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Multivariate Tropical Regression and 
Piecewise-Linear Surface Fitting
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Optimal Regression for Fitting Euclidean vs Tropical Lines
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1. Elements of Tropical Geometry
 “a marriage between algebraic geometry and polyhedral geometry” 

[Maclagan & Sturmfels 2015]
 Tropical semirings: Max-plus & Min-plus Arithmetic
 Tropical Polynomials
 Geometrical objects: tropical lines, tropical polynomial curves/surfaces, 

tropical half-spaces & polyhedra

2. Elements of Max-plus Algebra for Vectors/Matrices:
 Max-plus Matrix algebra
 Max-plus systems (Nonlinear Control) and 
 Signal Processing: Max-plus convolutions (weighted dilations/erosions)

3. Optimization and Tropical Regression:
 Optimal solutions of max-plus matrix equations 
 Tropical Regression: fitting tropical polynomials to data
 Algorithm and Complexity

Outline
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What does TROPICAL mean?
• The adjective “tropical” was coined by French mathematicians Dominique 

Perrin and Jean-Eric Pin, to honor their Brazilian colleague Imre Simon, a 
pioneer of min-plus algebra as applied to finite automata in computer science.

• Tropical (Τροπικός in Greek) comes from the greek word «Τροπή» which 
means “turning” or “changing the way/direction”.

Polygonal lines 
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Tropical Semirings 
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Graphs of Max-plus Tropical 1D Polynomials

Cubic polynomial
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Graph and Trop Curve of a tropical “Conic” polynomial

Graph of  p(x,y) 
and
its Tropical Curve = set of (x,y) points 
where the min is attained by more than 
one terms.

2 2classical:  " "
tropical:   ( , ) min( 2 , , 2 , , , )   
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Tropical Polynomial of degree 2 in two variables  
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Obtain Tropical Polynomials via Dequantization
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Tropical Half-spaces and Polytopes in 2D

The region separating boundaries are tropical lines (or hyper-planes).

Tropical Polyhedra are formed from finite intersections of tropical  
half-spaces. Polytopes are compact polyhedra.

maxTropical (affine) Half-space of  n [ Gaubert & Katz 2011]
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Tropical Halfspaces and Polyhedra in 3D 
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Max-
plus

Matrix 
Algebra



Linear versus Max-Plus Systems
• State-space representation: linear vs. max-plus

• Matrix products
• Linear: 

• Max-plus:

• Example

• What can we model with max-plus systems? 
Discrete Event Systems/Control, Scheduling, Shortest Paths on Graphs, Dynamic 
Programming, WFSTs for Speech recognition, Morphological Filters for Image Processing

Ref: [P. Maragos, “Dynamical Systems on Weighted Lattices: General Theory”,  
Math. Control, Signals and Systems, 2017.]



Morphological Operators  on Lattices
(  = partial ordering,   V = supremum,  = infimum) 

• is increasing iff

• is  dilation iff

• is  erosion iff

• is  opening iff increasing and antiextensive

and idempotent           

• is closing iff increasing and extensive

and idempotent 

• is adjunction iff

Then:   ε is erosion,   δ is dilation,  

δε  is opening (projection),  εδ is   closing (projection). 
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[ Serra  1988;  Heijmans & Ronse 1990 ]

(Galois connection) 
Residuation pair

(“Tropical Adjoints”)



Solve  Max-plus Equations
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Optimally Fitting Tropical Lines to Data

1,...,

i

: Fit a tropical line  to noisy ,   1,..., ,
where    by minimizing  norm of error

Greatest Subsolution 
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Numerical Examples of Optimally Fitting Tropical Lines to Data
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: Fit a tropical line  to noisy ,   1,..., 200,
where    by minimizing  of error:
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Ground Truth:
y = max(x-2,3)
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Optimal Fitting Max-Plus Tropical Planes to Data

1,...,

: Fit a   to noisy ,
where  +error, 1,..., 100,  by minimizing  norm of error:
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Ground Truth:
z = max(x + 5, y + 7, 9)
Noise: N(0,1)
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Optimal Fitting 2D Higher-degree Tropical Polynomials to Data
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Computational Complexity of Tropical Regression
1

3 3
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 Tropical Geometry, max-plus matrix algebra, and 
morphological signal operators share a common 
idempotent semiring arithmetic.

 Introduced Tropical Polynomials for multidimensional 
data fitting using Piecewise-Linear Functions.

 Developed algorithm of low-complexity (~linear) for 
tropical regression based on optimal solutions of 
systems of max-plus equations.

 Future work: extensions to more general regression 
functions using max-* algebra on weighted lattices.

Conclusions
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Thank you for your attention! 

We wish everyone courage and health 
during the COVID19 pandemic.

For more information, demos, and current results:  
http://cvsp.cs.ntua.gr and    http://robotics.ntua.gr


