarily non-
negative for signals f assuming both positive and negative
values.

Experiments: The observation from Fig. 1 that mor-
phological correlation yields sharper peaks than the linear
correlation for signal matching/detection has been exper-
imentally verified in many of our experiments both with
tmages as well as with voiced speech signals. To see this
clearly, Fig. 2 reports a series of 3 experiments for de-
tecting in an image f a template ¢ which is a part of
f: A) The windowed (i.e., short-space) cross-correlations
Yo = (/W) Socw f(n+k)g(n) and g = (1/|W]) Toew
min[f(n + k), g(n)] are shown in Figs. 2b,c, where W is the
domain of g and |W| is the number of pixels in g. B) The
normalized correlations are shown in Fig. 2d. 7y (k) is nor-
malized by dividing it with the product of the rms value of
g and the local rms value of f, whereas p,, (k) is normal-
ized by dividing it with the average of the mean of ¢ and
the local mean of f. The range of both of these normalized
correlations is [0,1]. C) Fig. 2e shows the windowed mor-
phological and linear cross-correlations among f and g after
their means have been subtracted and they have been nor-
malized by dividing them with their standard deviations.
The correlations are further normalized so that both have
a dynamic range of the same length, i.e, [-1,1] for the linear
and [-2,0] for the morphological.

Which experiment (A, B, or C) is more meaningful for
signal detection depends of course on the specific applica-
tion. We generally observe, however, in the experiments A
and B that the morphological correlation (either its direct
or normalized version) has two practical advantages over
the linear correlation: it yields sharper matching peaks and
is faster since it is a sum of minima, as opposed to a sum
of products for the linear. The sharper peaks of the mor-
phological correlation were also observed when we repeated
the same experiments for signals corrupted with impulse

1569



*SUOIJRIASD pIepuUe)s 9A1302dsal Y} Y3im wayy) Sul
-PIAIp Aq POZI[BULIOU SI9M SON[A IIDY} PUT PIJIRIJQNS dI9M
sueow IRY) I9yje 6 pue [ Suowre suolje[prro) () ‘suone]
21100 pazijeurtoN (p) ‘() uoryepirod [esidojoydiopy (o)
‘(L) uornyeparrod resury (q) ‘pajynduwrod srem 5 pue [ Jo
SUOT}R[9II0-SSOID YDIYsM SUO[R UOI}IAIIP B} SMOYS dUI[ [B}
-uozuoy ayJ, ‘(mopuim ayjy apisur) 5 ajedey [exid-gg X 0g
e pue (yjpmw ut sppxid gig) f o8ewr uy (e) -z eanSig

—~
©
~

[3)
-
o
-2
wn
o
+ O
3 N
o
+ O
Lae]
o
T o
N
o
i8
=
+ + + + + + + o
o (=] o o (=] [~ o [=] (=]
o~ 0 w - el N -— o o
£ 8 8 7 B 8 =z g
UoT3®191100
o
r o
n
o
-+ O
-
o
-+ O
3]
o
+ o
N
(=]
+Oo
a
+ + + o
- - - e T
o o Q o o
° Y [ S B
~ < - © [
o~ o~ o~ - -
uoT}R 84100
£

(

template location

template location

~~
v
~—
o
+8
w
o
+ O
-
e
[}
i
18 %
RO
o
. :
y ©
I\/ -
(=
-
4% M.
“wl )
[l
/H g
To
-
S ——————t——+ o
L T T T N T S - NP Y
1 1 1 1 1 1 |
(9Z1[PWIOU § UBSW JORIGNS) UOTIR[SJI0]
o
TS
("2
(=
+ O
-
(=}
.
184
Mo
1
o ]
o
-
o e
18 ~
|
=
.rm
-
t + + o
- (=) « o~
o o o
(pPz1vPWIOU) UOT}V[2JJ0)
o
~—

1570



noise. In experiment C both correlations have similar com-
putational complexity and performance in terms of signal
detection. However, they are optimal under different error
criteria, which are compatible with different £, norms or
related noise distributions.

To explain the sharper peaks for the morphological cor-
relation we provide next a theoretical analysis, which is sim-
ilar to the approach followed in [1] to show that the MAE
E, (k) gives sharper valleys for pitch detection in speech
than the peaks of the linear correlation vy (k). We assume
that f and g are (locally) realizations of the same random
sequence, which contains some quasi-periodic structure (the
periodicity here refers to the repetitive occurrence of ¢ in
[, e.g. as in Fig. 2). Thus in the definitions of vy and py
we replace g with f. From Cauchy-Schwartz’s inequality it
can be shown that

IWl Z [f(n+ k) — f(n) \lel Z |f(n+ k) — f(n)[?

which implies that
]%[Znew[f(n + k) + f(n)] - 2py (k) =
r(k)y/ 7 Znew 2 (n +K) + F2(n)] - 27y (k)

where 0 < r(k) < 1. Assuming also that f is (locally) sta-
tionary yields that e f(n+k) = T e f(n) = [W|pyw(0)

and T,ew F2(n + k) = Tpew f2(n) = |W|7¥y (0); hence
e _ [ 0w ®
L ) CJ Ewok Q

where C = [r(k)\/Yw(0)]/[vVZpw(0)] ~ constant locally.
Due to this square-root relationship, the drop of p(k)/(0)
from its peak value 1 is sharper (has steeper slope) than the
drop of y(k)/~(0) from its peak value 1. This explains why
the morphological correlation gives sharper peaks than the
linear, assuming some local stationarity.

3 Statistical Analysis

Our previous results can also be cast in a statistical frame-
work. For example, given two (temporal or spatial) random
processes f(t) and g(t), we define their morphological cor-
relation by g, (t1,t2) = £{min[f(t,),g(t2)]}, where £{}
denotes statistical expectation. If they are jointly station-
ary and 7 = t; — t3, then p,,(t1,2;) = (7). Considering
the signal detection problem under the MAE matching cri-
terion, minimizing Ey(r) = E{|f(t + 1) — g()|} = E{f(t +
)} + E{g(t)} —2p,,(7) as a function of the shift 7 is equiv-
alent to maximizing pt, (r) under various assumptions; ex-
amples include (1) stationarity of f and g, or (2) zero-mean
processes f, g, or (3) normalization of both Ey(r) and £, (7)
by the average of the means of f and g¢.

In what follows we focus on the specific example of cal-
culating the morphological correlation for random spatio-
temporal signals that are intensities of fully developed, co-
herent, Gaussian speckle patterns. These speckle images are
interesting both intrinsically and in modeling some types
of image noise. Let I, and I, be two random variables
representing the intensities of such a speckle process at
two points in time-spatial coordinates. As well-known, the
marginal intensity disctributions are one-sided exponential
densities p;(I;) = (1/m;) exp(—I;/m;), I; > 0, where m; =

E{L}, i = 1,2, are the mean intensities. The linear corre-
lation coefficient of I, I is ¥ = (€ {I1I;} — mymy)/mym,.
The problem here is to calculate the morphological corre-
lation p = & {min(I;,I;)} and relate it to . In [5] it has
been shown that, for any function h(ly, I3),

e

We apply this result for h(Iy, I;) = min(ly, I3). Let

1mgY)" .
(4)

Ho = Ply=o = / / min(ly, L)e” = e "5 dLdl;.

mymz
It can be shown [more detailed proofs of the results in this
paper will be available in a forthcoming long report] that
. mymy
Mo = A my

Hence

1
b=l + Z (ny)z Bm “D (

(5)
We can also arrive at a theoretlca.lly equivalent result by
thresholding the intensities and using (1). Thus, by thresh-
olding I; at all levels a we produce the binary random vari-
ables u(l; —a), i = 1,2, where u(-) is the unit step function.
Then, if ko(I1, ;) = u(ly — a)u(J; — a), from (1) we obtain

p=E{ /o * ha(l, B)da} = /o * e{u(l — a)u(l, — a)}da.
(6)

maY)" .

Finally, by using (4) for ho(ly, I) with £{ho}|y=0 =
exp(—a/ ), it follows from (6) that

2l n

_ T
Bkt i

a? 1 a. a
—)L —)da,
D () B ()

(7)

where LE(z) = z7%e* L[z e~%|, n = 0,1,2,..., are the
associated Laguerre polynomials. Both (5) and (7) express
M as a power series expansion in terms of powers of 7 and
help illuminate the highly nonlinear relationship between

M and 7.

mims
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