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This paper proposes a model-free learning scheme for the developmental acquisition of
robot kinematic control and dexterous manipulation skills. The approach is based on a
nested-hierarchical multi-agent architecture that intuitively encapsulates the topology
of robot kinematic chains, where the activity of each independent degree-of-freedom
(DOF) is finally mapped onto a distinct agent. Each one of those agents progressively
evolves a local kinematic control strategy in a game-theoretic sense, that is, based on a
partial (local) view of the whole system topology, which is incrementally updated
through a recursive communication process according to the nested-hierarchical
topology. Learning is thus approached not through demonstration and training but
through an autonomous self-exploration process. A fuzzy reinforcement learning
scheme is employed within each agent to enable efficient exploration in a continuous
state–action domain. This paper constitutes in fact a proof of concept, demonstrating
that global dexterous manipulation skills can indeed evolve through such a distributed
iterative learning of local agent sensorimotor mappings. The main motivation behind
the development of such an incremental multi-agent topology is to enhance system
modularity, to facilitate extensibility to more complex problem domains and to improve
robustness with respect to structural variations including unpredictable internal failures.
These attributes of the proposed system are assessed in this paper through numerical
experiments in different robot manipulation task scenarios, involving both single and
multi-robot kinematic chains. The generalisation capacity of the learning scheme
is experimentally assessed and robustness properties of the multi-agent system are
also evaluated with respect to unpredictable variations in the kinematic topology.
Furthermore, these numerical experiments demonstrate the scalability properties of the
proposed nested-hierarchical architecture, where new agents can be recursively added in
the hierarchy to encapsulate individual active DOFs. The results presented in this paper
demonstrate the feasibility of such a distributed multi-agent control framework,
showing that the solutions which emerge are plausible and near-optimal. Numerical
efficiency and computational cost issues are also discussed.

Keywords: multi-agent architecture; fuzzy reinforcement learning; developmental
robotics; dexterous robotic manipulation

1. Introduction

Understanding aspects of coordinated behaviours in the frames of multi-agent systems and

elaborating distributed learning schemes for application on collaborating robots constitutes an

important research topic in robotics. In particular, a lot of work has already been done mainly in
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the field of cooperating mobile robots, where several approaches have already been proposed

and experimentally tested. For instance, a team of mobile robots has been demonstrated in

Donald et al. (1997) to perform a collaborative task, which consisted of multi-robot cooperation

to efficiently push large boxes based on a set of specific manipulation protocols. Similar tasks

have been reported in Rus (1997), where a specific algorithmic structure has been used to

coordinate the reorientation of objects on a plane by independent robot-agents, and in

Ahmadabadi and Nakano (2001), where distributed cooperation strategies have been employed

by a group of behaviour-based mobile robots for jointly handling an object. A common ground

in all these approaches is that the motion of the object under cooperative pushing and

manipulation is quasi-static, and that all the agents involved have predefined behaviour models

that they combine by employing some pre-specified control architecture.

Cooperative behaviour is one of the aspects studied within a multi-agent framework. Human

behaviours also demonstrate evolutionary characteristics and self-organising abilities. These

unique attributes of human behaviours are extensively studied in the process of designing

intelligent robots that need to operate and collaborate autonomously adapting to their

environment. In this context, the application of bio-inspired techniques, such as reinforcement

learning (RL), evolutionary computation and fuzzy systems, constitutes an emerging research

field. In RL approaches (Sutton & Barto, 1998), new skills are acquired by means of a trial-and-

error process (Bertsekas & Tsitsiklis, 1996; Dayan & Abbott, 2001), which is based on exploring

the robot’s own actions and obtaining consequent perceptual observations on its environment.

State–action policies are thus progressively developed based on the definition of reward

functions that act as positive reinforcement or negative punishment depending on the

performance of the robot with respect to the desired goal.

RL is an active area of machine learning research that is also receiving attention from the

fields of decision theory, control engineering and human–machine interaction (Lemon &

Pietquin, 2012), and is progressively finding an increasing number of new applications in the

field of robotics (Kormushev, Calinon, & Caldwell, 2013; Stulp, Buchli, Theodorou, & Schaal,

2010). Various RL methods have been employed on multi-agent architectures that target the

control of mobile robots operating within a fully or partially observable environment (Kok &

Vlassis, 2004, Murciano, Millan, & Zamora, 1997). Moreover, in Takahashi et al. (2001) and

Doya (1996), we have seen cases where single agent architectures employ RL methods in a

continuous three-dimensional (3D) space, implemented by neural networks. In Liu et al. (2007),

a three-layered architecture is introduced (namely, motion patterns, behaviour models and

planning component), which employs RL in order to control a robotic fish. In general, RL is an

approach where building a policy is based on data acquired through exploration.

Another approach to acquire robot manipulation skills is through learning from

demonstration (LfD) (Argall, Chernova, Veloso, & Browning, 2009), also referred to as

imitation learning (Schaal, 1999) or programming by human demonstration (Billard, Calinon,

Dillmann, & Schaal, 2008; Kaiser & Dillman, 1996). By LfD, instead of learning by exploration,

a policy is learned from examples or demonstrations provided by a teacher (that is, a human

acting as the tutor of the robot). These examples are defined as sequences of state–action pairs

that are recorded during the teacher’s demonstration of the desired robot behaviour. Such a

method, employing RL to achieve skill learning by demonstration, has been proposed in Pastor

et al. (2011). This approach is based on a centralised (single-agent) framework, which enables

the generalisation of knowledge acquired during demonstration, while providing policy

improvement with path integrals. A relevant methodology is presented in Lopes and Santos-

Victor (2007), proposing a hierarchy of developmental stages and skills that have to be acquired

at each stage. The initial steps of skill acquisition in this hierarchy allow the robot to establish
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sensorimotor coordination. The next step in the hierarchy allows building skills by interacting

with the environment, while the last step introduces skill acquisition by imitation of teacher’s

demonstrating examples.

Other relevant research efforts have been conducted in the field of humanoids and human–

robot interaction, also aiming to endow robots with a capacity to learn new motor skills. Work in

this field is often based on probabilistic approaches, like for instance in Calinon et al. (2010),

where a combination of hidden Markov models and Gaussian mixture regression (GMR) has

been applied for the learning and reproduction of gestures by imitation. Relevant work has also

been recently reported in Rozo et al. (2013), regarding the transfer of physical interaction

(impedance-based) skills by direct kinesthetic teaching. Guenter, Hersch, Calinon, and Billard

(2007) have also explored the use of Gaussian mixture models and GMR to encode motor skills

that can be learned by demonstration through expectation–maximisation techniques, applied to

constrained reaching movements. Other approaches for skill representation include (1) dynamic

motor primitives (Kober & Peters, 2009; Schaal, Mohajerian, & Ijspeert, 2007), where RL is

used to adapt the position of specific movement attractors, and (2) motor coordination schemes,

such as the one proposed in Pardo et al. (2009) that has been applied to the learning of simple

rest-to-rest movements. The challenges that all these approaches are still facing relate to the task

requirements that are inherent in human–robot systems, involving large multi-dimensional and

continuous state–action spaces, as well as operation in constrained, dynamic and partially

unknown environments.

Inspired by all the above research directions and the challenges that they face, this paper

proposes a model-free learning scheme for developmental acquisition of robot manipulation

kinematic control skills. The approach is based on a multi-agent architecture, which resides on

an original nested-hierarchical structure that encapsulates naturally the topology of robot

kinematic chains. Within the proposed multi-agent architecture, the activity of each joint

(link or, more generally, degree-of-freedom, DOF) of a kinematic chain is represented by a

distinct agent at the lower level of the hierarchy. Each one of those agents maintains a local

(i.e. partial) view of the whole system topology and of the task progress, which is incrementally

updated through a recursive (top-down, bottom-up) communication process. Learning is then

approached not through demonstration and training, but through an autonomous exploration and

self-learning (unsupervised) process, where each agent (joint) evolves a local sensorimotor

behaviour by receiving information (reward signals) related to observations of task

performance.

The main motivation behind the development of such an incremental multi-agent topology is

to enhance system modularity, to facilitate extensibility to more complex problem domains and

to improve robustness with respect to structural variations including unpredictable internal

failures. These attributes of the proposed system are assessed in this paper through numerical

experiments in different manipulation contexts, involving single- or multi-robot kinematic

chains. In particular, two series of numerical experiments are performed to evaluate the

performance of the proposed multi-agent learning scheme. The first experimental series

addresses the problem of kinematic control for redundant multi-DOF robotic chains.

Generalisation capacity of the learning mechanism is experimentally assessed and robustness

properties of the multi-agent system are evaluated with respect to unpredictable variations in the

kinematic topology. Furthermore, extensibility of the system to more complex task scenarios is

demonstrated by considering a direct extension of the above multi-agent learning system into a

constraint manipulation task, involving redundant manipulation under additional obstacle

avoidance conditions. Scalability of the system is further evaluated in the second experimental

series presented in this paper, which addresses a more complex robotic task scenario that
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consists of a simulated dexterous manipulation set-up involving multiple cooperating robot

chains in a quasi-static multi-finger grasping task.

Besides inherent topological scalability, an important issue also concerns numerical

efficiency and convergence of the learning mechanism, especially when this multi-agent system

addresses a robot manipulation task in a continuous state–action domain. This paper constitutes

in fact a proof of concept demonstrating that such global manipulation skills can indeed evolve

through distributed iterative learning of local agent sensorimotor mappings. Indeed, in the

proposed architecture, each agent is selecting an action independently of the rest, based on local

state information and by observing and generating an estimate of what the rest will do in a game-

theoretic sense (that is, always as viewed in the local perspective of each agent, with limited

access only to those agents that are visible according to the nested-hierarchical topology).

Efficient exploration in a continuous state–action domain is then achieved by employing a fuzzy

RL scheme. The resulting cumulative action of the system is a joint effort (joint actions) of all

the nested entities comprising the system. Although autonomous, the agents are closely coupled

with each other due to the physical connectivity, making the effective cooperation and

coordination among them extremely important to achieve a convergent behaviour for the whole

system. This paper demonstrates the feasibility of such a distributed multi-agent control

framework in the domain of dexterous manipulation, a domain where very few related

experimental results, regarding developmental control strategies, are available in the literature.

This paper also demonstrates that the solutions which emerge (at least, in the single redundant

kinematic chain) are plausible and near-optimal (in a least-squares (LS) sense). Finally, it is

shown that this multi-agent architecture provides significant computational cost benefits as

compared to a centralised single-agent approach.

The paper is organised as follows. The next section discusses related work and highlights the

contributions of this paper. Section 3 outlines the proposed multi-agent framework, describing

the topology of the nested-hierarchical architecture and the basic algorithmic structure

employed for multi-agent control. Section 4 describes more in detail the learning approach

employed in this work, an RL-based methodology focusing both on state-space continuity and

localised action selection. Section 5 presents the numerical experiments performed and

discusses the results obtained particularly in two case studies: (i) a simulated single kinematic

chain and (ii) a three-finger dexterous manipulation task (with four DOFs per finger). Section 6

discusses issues related to the computational cost of the proposed multi-agent framework.

Concluding remarks and future work directions are presented in Section 7.

2. Related work and contribution

In the previous introductory section we have discussed in general some approaches that employ

LfD in solving relevant problems. Although these methodologies advance the state-of-the art in

using human demonstration as a bootstrap step in robot learning, they differ inherently from the

approach that is proposed in this paper, particularly in the sense that they are basically

centralised (single-agent) approaches. The main contribution and originality of our approach,

with respect to existing LfD-based methodologies, resides principally in the fact that we employ

a nested-hierarchical multi-agent learning architecture and demonstrate how such a distributed

system can evolve coordinated complex behaviours, with each agent participating at its own

level in a cooperative game with the rest of the agents. In this paper we investigate how robotic

skills, such as goal reaching, constrained motion coordination and cooperative grasping, can be

acquired autonomously and efficiently, with high degree of generalisation and robustness,

without any initial bootstrap learning step performed by human demonstration. Representing a
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dexterous robot manipulation skill acquisition and learning problem as a cooperative multi-

agent game, as proposed in this paper, is a feature that, to the best of our knowledge, has not been

addressed in previous work.

The research described in this paper extends our previous work presented in Karigiannis

et al. (2010, 2011). In Karigiannis et al. (2011), the main concept of the nested-hierarchical

multi-agent architecture has been presented and general descriptions about how this framework

could be embedded on robotic systems have been provided together with some preliminary

results. In Karigiannis et al. (2010), the learning algorithm has been extended to address

problems without natural proximity (i.e. no physical relation) between the DOFs handled by the

different agents. Some early results have been reported regarding the case of two mobile robots

performing a box-pushing task without any prior built-in model of the task. The work that is

presented in this paper covers a full theoretic description of the proposed approach, including the

presentation of the fuzzy Q-learning mechanism and the joint action selection algorithm

employed. Moreover, extended numerical experiments have been conducted and the results are

presented and analysed in this paper, addressing new performance aspects of the system, namely

knowledge generalisation, robustness to unexpected failures of individual agents and scalability

of the proposed framework to more complex tasks (such as hyper-redundant robot kinematic

chains performing constrained manipulation task). The work presented in this paper is inspired

by and builds upon related work conducted in the fields of multi-agent RL and control of

complex kinematic chains. In the sequel, we briefly review prior work from these two areas and

discuss relevance to the approach proposed in this paper, aiming to further highlight its

originality and contribution.

2.1 Multi-agent reinforcement learning

Claus and Boutilier (1998) have formulated how Q-learning can be applied in multi-agent

systems by using the notion of a Nash equilibrium for describing the optimal joint action. Our

hierarchical architecture is based on the same formulation and manages to reduce the complexity

of the learning problem by assuming that the multi-agent system is composed of agents that have

the same state and action space. A different approach has been proposed by Guestrin,

Lagoudakis, and Parr (2002), where a structured representation of the multi-agent RL process is

described. The coordination requirements of the system are supposed to be captured by a

connectivity graph, representing agents as nodes and direct coordination requirements between

agents as edges. The optimal joint action of the system can then be computed by using variable

elimination on the coordination graph.

Using a coordination graph for multi-agent learning requires having precise knowledge of

the agents’ fixed connectivity and topology. Instead, the hierarchical architecture that will be

presented in this paper does not need a-priori knowledge on the exact topology of the agents but

provides an alternative way of coordinating the agents by assuming a hierarchical chain among

them, which may in fact be arbitrary without necessarily making any assumption on the precise

physical connectivity of the agents.

A relevant multi-agent RL approach has been proposed in Franc�a et al. (2014), where by

using a hierarchical partitioning of the input space, a group of agents (predators) are learning

how to coordinate their activities in order to capture another agent (prey). Without a global

coordination mechanism, each agent defines its objective individually based on its perception of

the environment. The system generalises the knowledge obtained and hence the agents-predators

manage to capture the agent-prey despite the fact that it is located in random locations. The main

difference with our approach is that the method proposed in Franc�a et al. (2014) operates
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in a discrete state space, and robustness issues concerning potential failures in the agents

composing the multi-agent system are not addressed. For instance, there are no results

demonstrating how the system may react in the case that agents-predators experience

unexpected failures and hence the number of operational agents-predators is suddenly reduced.

Another multi-agent RL approach is proposed in Zhang and Lesser (2013). The learning

scheme in this approach is similar to what we propose in this paper, in the sense that the agents

ignore the actions and rewards of the other agents, and concurrently learn their own action-value

functions solely based on their local observations and rewards. Every agent communicates

with only a reduced set of agents comprising the system in order to minimise the cost of

communication. This is done by introducing for each agent an interaction measure which

identifies the maximum expected utility that an agent can potentially receive when it coordinates

with a subgroup of agents. Based on this expected utility, each agent dynamically decides to

increase or decrease the number of agents with which it establishes communication. In our

approach, however, the communication and goal formation scheme is essentially different.

As will be presented in the subsequent sections, the communication between agents is defined

based on the connectivity specified by a nested-hierarchical topology, which adapts intuitively to

the requirements of cooperative robot manipulation tasks, also meaning that each agent

effectively communicates only with a specific set of neighbouring agents without having to

maintain any utility measure.

2.2 Motion planning for robot kinematic chains

Much of the work on manipulation planning using open kinematic chains is covered by

approaches employing randomised path planning algorithms, such as probabilistic roadmap

planners (Kavraki, Svestka, Latombe, & Overmars, 1996) and rapidly exploring random trees

(LaValle & Kuffner, 2001). In Yakey et al. (2003), for instance, initial random configurations of

the kinematic chains are generated and, by rejecting those resulting in a collision, neighbour

configurations are identified through random steps in a tangent space. By sampling in the tangent

space, a search is actually performed to identify possible neighbour configurations that the

kinematic chain can move to. Hence, by performing this process recursively, the system

manages either to reach a goal or to perform a grasp without using any predefined model.

All these approaches constitute the state-of-the art in robot path planning. These models

assume, however, exact knowledge of the overall kinematic chain topology (open or closed) as

well as centralised control of the system, and the problem is thus approached in a single-agent

framework. Moreover, all the obstacles are generally considered to be static and the world fully

observable, while unexpected failures of joints during executions constitute an open problem.

A relevant very interesting work has been presented by Boularias, Krömer, and Peters (2012),

where by employing a graph-based algorithm for apprenticeship learning, solution to a grasping

problem is obtained on a discrete grid-world. In this case, a structured representation (i.e. a

model) is required in the form of a graph that has to specify all states and relate them to

actions. Moreover, this graph should indicate which pairs of states are supposed to have similar

optimal actions.

As compared to the above methodologies, our approach does not require any graph model to

associate states with optimal actions, since this mapping is actually derived by the agents

autonomously. In our case, a collaborative multi-agent exploration process is introduced, for the

autonomous development of skills related to tasks such as reaching a global goal or performing a

cooperative quasi-static grasp. This approach has the benefit of handling unexpected failures

through error self-recovery, where the system is able to adapt guided by the reward received
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from the environment, without requiring hard assumptions about static obstacles and fully

observable task space. It should be clarified at this point, though, that the main limitation of our

approach, as for every model-free approach, is mainly related to the accuracy of the solutions it

provides. Therefore, one could definitely argue that safety critical systems cannot be handled by

such pure model-free architectures. In such cases, what is actually being proposed by our work is

to encapsulate such a model-free approach on a higher control level (which could handle

uncertainty, error self-recovery capacity and knowledge generalisation), driving lower control

layers that could be model based and could provide the accuracy and speed required by a safety-

critical system.

3. The proposed nested-hierarchical multi-agent framework

The multi-agent control framework proposed in this paper fits in the context of a continuous

research effort aiming to explore architectures that would enable a complex robotic system to

autonomously develop and progressively acquire control skills in a modular, scalable and robust

manner, without the need for tedious task modelling and restrictive pre-programming.

Therefore, the basic motivation underlying this research work derives from the quest for robot

control systems that could exhibit some form of capacity for autonomous, developmental skill

acquisition through self-experimentation and unsupervised self-learning, particularly without

the application of any pre-programmed (model based) planning scheme. Another important

requirement is modularity and direct scalability to increasingly complex kinematic topologies

and task scenarios, without resorting to any significant modification of the control structure and

of the algorithmic implementation involved. Robustness to potential internal structure

variations, as well as decentralisation and parallelism are also important control requirements.

Decentralised multi-agent architectures present inherent advantages with respect to the

above system requirements, as compared to centralised control approaches. In this research

context, this paper proposes a multi-agent learning architecture based on a nested-hierarchical

structure that intuitively encapsulates the topology of robot kinematic chains. Developmental

skill acquisition properties are then explored by employing a fuzzy RL scheme in a continuous

state–action domain (as will be described in Section 4). Figure 1 presents the basic structure of

…
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Figure 1. The proposed nested-hierarchical multi-agent topology encapsulating an n-DOFs robot kinematic
chain; in this case, moving the end effector at a given goal position is the considered manipulation task.
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the multi-agent nested-hierarchical topology proposed in this paper to encapsulate robot kinetic

chains and formulate a distributed learning scheme for robot manipulation kinematic control

skills. The basic features and requirements of this multi-agent control framework are described

in the sequel.

3.1 Mapping agents to DOFs

Each robot joint is assigned to an agent having as a function to govern local control at that joint

level. The challenge here is to evolve global dexterity through progressive acquisition of local

skills at each local agent level. It should be noted here, however, that although every joint is

assigned to an agent, the reverse definition is different. An agent can indeed represent more than

a single DOF, since it can also encompass other agent(s), situated at a lower level of the nested-

hierarchical structure. So, we could have an agent representing in fact a compound kinematic

linkage and internally comprising two or more individual DOFs.

3.2 Local agent neighbourhood in the nested-hierarchical topology

Figure 2 presents a schematic representation depicting an example of the nested-hierarchical

multi-agent topology. In this topology, every agent can communicate only with those agents that

are situated one level below in the hierarchy. These ‘visible’ agents, in the nested-hierarchical

sense, are considered to form the local neighbourhood of the agent. For instance, in the case of

agent aiþ2 in Figure 2, the visible agents are only aiþ3 and aiþ4. This approach provides the

multi-agent system the ability to perform a recursive and incremental state definition, as will be

described in the following section.

Each agent functions locally and selects an action independently of the rest, by forming an

estimate of the actions that the rest of the agents could potentially perform. This is of course

always viewed in the local neighbourhood of each agent, that is, with limited visibility only to

those agents that are located below in the nested-hierarchical sense; in other words, each agent

maintains a partial (local) view of the system topology and does not know how many agents

constitute the whole system above or below and what is the exact underlying topology.

However, a measure of global task performance is assumed to exist, provided by the top-

level (root) agent in the hierarchy, and distributed to lower agents in the nested architecture,

guiding in that manner the RL process through the computation of a reward function. This

reward function must be computed on a continuous scale (instead of waiting for a discrete event

of type success or failure to occur), leading to a continuous adaptive dynamic behaviour for

the system. Although autonomous, the agents are closely coupled with each other due to the

Figure 2. Example of a nested-hierarchical multi-agent topology.
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physical connectivity, making the effective cooperation between them extremely important to

achieve a convergent behaviour for the whole system.

3.3 Continuous problem setting and state definition

The learning process must function in a continuous state-space for the system to establish

manipulation skills. For the methodology proposed in this paper, a fuzzification step is applied to

the readings forming the system state. Learning is then accomplished in a discrete state–action

mapping sense; a defuzzification step can subsequently be employed to perform action selection

in a continuous domain.

Let us consider a kinematic chain that comprises n DOFs (agents ai : i ¼ 1; . . . ; n), nested in
the manner presented in Figure 1. We define the state of every agent ai as Si ¼ kqi; ui; di; ~gil,
where qi refers to the generalised displacement for the ith DOF (in the case of a simple revolute

joint, it is the relative angular displacement between the two consecutive links in the kinematic

chain), di and ui are the polar coordinates (radial distance and angle, respectively) of the robot’s
end effector with respect to the local reference frame of the ith agent, and ~gi is a vector

that describes the current position of the goal at the task space with respect to the end effector

(~gi comprises in total of three variables: two for position and one for orientation). That means the

state of each agent comprises six variables. We will be referring to the root agent as simply being

the top agent in this hierarchy, sharing the same architectural structure with all other agents that

are located below in the hierarchy. More about the proposed multi-agent architecture will be

discussed in the following section.

Figure 3 depicts the flow of operations at an agent level, constituting the basic algorithmic

structure of the proposed multi-agent control framework. Each agent in the system contains links

only to those agents that are located at the level immediately below in the hierarchy and are

considered ‘embedded’ in the nested hierarchical sense (as well as a link to its parent agent in the

hierarchy). Every agent ai identifies certain variables of its state (constituting a partial-local-

view of the full system topology) and forwards that information in a nested manner to the agents

of the next level in the hierarchy, in order to facilitate the process of identifying their own state

variables. This whole process is composed of two sub-processes that evolve in a recursive

manner. The first one is evolving in a top-down manner, while the second one is evolving in a

bottom-up manner. The top-down sub-process starts from the root agent of the hierarchy and

travels to the lower ones. During this phase, every agent observes its joint variables as well as its

physical characteristics (i.e kqi; lil, where qi is the agent’s generalised coordinate, usually

referring to the angular displacement of the corresponding joint, and li is the length of the

corresponding link). It can be seen that qi defines partially the state of agent ai. In order to fully

define its state, agent ai requires additional computation for the following variables: kui; di; ~gil.
These variables for agent ai cannot be computed at this stage, since their computation requires

information from the other agents that comprise the agent community; and this information is

not available at the moment. So, since agent ai cannot fully solve the problem of defining its state

at the moment, it forwards the partially computed solution to agent aiþ1 residing at the next layer

in the hierarchy. Similarly, agent aiþ1 calculates those variables that can be computed and

forwards the partial solution to the agents below in the hierarchy. The sub-process iterates until

we reach an agent an that succeeds in calculating all those variables that uniquely allow it to fully

define its current state.

At the next stage, the recursive process continues by traversing back from agent aiþ1 ! ai
providing the agents at the higher layer in the hierarchy with the information that they were

missing. Starting from agent an (i.e. the end effector) and moving up the hierarchical structure all
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the way to the root agent, one agent after the other gets enabled to calculate the parameters

needed to define its state. So when this phase concludes, every agent in the system will have fully

solved its state definition problem, resulting in a multi-agent system with a fully defined state.

The iterative/recursive process is then repeated in order to define the fuzzified state of every

agent in the multi-agent environment.

We note here that throughout this ‘top-down!bottom-up’ process, the system self-defines

its state in a decentralised way, autonomously and incrementally, and thus not directly.

All agents in the system (including the root agent) communicate their partial (local) knowledge

in a structured way (according to the nested-hierarchical topology), without obtaining at any

moment a full observation of the whole system state (they do not know where all the other agents

are, what joint configuration they have, how many agents are available, etc). The state definition

of each agent (including the state of the root agent that shares the same modular structure as all

other agents) contains some variables with information characterised as local with respect to

the agent (i.e. local joint angular displacement), and certain state variables containing global

Figure 3. Basic algorithmic structure of the proposed multi-agent control framework.
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information with respect to the full system, but as viewed in the local agent’s reference frame (i.e

distance of the joint from the end effector etc). The root agent is simply the top agent in this

hierarchy, sharing the same architectural structure with all other agents; no matter how many

recursive iterations are performed, its state definition will at all times contain only partial

information about the full system topology. The iterative top-down/bottom-up process described

above is performed exactly for the reason of incrementally generating this partial state

information within each agent, so that after all actions are performed and a reward is obtained

and recursively communicated to all agents, each agent will be able to advance its learning by

building up its (partial) state-to-(local) action mapping.

This choice of a distributed multi-agent framework is made to better satisfy properties such

as modularity, scalability and computational efficiency. It is evident that if it were to have a root

agent maintaining global (full), instead of local (partial), information of the system in its state

representation, this would require an increasing number of state variables when the system

complexity (number of DOFs) increases, and would have two major negative consequences:

(a) first, it would have a significant negative impact on the modularity and extensibility of the

approach, since a new state vector and learning algorithm would have to be reprogrammed in

relation to the dimensionality of the system; as opposed to the proposed nested-hierarchical

structure, which is inherently modular, with every agent always requiring an exact number of

state variables to describe its local view of the environment (internal-state and task-goal) and (b)

second, the increased dimension of the state space would also have a significant negative impact

on the learning performance, since the computational load increases exponentially with the

dimension of the state vector.

In the following section, the fuzzy Q-learning scheme and the action selection mechanism

used in this work are described in detail.

4. Continuous reinforcement learning

This section describes in detail the learning process that is employed in this work. RL methods

have been previously applied in significant number of cases, mostly in the field of mobile

robotics (Iida, Sugisaka, & Shibata, 2003; Kondo & Ito, 2004; Shibata & Okabe, 1995, 1994;

Shibata, Sugisaka, & Ito, 2001; Takahashi et al., 2001). In our work, an RL method is employed

in a quite different domain, addressing skill learning and behaviour-based multi-agent control of

(dexterous) robotic manipulation. Back in 1992, a multi-agent architecture for controlling a

multi-fingered hand was presented, but without incorporating any learning method for skill

acquisition at an agent level (Matsui, Omata, & Kaniyoshi, 1992). In Shibata and Ito (2002,

2003), some cases are presented where RL methods are employed in dexterous manipulations,

but on a single-agent system architecture. This paper employs an RL method in the frames of the

proposed nested-hierarchical multi-agent architecture, aiming to create a developmental process

that will enable the robot control system to acquire, though self-experimentation, skills and

knowledge on how to perform agile manipulation.

More formally, let us assume a collection of n (homogeneous) agents, each agent ai ði [
½1; . . . ; n�Þ having a finite set Ai of individual actions ai

j [ Ai available to it

ðj ¼ 1; . . . ; sizeðAiÞÞ. Agents repeatedly operate within the framework of the environment

posed, in which they each independently select an individual action to perform. In Kaelbling

et al. (1996), RL is defined as the problem faced by an agent that must learn a behaviour through

trial-and-error interactions with a dynamic environment. In terms of mathematical description,

RL has been formalised as a Markov decision process (MDP). An MDP has four components:

states, actions, transitions and reward distributions. More precisely, an MDP is a four-tuple
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ðS;A; T ; rÞ, where S denotes a finite set of states, A denotes the action space, T is a probabilistic

transition function T : S £ A £ S! ½0; 1� that denotes the probability for transition from a state s

to a new state s0 when a certain action a is applied, and r : S £ A! R is a reward function that

denotes the reward for applying a certain action a to a certain state s.

At this stage, we need to provide a formal definition for the state of our system. Given the

agent architecture that has been formulated so far, the state of every individual agent ai can be

expressed as kqi; ui; di; ~gil, and the whole state of the entire multi-agent system can be defined as

st ¼ fkqi; ui; di; ~gil; i ¼ 1 . . . n}, at a specific time instance t. For a four-DOF manipulator, the

corresponding state definition of each individual agent and subsequently the state definition of

the entire system can then be written as

St ¼ fkq1; u1; d1; ~g1l; kq2; u2; d2; ~g2l; kq3; u3; d3; ~g3l; kq4; u4; d4; ~g4l}:
Before proceeding to the detailed description of the RL and action selection mechanisms

employed in this work, let us adopt some standard game theory terminology in order to facilitate

the discussion below (Myerson, 1997). A randomised policy for an agent ai is a distribution

p [ DðAiÞ (where DðAiÞ is a set of distributions over the agent’s action set Ai). Intuitively, pða iÞ
denotes the probability of agent ai selecting an individual action a i. A policy p is deterministic

if pðai
jÞ ¼ 1 for some ai

j [ Ai. A collection of policies for each agent ai is called policy profile,

P ¼ fpi : i [ ½1; . . . ; n�}, where n is the number of agents. The expected value of acting

according to a fixed profile can easily be determined. If each p [ P is deterministic, we can

think of P as a joint action. A reduced profile for agent ai, is a policy profile for all agents but ai
(denoted P2i). Given a profile P2i, a policy pi is a best response for agent ai if the expected

value of the policy profileP2i < fpi} is maximal for agent i; that is, agent ai could not do better

using any other policy p‘
i . In the following section we refer to the requirement of continuous

state-space and address the important issue of the infinite number of states (Sutton & Barto,

1998), which has to be resolved as discussed hereafter.

4.1 Fuzzy Q-learning

Q-learning algorithm was developed by Watkins (1989) and its goal is to find an optimal policy

by maximising rewards received over time. In discrete state–action spaces, Q-learning defines a

Qðst;atÞ value for each pair of state st and action at at time instant t.

Qðst;atÞˆ Qðst;atÞ þ lðrt þ gmax
a

Qðstþ1;aÞ2 Qðst;atÞÞ; ð1Þ

where g is the discount factor ð0 # g # 1Þ, l is the learning rate and rt is the reward received

at time t.

Due to the continuous character of the application considered in this paper, we have chosen

to employ a variant of what is known as fuzzy Q-learning (Glorennec & Jouffe, 1997), in order to

approximate the Q-table in a continuous state–action space. Many similar generalisation

techniques have been used to approximate the Q-table, such as neural networks (Rummery,

1994), CMAC (Sutton, 1996), locally weighted regression (Smart, 2002) and fuzzy logic

(Grefenstette & Schultz, 1994). In our approach, a typical fuzzy Q-learning mechanism is

employed, which has been modified at the action selection process in order to enable learning of

‘Joint Actions’ (described in the following section) for the agents comprising the system.

The mechanism that we employ is a fuzzy rule base, which can be seen as a function that

maps the state variables vector to a scalar output. What is then required is a set of fuzzy rules.
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The following expression depicts such a rule in the fuzzy rule base mapping:

Rule2 i : IF s1 [ Fi
1

� �
AND s2 [ Fi

2

� �
AND . . . sn [ Fi

n

� �
THEN output ¼ fi

t

� �
;

where fs1; . . . ; sn} are the n variables of the state vector, fFi
1; . . . ;F

i
n} are the respective fuzzy

membership functions used in the i th rule and fi
t is the output f2value produced by Rule-i at

time instant t. Following Tagaki–Sugeno fuzzy inference (Takagi & Sugeno, 1985), a Q-value is

calculated as follows:

Qðst;atÞ ¼
PK

i¼1 O
iðstÞ·fi

tPK
i¼1 O

iðstÞ

( )
; ð2Þ

where K is the number of rules and Oi is the rule activation degree for rule i, in state st.

In order to facilitate understanding of how the values for Oi are obtained, let us consider an

example where a state vector st with three state variables (s1, s2, s3) is considered, each variable

having two sigmoid membership functions (with the two values being H for high and L for low).

In this case of three state variables with two localised signal values for each variable, eight rules

need to be included in the fuzzy rule-base. All rules, from 1 to 8, will provide, respectively, eight

rule activation weights O 1 toO8. These weights are then estimated based on the following set of

probabilities: Probs1H ; Prob
s1
L ; Prob

s2
H ; Prob

s2
L ; Prob

s3
H ; Prob

s3
L .

For each state variable si, the probability ProbsiL can be defined as

ProbsiL ¼ 1

1þ r·e2s·si
; ð3Þ

where r and s are constants selected manually and ProbsiH ¼ 12 ProbsiL .

The value of OiðstÞ can now be estimated as

OiðstÞ ¼
Yn
j¼1

Prob
sj

Fi
j

; ð4Þ

where n is the number of state variables contained in state vector st and i depicts the rule number.

So, in our example where n ¼ 3 state variables and K ¼ 8 rules, we have

O1ðstÞ ¼ Probs1H ·Prob
s2
H ·Prob

s3
H

O2ðstÞ ¼ Probs1H ·Prob
s2
H ·Prob

s3
L

..

.

O8ðstÞ ¼ Probs1L ·Prob
s2
L ·Prob

s3
L

0
BBBBBB@

1
CCCCCCA
:

What is then needed is to find the changes in f values in order to update them. This is

achieved through finding, first, the changes d of Q-values in Equation (1), and then calculating

them based on Equation (2). From Equation (1) we have

d ¼ DQ ¼ l rt þ gmax
a

Qðstþ1;aÞ2 Qðst;atÞ
� �

: ð5Þ
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Next, the changes of f values can be found by computing the gradient in Equation (2):

Dfi
t ¼ DQ·

›Qðst;atÞ
›fi

t

¼ d·
OiðstÞPK
i¼1 O

iðstÞ
: ð6Þ

The overall algorithmic structure of this fuzzy Q-learning mechanism is summarised below

in Algorithm 1 (in this algorithm, JASM stands for the joint action selection mechanism, which

is described in detail, along with the reward function, in the following section).

4.2 Action selection mechanism and reward function

Let us first formulate the general principles of the JASM employed in this work, before

proceeding to the detailed description of the algorithms and functions that have been

implemented. Generally speaking, in a developmental RL process, all agents wish to select

actions that progressively maximise the reward received. Each agent contributes its own action

component to the joint action that is eventually applied to the environment and determines the

transition. The goal is to find a policy that maximises the expected reward (Bertsekas &

Tsitsiklis, 1996). It must be pointed out here, though, that every agent in the proposed system

acts initially without having any prior knowledge (i.e. there is no previously defined state to joint

action mapping), thus acting in a sense stochastically. Each agent ai decides to perform a random

action ai and at the same time computes only an estimate of what the other (visible) agents in the

system might choose as their potential actions. That is, each agent, independently of the rest,

selects an action while at the same time estimating how the other agents are likely to act; each

agent thus learns joint actions. In the nested-hierarchical topology employed in this work, this

process is recursive downwards starting from the root agent and travelling consecutively

towards the levels below in the hierarchy. So, each agent ai selects action ai and estimates

what the actions of the rest of the agents (which are visible below in the hierarchy) will be

(for instance, a0
iþ1;a

0
iþ2; . . . ). After the completion of this recursive process, a specific joint

action is formulated which the multi-agent system then executes. The system subsequently

provides reward or punishment to the agents for their contribution to the joint effort that they

have performed.

Algorithm 1 Fuzzy Q-learning algorithm

Require: Initialise f i values for all i ¼ 1 . . .K rules
while: Epoch – Final Epoch do
Current state st ¼ s0
Current joint action at ¼ a0

while: t – Final Trial step t do
Execute joint action at

Get next state stþ1

Get reward rtþ1

Select joint action atþ1 by JASM (section 4.2)
Calculate Qðst;atÞ by using Eq. (2)
Calculate DQ by using Eq. (5)
Calculate Dfi

t by using Eq. (6)
Update fi

t by using Dfi
t

st ¼ stþ1

at ¼ atþ1

end while
end while
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Let us now proceed to the detailed description of the JASM, as it was used in this work.

In the implementation of the multi-agent system proposed in this paper, a specific discretisation

of the action-space for each agent was employed. In particular, each agent is able (independently

from the others) to select its action among three discrete types of actions: increase, decrease or

maintain (with respect to its local joint displacement). However, if there exist multiple optimal

joint actions (as in the case of redundant and dexterous manipulation tasks explored in this

work), the complexity of the action selection problem increases significantly. If the joint actions

are chosen randomly, or in some way reflecting personal biases, then there is a risk of selecting a

suboptimal or uncoordinated joint action. This general problem of equilibrium selection (or joint

action selection) can be addressed in several ways. One way is the communication among the

agents (Shoham & Tennenholtz, 1992); another is to introduce conventions or rules that restrict

behaviours and so to ensure coordination. In this paper, we apply a mechanism that results in a

coordination among the agents’ actions through repeated execution of the specific task by the

same agents. In this action selection mechanism, each agent ai keeps a count of the number of

times a specific action has been performed in the past by the same agent (as well as by its

collaborative agents). Although simple, this concept is sometimes quite effective and is known

as fictitious play (Brown, 1951; Fudenberg & Kreps, 1992). More precisely, each agent ai keeps

a count C iðaj
kÞ, for every agent aj that is visible by ai, indicating the number of times agent aj has

selected action aj
k [ Aj in the past. When a task is assigned to our multi-agent system, each

agent ai treats the relative frequencies of the moves of all other agents aj as indicative of their

current policy. That is, agent ai assumes that agent aj performs action aj
k [ Aj with probability:

Pi aj
k

� � ¼ C i aj
k

� �P
b j[Aj

C iðbjÞ : ð7Þ

We note, at this point, that most models in game theory assume that each agent can observe

the actions executed by its counterparts with certainty. What we actually employ in this work is

somehow more general, allowing each agent to obtain an observation that is related

stochastically to the actual joint action selected. Action selection is more difficult when agents

are not aware of the rewards associated with various joint actions; hence the expected reward

associated with individual and joint actions has to be estimated based on previous experience.

The next issue that needs to be addressed at this stage concerns the definition of the function that

specifies the action selection policy of each agent, which is particularly important since effective

learning requires sufficient exploration. The action selection mechanism employed in this work is

a variant of 1-greedy, called 1-decreasing, where the probability of an exploration action

decreases as trials progress. This action selectionmechanism starts with an exploration probability:

1·ðTðtÞ2 1Þ=ðTmax 2 1Þ. To compute the probability of choosing an action, we employ a

Boltzmann distribution as explained below. On each trial, with a probability equal to

12 1·ðTðtÞ2 1Þ=ðTmax 2 1Þ, each agent ai chooses the actiona iwith the greatest estimatedpða iÞ:

pða iÞ ¼ eEða iÞ=TP
ai
j
[Ai

eEða
i
j
Þ=T ; ð8Þ

where Eða iÞ denotes the expected value of an action a i and T is the temperature parameter that is

controlled to diminish over time so that the exploitation probability is increased. Temperature

determines the likelihood for an agent to explore other actions:whenT is high, evenwhen theEða iÞ
of an action is high, an agent may still choose an action that appears to be less desirable.
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This exploration strategy is especially important in stochastic environments like the one we are

examining, where payoffs received for the same action combination may vary. For effective

exploration, high temperature is used at the early stages of a task. The temperature is then decreased

over time to favour exploitation, as the agent is more likely to have discovered the true values of

different actions. The temperature T as a function of iterations is given by TðtÞ ¼ 1þ Tmax·e
2st,

where t denotes here the iteration number, s is the rate of decay and Tmax is the initial temperature.

Now, let us elaborate on the definition of the expected value Eða iÞ. The presence of multiple

agents, each one learning simultaneously with others, is a potential impediment to the successful

employment of Q-learning (and RL in general) in multi-agent settings like the one considered in

this paper. When an agent ai is learning the value of its actions in the presence of other agents,

it is learning in a non-stationary environment. Thus, convergence of the Q-values is not

guaranteed. What we need is each agent’s policy to settle. This is a key issue and is discussed

hereafter. In general, there are two distinct ways in which Q-learning could be applied in a multi-

agent system; the Independent and the Joint-Action Learner algorithm (Claus & Boutilier, 1998;

Glohon & Sen, 2004; Lauera & Riedmiller, 2004) In an Independent Learner algorithm, each

agent learns its Q-values regardless of what the other agents are performing. This method is

appropriate to be employed when an agent has no reason to believe that other agents are acting

strategically. Joint action learner algorithm is the one where the agents do not learn Q-values of

their individual actions but learn the Q-values of their joint actions. This implies that each agent

can observe the actions of other agents. Each agent in such a system maintains beliefs about the

policies of other agents. So, an agent ai assesses the expected value Eða iÞ of selecting an

individual action a i at a current state s to be

Eða iÞ ¼
X

a2i[A2i

Qðs;a2i < fa i}Þ·
Y

aj

k
[a2i

P iðaj
kÞ

� �8<
:

9=
;: ð9Þ

In the above equation, A2i denotes the set of all possible joint actions that can be performed

by all other agents except agent ai. In our case, this set refers to the group of agents that are

considered ‘visible’ by agent ai, which, in the sense of the nested-hierarchical topology proposed

in this paper, refers to the agents that are located one level below in the hierarchy.

Then, a2i [ A2i denotes one such joint action performed by this group of agents, and aj
k [ a2i

is an individual action performed by a single agent aj in this group.

The final issue that we need to address at this stage concerns the definition of the reward

function RðtÞ. This function computes the reward (or penalty) that an agent receives at each time

instant t, after selecting a certain action and moving to a new state. In this work, when we refer

to the kinematic control of open kinematic chains, the reward function has been formulated

as follows:

if ðDgoalðtÞ # DminÞ ^ ðDDgoalÞ # 0Þ then

RðtÞ ¼ e2c· DgoalðtÞð Þ
if ðDgoalðtÞ . DminÞ then

RðtÞ ¼ 22

if ðDgoalðtÞ , DminÞ ^ ðDDgoalÞ . 0Þ then

RðtÞ ¼ 21

8>>>>>>>>>>><
>>>>>>>>>>>:

; ð10Þ

J.N. Karigiannis and C.S. Tzafestas16928928



where DgoalðtÞ denotes the distance from the goal at iteration time t, Dmin is a threshold distance

after which the agents start receiving reward, DDgoal is the rate of change of distance from the

goal and c [ ð0; 1Þ is a constant parameter.

The overall algorithmic structure of the JASM employed in this work is summarised below

in Algorithm 2.

4.3 RL-based robot control architecture

The overall robot control architecture employed in this work has three layers, as depicted in

Figure 4. The first one is the error observation layer, the second one corresponds to the learning

and action selection mechanisms, and the last one refers the (low-level) servo control. The first

layer receives as input the desired goal at the task-level alongwith the feedback from the last layer

(as shown in Figure 4). The error observation layer provides input to the next layer, which is the

action selection layer coupled with the RL module. The RL module augments in fact the action

selection mechanism, by receiving error observation data and providing appropriate input to the

action selection mechanism, in order to guide the generation of appropriate action(s) (without any

initial prior knowledge regarding optimal joint-level motion). Subsequently, the action selection

mechanism stochastically generates the joint-level motion commands (i.e. increase, decrease or

maintain joint displacements) to be sent to the robot servos, while providing information to the

RL module regarding the probabilistic distribution assigned to the different action(s). The

commanded joint-level motion propagates to the third layer, which corresponds to the robotic

mechanism and generates the motor actuation for the selected actions resulting in the actual robot

motion at the task level.

Algorithm 2 JASM algorithm

Require: Initialise Current_Agent to Root of the hierarchy
while Current_Agent – NULL do
Let ai ¼ Current_Agent
; agent aj (visible from ai),

Calculate Piðaj
kÞ by Eq. (7), ;aj

k [ Aj

; possible action a i, Calculate Eða iÞ by Eq. (9)
; possible action a i, Calculate pða iÞ by Eq. (8)
Select the action a i (1-decreasing scheme)
Lock action a i to the overall Joint Action: at

Current_Agent ˆ Select_next_visible_Agent
end while
Return the Joint Action: at for execution
Receive Reward RðtÞ by using Eq. (10)

Figure 4. RL-based robot control architecture.
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It is important to mention at this point that our proposed control architecture has an

interesting relation to work in meta-level control. For instance, in the approach proposed by

Schmill et al. (2010), a metacognitive loop (MCL) layered architecture is described, which

introduces also a metacognitive layer (similar to our second layer, i.e. the action selection – RL

layer) aiming to provide robustness to autonomous systems in the presence of unforeseen

perturbations. The MCL basically encodes knowledge on how the system potentially fails in the

form of a Bayesian network. By using this network the system may reason abstractly on the

action(s) that can be performed to resolve an unexpected situation. In comparison to such

approaches, it would be interesting in future work to study and selectively assess the

computational cost and the efficiency of each of the three layers proposed in this paper, that is (a)

error observation, (b) learning and action selection and (c) servo control.

5. Numerical experiments

To evaluate the performance of the proposed multi-agent learning architecture, we performed a

set of numerical experiments grouped into two categories. This section describes and analyses

the results obtained, and evaluates specific properties of the system, in order to assess the

efficacy of the approach and demonstrate the feasibility of the proposed learning and kinematic

control framework in different robot manipulation task scenarios. Initially, we consider a single

(redundant) planar kinematic chain, like the one presented in Figure 1, consisting of four links

with four independent DOFs, employing the proposed multi-agent topology. Generalisation

and robustness properties of the system are assessed in Sections 5.2 and 5.3, respectively, and

extensibility of the approach to more complex kinematic topologies, involving constrained

manipulation tasks, is demonstrated in Section 5.4. In the second series of numerical

experiments, described subsequently in Section 5.5, we consider a simulated planar three-finger

grasp of a rectangular object. This second experimental case extends the manipulation skills

developed in the previous experiment (for the single kinematic chain), focusing this time on

quasi-static control of dexterous multi-finger grasping, where each finger of the simulated

dexterous manipulator is again considered to consist of an independent kinematic chain with

four links.

5.1 Single kinematic chain

The first task considered in this experimental analysis concerns controlling an open kinematic

chain that possesses kinematic redundancies. We consider the case of a planar four DOFs (4R)

kinematic chain, with the goal being to control the motion of its end effector towards a pre-

specified target location at a Cartesian task space (thus, presenting kinematic redundancies

defined by a null-space of rank 2). The six state variables of each agent (in this case, revolute

joints) are fuzzified as described in Section 4.1 with several sigmoid functions. In particular, for

each one the qi and ui variables we use 20 membership functions, while di has 13 membership

functions and ~gi has 7 signals for each of the three variables comprising it. The objectives of the

multi-agent system in this case are twofold: (i) to respect the limitations imposed by their

physical interconnectivity and (ii) to learn how to collaborate and communicate information

among agents, in order to reach the goal position, without any a-priori experience or model-

based task planning scheme pre-programmed in the system. The first phase of the process is the

training of the multi-agent system. The system is trained over a number of epochs (usually, up to

150 epochs), each epoch lasting 500 time units. This means that we allow the group of four

agents to come up with a solution to the problem assigned, within a time frame of 500 time units.
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In any case (whether a solution is found or not), the knowledge obtained within the specific time

interval is stored and the agents are expected to further improve their behaviour during the

subsequent epochs.

The behaviour of the agents at the beginning of their collaborative activity must focus on

exploration. To satisfy this requirement, the parameters in the equation TðtÞ ¼ 1þ Tmax*e
2st are

defined in such a way that for the first 30 time units of each epoch we obtain high exploration, a

behaviour achieved with a decay factor s ¼ 0:35 (meaning that during this first period the agents

might select actions that do not have the highest Q-values), while in the remaining time the

agents select those actions with the higher Q-values. The maximum temperature for t [
½1 . . . 500� is set to Tmax ¼ 100. The learning rate, for the first epoch, is set at the value of

l ¼ 0:1, and is decreased after every epoch by a factor of 1=1050, which means that we promote

a slow learning approach. Furthermore, the agents interacting with the environment must receive

appropriate rewards. In this experiment, we set Dmin ¼ 3, meaning that the agents do not receive

any positive reward if the end effector is not closer than 3 distance units to the goal position.

Figure 5(a) depicts the learning results obtained (with a decay factor s ¼ 0:35), showing the

evolution of the mean task error over subsequent epochs (each epoch lasting 500 time units) and

its gradual convergence towards zero as the learning epoch progresses (from epoch 1 to epoch

150). It is apparent from these results that initially, during epoch 1, the agents are exploring their

workspace, a behaviour that results in a positioning error with respect to the goal position that

they are trying to reach. This error is not reduced over the entire time duration of this epoch,

leading to a large mean task error. A similar behaviour can be observed for a whole initial period

comprising the first 12 epochs, with a slight improvement though observed progressively as the

epoch evolves. After epoch 20, however, it becomes apparent that the evolution of the agents’

collaborative behaviour manages to reduce the error, and the actions with highest Q-values are

now dominating the joint actions that the agents are selecting. In Figure 5(b), we run again the

same test with only one modification, the decay factor being now increased to s ¼ 0:75.
The results show that, already this time by epoch 3, the positioning error is now considerably

reduced. In the subsequent epochs we can again observe that the agents’ behaviour does settle to

a sequence of actions having the highest Q-values, which provides indeed a distributed solution

to the problem of kinematic control of the considered redundant open kinematic chain.

Besides the convergence properties of the proposed approach, another important issue

concerns evaluating the quality of the solution(s) provided by this mechanism. In other words,
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Figure 5. Mean task error convergence over Epochs for two different decay factors: (a) for s ¼ 0:35 and
(b) for s ¼ 0:75.
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given the distance-from-target type of reward signal used in this work, the issue here is to

evaluate whether the exploration path stochastically adopted by the system will converge to an

‘optimal’ solution, thus properly resolving this form of kinematic redundancy. Although the

proposed multi-agent framework proposed in this paper is not mathematically proven or

guaranteed to provide such an optimal solution, it is important to evaluate the solutions that are

generated within this framework. An optimal solution in the LS sense corresponds to a joint

motion, for every DOF in the kinematic chain, that is minimal in this sense (i.e. ‘minimum

effort’ solution, shortest path to target chosen with a-priori no internal null-space joint motion

invoked (Ben-Israel & Greville, 2003; Whitney, 1972). To obtain this theoretical LS-optimal

configuration (given the initial joint configuration of the system), one can apply a resolved

motion rate control scheme, solving the inverse kinematics problem of the planar (redundant)

kinematic chain, based on the computation of the Moore–Penrose pseudoinverse Jþ of the

Jacobian matrix J (see Hollerbach & Suh, 1987; Siciliano, Sciavicco, Villani, & Oriolo, 2009)

for a detailed analytic solution), which in our case is a 2 £ 4 matrix consisting of four column

vectors: ~J1; ~J2; ~J3; ~J4. Each ~Ji vector ði ¼ 1 . . . 4Þ can be computed as the cross product of the unit

vector representing the axis of rotation of the ith joint against the vector expressing the distance

between the corresponding ith joint and the end effector. We can then write Dq ¼ Jþ·Dp, where
Dq is the increment of the joint angles causing the end effector of the chain to move by Dp,
where the pseudoinverse Jþ can be computed (if J is full row rank) as J T ·ðJ·J T Þ21.

Employing this iterative redundancy resolution (analytic) method, we obtain a theoretical

optimum set of angular displacements Qi (for the given initial configuration and final target

position: Q1 ¼ 0+, Q2 ¼ 24:1+, Q3 ¼ 53:7+ and Q4 ¼ 59:8+), which are depicted graphically at

the left side of Figure 6. An indicative set of corresponding solutions obtained with our proposed

Figure 6. Sample-generated solutions for three different decay factors ðs ¼ 0:75; 0:35 and 0:05Þ.
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multi-agent architecture is also depicted graphically in the same figure, varying according to the

decay factor s selected. These results show that for almost all values of s, the multi-agent system

generates quite natural solutions, while in certain cases close to the optimal one, as can be seen

in the corresponding schematics (stick diagrams). Each solution provided in the corresponding

figure has been generated after the completion of three consecutive training sessions (each

training session lasting 200 epochs), for three different values of the decay factor s, leading to a

total of nine different indicative solutions.

To assess further the ‘optimality’ of the emerging solutions, we performed a statistical

analysis of the results obtained (error with respect to the theoretical LS optimal configuration)

for a decay factor s varying in the interval ½0:005; . . . ; 0:9995�. The mean values and standard

deviations (STD) of the error obtained are depicted in Figure 7, at two different instances of the

learning process (after 10 and 100 learning epochs). These results demonstrate that, for a wide

range of s values, the solutions stochastically generated by the system are near-optimal in the LS

sense. Therefore, though it is not argued in any way that the proposed multi-agent learning

system is theoretically guaranteed to provide such an optimal solution to this specific problem

(nor is it necessarily, in any case, the goal sought by our system), it is shown that the system

stochastically converges to a range of solutions that not only effectively resolve the kinematic

redundancy but are also experimentally found (depending on the exploration-vs-exploitation

strategy employed) to be indeed close to the theoretically optimal solutions in this sense, for a

wide range of values of the exploration decay factor.

A similar conclusion can be drawn by observing the results depicted in Figure 8, showing the

mean values and STD of the overall ‘effort’ in the joint space (computed here as the cumulative

sum of the absolute joint displacements performed at every time step by all agents in order to

reach the goal) after 100 learning epochs, for varying decay factor s. These results compare

favourably to the respective cumulative effort computed in the case of a minimum distance

(pseudo-inverse) solution, where a value of approximately 4:48 (rads) is obtained for the same

initial and target positions. This finding is also validated by observing the paths depicted in

Figure 9. This figure shows a sample goal-reaching path generated by the proposed model-free

multi-agent approach (after 100 learning epochs, with a decay factor s ¼ 0:5), which yields a

quite natural result as compared to the minimum distance (theoretically LS-optimal) solution,

obtained by applying resolved motion-rate control using an analytic computation of the Jacobian

matrix pseudo-inverse. One could then argue that the reinforcement approach adopted in this
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paper statistically and progressively rewards actions and converges towards behaviours that lead

to faster (and more direct) distance error minimisation, thus creating state-to-action maps that

efficiently achieve the desired target and solve the redundancy by rewarding minimum-effort

type of motions. This is an important experimental finding that supports the argument about the

applicability of such a multi-agent distributed control methodology in a dexterous manipulation

context.

Thus, regarding the question on how the multi-agent system can resolve the redundancy with

only partial (localised) information about the goal used within each agent, and how it is expected

to be able to resolve it in an ‘optimal way’, experimental findings in this paper support the

argument that (1) the state representation, as distributed among agents, suffices for the system

to search and find solutions in a distributed manner and (2) the solutions that emerge are

indeed expected to be ‘close to’ the theoretical LS optimal solutions, since the system, during
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exploration, attempts to find ‘fast’ (i.e. LS near-optimal) target-converging solutions, which

represent minimum cost in the RL reward domain. It would, however, be interesting in future

work to explore other reward functions that would probably involve a hierarchical task

decomposition strategy (defining lower-priority subtasks), that is, attempting to resolve

redundancy while exploiting dexterity in a targeted task-oriented manner. It would then be

interesting to evaluate the solutions that emerge and how these compare to theoretical model-

based analytic solutions that exploit null-spaces of full model Jacobians. Such an analysis is,

however, beyond the scope of this paper, which constitutes a first proof-of-concept of the

feasibility of the proposed multi-agent control methodology in a dexterous manipulation

developmental learning context.

When the learning process is completed and the agents have acquired knowledge about how

to collaboratively reach their goal, the next step is to evaluate the generalisation properties of the

system, that is, to see how the agents use the knowledge acquired and how, without any

additional training, they can explore and reach new targets different from those trained.

5.2 Multi-resolution goal training and generalisation

In this section, we evaluate the skill generalisation properties of the proposed multi-agent

learning system. For this purpose, multiple layers of training data are created, each layer

representing a different resolution at the target space. Thus, we aim to explore how well the

system manages to extend the knowledge acquired during training, in order to subsequently

reach new (untrained) goals. Initially, the (planar, in this case) task space is recursively

subdivided into levels of increasing resolution, in a quad-tree structure. Starting from Level-1,

containing four nodes (quadrants), we progressively move down to Level-4 that contains 256

nodes. Each node corresponds to a single target position, for which the multi-agent system

receives training. Therefore, for each resolution level, the multi-agent system is trained on a

different set of target positions, progressively increasing in size according to the resolution Level

(in other words, at Level-1, the four nodes correspond to four goal positions on which the system

is trained, for Level-2, 16 target positions are trained, etc).

For the purpose of the experiment presented in this section, we thus investigate a range of

target-space resolutions starting from 4 (Level 1) up to 44 target training points (Level 4), as

shown in Figure 10. For each resolution level, after completion of the training period for the

corresponding target positions that constitute the training set at this level, a test-set is generated

consisting of 100 new goals randomly distributed in the entire task space (by employing Halton

sequences (Niederreiter, 1992) to obtain a uniform distribution of target points in the task space).

Our aim is to explore the accuracy by which, at each resolution level, the multi-agent system

manages to reach all the new, untrained and randomly generated goals, without performing any

additional training.

The experimental process is the following: (i) select a resolution level, (ii) perform off-line

training on the target points of the corresponding resolution level (training set), (iii) after the

completion of the training phase, issue successive on-line requests to reach all 100 randomly

generated goal positions of the test set. Indicative target-reaching results, obtained for two

different resolution levels, are depicted in Figure 11. By observing these plots, it is clear that

even at the lowest resolution level (comprising only four training points in the entire task space),

the proposed multi-agent topology manages to successfully reach almost all 100 randomly

generated new goals assigned. It is also clear that the situation improves as the resolution of

trained goal positions increases up to the level comprising 256 points.
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Figure 12 depicts the statistics of the target-reaching generalisation results. The results

demonstrate that even at the lowest resolution level (Level-1, comprising only four training

points), the mean value of the error is quite low (mean ¼ 0:3814), but with significant STD

value (STD ¼ 0:5596), showing again that most of the randomly generated sample target points

at the test set are successfully reached, even when using such a small number of training points.

The mean value of the error decays smoothly and reaches, at Level-3 with 64 points resolution, a

value of mean ¼ 0.2366, while the corresponding STD drops to the value of STD ¼ 0.2036.
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We also observe that, in this experiment, increasing the resolution from Level-3 to Level-4

(i.e. from 64 to 256 training points) does not significantly improve the accuracy of the system.

These findings demonstrate the generalisation properties of the proposed multi-agent

architecture.

5.3 Robustness to changes in kinematic topology

A key advantage of a distributed multi-agent control strategy (with respect to a centralised

single-agent model-based approach) is related to the presumably better inherent robustness

properties. In this paragraph, we evaluate the capacity of the proposed multi-agent architecture

to compensate for partial failures that may occur to some of the agents (DOFs) comprising the

system and, therefore, to adapt to unpredictable sudden changes in the kinematic topology.

In other words, when one or more agents fail during the operation of the system, we want to

explore to what extent the rest of the active agents manage to collaborate in order to provide a

new feasible solution to the task (without retraining, and of course, without any a-priori

knowledge or modelling of the event).

To evaluate such robustness properties of the multi-agent architecture, a series of numerical

simulations has been performed. We start by training the multi-agent system to reach a goal

position, as described in the previous section. After completion of the training period, the fully

operational multi-agent system is now able to find a solution to the problem and the tracking

error (end effector w.r.t. goal position) converges to zero, as depicted in Figure 13. Figure 14

shows the actions (joint displacements) of individual agents. The cooperation of these agents’

actions successfully completes the task (that is, moves the end effector of the kinematic chain

towards the specified target position). The system has the same learning parameters as before,

and the number of time units per trial is 1500.

In the sequel, we simulate a number of failure situations in the agents, in order to evaluate the

robustness properties of the system. First, we simulate an initial partial failure of the system,
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which is assumed to be progressively recovered. We consider that, initially (at T ¼ 0), three of

the agents (agents 1, 2 and 3) are non-operational and only agent 4 is responding. This situation

corresponds to a failure of receiving and executing any action by these agents, which means that

agents 1 to 3 stay blocked to their initial angular position. Subsequently, at T1 ¼ 100, agent 3

starts responding and later on, at T2 ¼ 500 and T3 ¼ 1000, agents 1 and 2, respectively, are also

recovering from their failure. Our goal is to explore how, without any external assistance, the

multi-agent system manages to compensate for the imposed failure situation. The results are

quite interesting, demonstrating that the multi-agent system manages, at run-time, to find a new

solution adapting to the unpredictable changes in the kinematic topology caused by the

considered failure situation with some of the agents not responding during operation. Figure 15

depicts the new kinematic solution generated by the multi-agent system, and the evolution of the

tracking error. Figure 16 shows the actions of the individual agents, and how they adapt to cope

for the disturbance caused by the failure events.
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Subsequently, we simulate a more complex failure situation. This time, two of the agents

(2 and 3) are blocked (to their initial joint position) from the beginning of the task execution

period, leaving only two agents (1 and 4) operating normally at the beginning of the task. Then,

at T1 ¼ 700, agents 2 and 3 start responding introducing random joint displacements, but only

for a small period of 300 time steps. At T2 ¼ 1000, these agents go again out of operation for the

rest of the experiment, remaining locked to their new current angular positions at that time. From

the plots in Figure 17, we observe that the multi-agent system manages again to generate a new

kinematic solution and reach the goal position successfully. Figure 18 shows the actions of the

agents (joint displacements), where we see how the remaining active agents adapt their

behaviour at run-time, to compensate for the assumed complex ‘failure-disturbance-failure’

situation.
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Figure 15. Kinematic solution generated and tracking error after failure and progressive recovery of agents
1 to 3.
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For the last experiment, we repeat the failure process already described above for agents

2 and 3, but this time these agents are completely blocked from the beginning of the experiment

until its completion. Figures 19 and 20 demonstrate, once again, that the remaining active agents

(1 and 4) manage to cooperate at run time and reach the goal position, by dynamically generating

a new solution and compensating for the unpredictable failure situation assumed to occur for

agents 2 and 3 (blocked throughout the task). These results demonstrate the robustness

properties exhibited by the proposed multi-agent system and show its capacity to cope for

unpredictable and complex failure situations, equivalent to sudden changes in the kinematic

topology, which a model-based control strategy would a-priori not be able to handle.

To better highlight the superior robustness properties exhibited by the proposed multi-agent

(model-free) system, as compared to a centralised (model-based) control scheme, we assume

again the same failure situation as in the last experiment before (joints 2 and 3 completely
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Figure 17. New kinematic solution generated and time evolution of the tracking error, when considering a
complex ‘fail-disturb-fail’ situation for agents 2 and 3.
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blocked), and perform a similar experiment but this time applying a model-based (resolved

motion rate) kinematic control at the joints (using the Jacobian matrix pseudo-inverse as

explained in the previous section). The tracking error results obtained are depicted in Figure 21,

comparatively for the model-based and the multi-agent approach. The target-tracking response

of the kinematic chain is also illustrated in Figure 22. From these plots, it is evident that the

kinematic chain under model-based kinematic control is unable to reach the designated target

position, generating oscillatory motion patterns between specific configurations. This is

obviously due to the fact that the kinematic model is in this case a-priori invalid and a typical

centralised model-based system does not have the mechanism (without any remodelling and

replanning) to cope with such unpredictable errors, therefore potentially generating motions

inconsistent with the target position at the task space. On the contrary, the proposed multi-agent

system is still able to find a feasible solution (which seems, in fact, consistent with a minimum-

energy configuration), as shown in Figure 22(b). It should be emphasised here that, although we

are not claiming in any way that model-free approaches can be as accurate as model-based
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Figure 19. Kinematic solution generated and tracking error over time, when considering a ‘complete fail’
(fully blocked) situation for agents 2 and 3.
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methodologies, the above results demonstrate the performance of the proposed multi-agent

approach in terms of its adaptability to changes in kinematic topology and its capacity to cope

with unknown and unpredictable failure situations, where model-based approaches would

indeed require re-modelling and re-computation of analytic solutions.

5.4 Scalability to hyper-redundant constrained manipulation tasks

To evaluate the inherent scalability properties of the proposed multi-agent framework and its

extensibility to more complex kinematic topologies, we assume the following constrained

manipulation task. A hyper-redundant (7 DOFs planar) kinematic chain is considered and the

corresponding multi-agent system must learn how to reach a target position that is located at the

inside end of a narrow corridor. The goal is to generate a collision-free motion for the kinematic

chain, enabling the end effector to reach the target position without using any a-priori model of

the environment. In such an experimental scenario, a typical model-based (single-agent)

kinematic approach would have to introduce additional distance optimisation criteria, which
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would make the analytic redundancy resolution problem more complex and more sensitive to

modelling errors. The proposed distributed multi-agent architecture is naturally extended to

cope with such a topology, considering only an additional term on the reward function that

signals collision events during training.

The reward RðtÞ that an agent receives at each time instant t, after selecting certain action and

moving to a new state, is now formulated as follows:

ifðDgoalðtÞ . Dmin Þ then RðtÞ ¼ 22

else if ðDgoalðtÞ # Dmin Þ ^ ðeDgoal . 0Þ then RðtÞ ¼ 21

else ifðDgoalðtÞ # Dmin Þ ^ ðeDgoal # 0Þ ^ ð;ai;Cai ¼ 0Þ then

RðtÞ ¼ e2c1:ðDgoalðtÞÞ

else ði:e: if ð’ai;Cai ¼ 1ÞÞ
RðtÞ ¼ 2e2c2· min iD

ai
Corridor

ðtÞð Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

; ð11Þ

where Dgoal ðtÞ is again the distance from goal at time t, Dmin is a threshold distance below which

the agents may start receiving positive reward, DDgoal is the rate of change of distance from the

goal and c1; c2 are constants [ ð0; 1Þ. Cai is a Boolean flag detecting when agent ai is close to

collide with the obstacle (corridor) and Dai
Corridor is the distance from the corridor that is locally

perceived by agent ai. In this reward function, if more that one agents detect to be close to

collision, then in order to increase the global negative reward to the multi-agent system, we

compute RðtÞ based on the min i D
ai
Corridor among all agents ai locally perceiving collision.

The results obtained using the proposed multi-agent system are presented in Figure 23.

These results show that the multi-agent system manages to evolve behaviours that effectively

guide this hyper-redundant kinematic chain to enter the opening of the narrow corridor and to

successfully reach the target position, generating a natural collision free path.
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Figure 23. Extensibility of the proposed multi-agent framework to a hyper-redundant kinematic chain
performing a constrained motion task, involving collision-free target reaching inside a narrow corridor.
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5.5 Multi-finger grasp

The second series of numerical experiments presented in this section builds upon the results

obtained in the previous sections regarding open kinematic chains and further extends the multi-

agent topology on a more complex task, by now considering three independent kinematic chains

cooperating together to achieve a stable three-finger grasp. The key assumption in this second

series of experiments concerns ‘quasi-static’ manipulation, which means that we are still

considering kinematic (in this case, the dual analogue, static) control of the system, neglecting

from the control problem the linkage and object dynamics involved. Our main objective here is

to explore the capacity of the system to learn how to generate a static force distribution, thus

neglecting the object dynamics, which is equivalent to assuming an ‘infinite mass’ for the

grasped object. This assumption leads to a simplified task-case scenario, where our aim is to

focus only on the grasp distribution problem alone. Therefore, this second experiment aims to

validate whether by using the proposed control structure, the system can autonomously acquire

skills that consist in performing coordinated actions (of the individual kinematic linkages –

acting fingers) to achieve a desired resultant grasp force/moment in a quasi-static sense. This

experiment also constitutes a good example to demonstrate the scaling properties of the nested-

hierarchical structure of the proposed multi-agent control architecture, where a new top-level

‘grasp-agent’ is now added in the hierarchy to encapsulate the individual ‘fingers-agents’ and

their underlying topology.

The arrangement of the three-finger dexterous manipulator, attempting to perform a quasi-

static grasp as considered in this experiment, is shown in Figure 24(a), where once again we

assume that the motion of the manipulator is restricted on a plane. The multi-agent

representation of this three-finger manipulator, as obtained using the proposed architecture, is

shown in Figure 24(b). This figure visualises how the kinematic chains of the considered multi-

finger dexterous manipulator model, shown in Figure 24(a), are mapped on agents using the

proposed multi-agent topology. This multi-agent representation, as depicted in Figure 24(b),

clearly illustrates the nested hierarchical properties of the proposed architecture.

Based on the above representation, the numerical results presented in the sequel assess the

learning capacity of a multi-agent system comprising 13 hierarchically nested agents, with the

goal being to perform a grasp with no slip on any of the fingertips and with resultant force and

torque equal to zero. The initial joint configuration assumed for the kinematic chains is the one
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Figure 24. Considered set-up for the second series of numerical experiments: (a) Three-finger quasi-static
grasp (b) Nested-hierarchical multi-agent representation of the three-finger manipulator.
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shown in Figure 24(a), where the Coulomb friction coefficient, defining the friction cone limits

(at each contact point) within which every multi-agent finger must learn to operate, is also

depicted. We note that all contact points are simulated using a simple linear elasticity model,

with specific spring and damping coefficients, as shown in Figure 25, where kt is the tangential

and kn is the normal spring coefficient, and cn; ct are the normal and tangential damping

coefficients, respectively. The rest of the simulation parameters are the same as those described

in the previous sections (for the open kinematic chains). The fuzzification parameters as well as

the learning parameters have been kept the same as before. The system is trained over 200

epochs, each epoch lasting 500 time units. Within the corresponding time interval, the agents

will have to learn simultaneously how to solve two problems: (a) first, to reach the grasp points

(defined as their goal positions, according to the training results obtained during the previous

experiments) and (b) second, to successfully coordinate their actions in order to apply

appropriate contact forces at the corresponding grasp points, always maintained within the

indicated friction cone in order to avoid slipping effects, and summing up to a desired net force

and moment (in the case of the considered experiment, summing up to zero).

According to these requirements, the goal of the multi-agent system for this experiment has

been augmented, as compared to the previous experiments. Since the system is now attempting

to learn, at a single step, two different goals, the reward function has to be modified

appropriately in order to correctly guide the RL mechanism. The reward function employed in

the previous sections, which supports the task of reaching a goal position, is still valid but is now

augmented by a reward term Ri corresponding to the ith task constraint, namely Rt being the

reward for satisfying the net moment constraint, Rf being the reward for satisfying the net force

constraint and Rs being the reward for satisfying the friction cone (i.e. no slip) constraint.

Therefore, the reward function is now formulated as follows:

if ðDgoalðtÞ # Dmin Þ ^ ðeDgoalÞ # 0Þ then RðtÞ ¼ e2c·ðDgoalðtÞÞ þP
iRi

else if ðDgoalðtÞ . Dmin Þ then RðtÞ ¼ 22þP
iRi

else if ðDgoalðtÞ , Dmin Þ ^ ðeDgoalÞ . 0Þ then RðtÞ ¼ 21þP
iRi

8>><
>>:

9>>=
>>;; ð12Þ

where the reward terms Ri ði [ ff ; t; s}Þ are defined as follows:

Rf ¼ e2c *NetforceðtÞ; for the force constraint

Rt ¼ e2c *NettorqueðtÞ; for the torque constraint and

Rs ¼ e2c *FrictionConeðtÞ; for the no–slip constraint; where t indicates the trial:

The numerical experiments described in the sequel are organised in two sets of trials, each

one with a different value for the decay factor s (s ¼ 0.05 and s ¼ 0.75). The obtained results are

X

Y

k

kn

t
Contact

Point
ct

cn

Figure 25. Simulated point contact model, with tangential and normal spring-damping coefficients.
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presented in Figures 26 and 27. In these figures, the results for four different epochs (1, 10, 100

and 200) are shown. Each pair of plots shows the evolution over time of the applied net force

(with the desired net force equal to zero) and of the mean force error. These results clearly

illustrate the learning performance of the multi-agent grasping system, and demonstrate the

capacity of the proposed architecture to progressively achieve simultaneous collaborative

adaptation of the dexterous manipulator’s fingertips actions. Regarding the friction coefficient

(which, we recall, has been set in this case at m ¼ 0.5), this defines a friction cone limit within

which all fingers must operate (in the sense that all fingertip contact forces must lie inside this

limit). Figure 28 illustrates how the contact forces applied by each one of the three fingers

(kinematic chains) progressively adapt (for epochs 1, 10, 100 and 200) to fit within these limits

of the considered friction cone constraints. Finally, Figure 29 depicts an indicative set of

solutions that the system generates for different simulation parameters. The proposed multi-

agent system proceeds using the knowledge acquired, without any additional training, by

exploring and reaching new contact points that are related to those trained, in a manner similar to

that already described in the previous sections for the case of a single kinematic chain.

0 50 100 150 200 250 300 350 400 450 500
−3000

−2000

−1000

0

1000

2000

3000
(a) (b)

Time Duration (Time Units)/Epoch

R
es

ul
ta

nt
 F

or
ce

 E
xe

rt
ed

 to
 th

e 
O

bj
ec

t (
F

or
ce

 U
ni

ts
)

Epoch 1

Epoch 10

Epoch 100

Epoch 200

0 50 100 150 200 250 300 350 400 450 500
−1

0

1

2

3

4

5

6

Epoch 1

Epoch 10 Epoch 100 Epoch 200

Time Duration (Time Units)/Epoch

M
ea

n 
S

qu
ar

e 
E

rr
or

 (
D

at
a 

F
itt

ed
 to

 H
ig

he
r 

O
rd

er
 P

ol
yn

om
ia

l) 

Figure 26. Evolution of (a) net force and (b) mean square force error over time, for four different epochs
(with decay factor s ¼ 0.05).
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Figure 27. Evolution of (a) net force and (b) mean square force error over time, for four different epochs
(with decay factor s ¼ 0.75).
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Figure 28. Adaptation of fingertip force within the friction cone limit (s ¼ 0.05).
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Figure 29. Example of generated grasps (for s ¼ 0.75, s ¼ 0.35, s ¼ 0.05).
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6. Computational cost considerations

The state space S of the multi-agent system is composed of the local state spaces S1; S2; :::Snof
the individual agents. Every local state-space comprises homogeneous state parameters. If we

consider the system as a single agent, then S ¼ S1 £ S2 £ . . . £ Sn; meaning that the cardinality

of the state-space in a centralised single-agent representation is jSj ¼ jSnjn. By adopting the

proposed multi-agent (nested-hierarchical) architecture along with a uniform state definition for

every agent, the computational cost of the value iteration problem that we are solving is reduced,

as compared to a single-agent approach.

The proposed multi-agent architecture is defined by homogeneous agents, meaning that all

of them have the same number of state variables that uniquely define their state for all possible

configurations. This implies that the cardinality j·j of every local state-space is the same:

jS1j ¼ jS2j ¼ jS3j ¼ · · · ¼ jSij ¼ jSj; for every agent i. According to the nested-hierarchical

architecture, each agent is able to monitor only those agents that are below in the hierarchy, in

order to formulate a joint action. Therefore, the corresponding action space of each agent is

reduced, as we move from a higher to a lower level in the hierarchy. Eventually, the cardinality

of the joint action space is jAji, where i is the number of agents that participate in the joint action

at the specific level of the hierarchy, and jAj is the number of distinct actions of each agent.

Assuming that the state-space is finite, the number of state–action pairs to be updated at

every iteration isjSj·jAji. In order to update the value for a given state–action pair, the

maximisation over the joint action space is solved by enumeration over jAji elements. So, the

cost per iteration is jSj·jAji·jAji or jSj·ðjAjiÞ2: Assuming that our algorithm runs for L iterations

and for n agents, the total computational cost can be computed as follows:

L·
Xn
i21

Sj j·ðAiÞ2� 	 ¼ L·jSj
Xn
i21

ðjAj2Þi ¼ L·jSj· ðjAj
2Þnþ1 2 jAj2
jAj2 2 1

¼ · · ·

· · · ¼ L·jSjðjAj2Þn jA
2j2 1=ðjAj2Þn21

jAj2 2 1
. L·jSj·ðjAj2Þn·K;

ð13Þ

where, for a large value of n, we can assume that

K ø
jAj2

jAj2 2 1
: ð14Þ

Comparing now the above cost with the case of a centralised single-agent system is

straightforward. In a single-agent representation, the state parameters, instead of being

uniformly distributed among several agents, would be accumulated on a single agent, resulting

in an exponential increase of the state-space cardinality. Thus, the computational cost for a

single-agent architecture would be

L·jSjn·ðjAj2Þn: ð15Þ
Comparing Equation (13) with Equation (15), it is clear that, when the number n of agents

increases, the computational cost in the single-agent architecture increases exponentially, since

the cardinality of the state space in (15) is raised to the power of n. In the case of the open

kinematic chain considered in Section 5.1, the proposed multi-agent system comprises four

nested agents, so n ¼ 4. The state-space of each agent, as defined in Section 3.3, is composed of

six state variables. Each state variable is fuzzified with eight membership functions, according to
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the process described in Section 4.1. Therefore, the cardinality of the state-space of each agent is

jSj ¼ 86. Furthermore, as defined in Section 4.2 each agent has three distinct actions, sojAj ¼ 3.

Each training epoch, within which every agent is allowed to operate, is assumed to have a

duration of 1500 iterations, so L ¼ 1500. Based on these assumptions, the computational cost

when employing the proposed multi-agent architecture equals L ¼ 1500:86·ð32Þ4·3=32 2 1 ¼
2:9 £ 1012 operations. In the case of a single-agent approach, this cost would be 4:6 £ 1028.

Therefore, as the number of agents increases, it is evident that the computational benefit of the

proposed multi-agent architecture (as compared to a centralised single-agent approach) becomes

significant.

7. Conclusion and future work

This paper proposes a multi-agent model-free learning architecture, particularly adapted in the

context of dexterous robot manipulation and evaluated with respect to the developmental

acquisition of related kinematic control skills. The main contribution of this work is twofold:

(i) The definition of an original nested-hierarchical multi-agent architecture that

encapsulates naturally the topology of robot kinematic chains and supports a recursive,

decentralised state-definition scheme. Within the proposed multi-agent architecture,

each individual DOF is mapped onto a distinct agent that maintains a local view of the

whole system topology and task progress, incrementally updated through a recursive

inter-agent communication process.

(ii) The application of a game-theoretic JASM in the context of dexterous robot

manipulation, enabling a computationally efficient development of distributed control

policies through the application of a fuzzy RL scheme in a continuous domain.

Learning is thus approached not through demonstration and training but through an

autonomous exploration and self-learning process, where each agent evolves a local

sensorimotor behaviour by receiving information (in the form of reward signals) related

to observations of task performance. This paper constitutes in fact a proof of concept

demonstrating that global dexterous manipulation skills can indeed evolve through

such a distributed iterative learning of local agent sensorimotor mappings.

The main motivation of this research work thus was to explore the applicability of such

distributed multi-agent approaches to robot manipulation tasks. As compared to typical

centralised control schemes, the development of decentralised learning schemes is expected to

enhance specific performance properties of the control system, in particular as related to the

following: (a) the capacity for developmental self-learning of complex sensorimotor skills,

(b) the modularity and intuitive scalability of the control architecture and the direct extensibility

of the system into increasingly complex problem domains, (c) the adaptability and inherent

robustness of the system with respect to internal structure variations, topological uncertainties

and potential unpredictable failures and (d) the superior computational efficiency, achieved by

employing distributed state definition and state–action mapping strategies.

These attributes of the proposed system are assessed in this paper through numerical

experiments for different robot manipulation task scenarios, involving single or multi-robot

kinematic chains. In particular, two main series of numerical experiments are presented in this

paper, to evaluate the performance of the proposed multi-agent learning scheme. The first series

concerns redundant multi-DOF open kinematic chains and the second series addresses multi-

finger grasping. Results regarding generalisation and robustness are presented and analysed in

this paper, while scalability with respect to more complex task scenarios is also demonstrated.
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It is shown that, by using reward functions that amplify actions leading to faster distance (or

force) error minimisation, the multi-agent system statistically and progressively converges

towards behaviours (evolving local state-to-action maps) that efficiently resolve kinematic

redundancies and achieve desired coordinated action. The numerical experiments described in

this paper and the results obtained clearly demonstrate that the solutions which emerge are

statistically expected to be feasible and near-optimal in a LS (or effort minimisation) sense, for a

wide range of exploration factors and learning parameters. This constitutes an important

experimental finding that supports our research hypothesis regarding the applicability of the

proposed methodology in such a dexterous manipulation context.

It should be noted here, though, that, in all tested scenarios, the reward functions have

been tuned manually, which constitutes indeed one limitation of the approach. Extending this

approach by additionally employing methodologies such as apprenticeship learning (Abbeel &

Ng, 2004) is currently being investigated, where the development of a reward function can

be enhanced by means of human demonstrations performed during an initial training

phase. It would then be interesting, in future work, to further explore other reward functions

that would probably involve hierarchical task decomposition strategies, that is, attempting

to resolve redundancy and evolve coordinated action schemes while exploiting additional

DOFs in a target-oriented manner. A more enhanced mathematical analysis regarding the

comparison of the emerging solutions with respect to analytic theoretically optimal

configurations would also fit within the scope of future research work. In addition, although

the motion of the manipulators considered in this work is restricted on a plane, the extension

of the framework on a more general 3D manipulation case could be straightforward and would

only affect the existing state definition, without altering the basic architectural and algorithmic

structure.

The redundant kinematic chains and the quasi-static coordinated grasping task have

complexity similar to simple legged locomotion tasks, such as bipedal walking (if we exclude

the dynamics). Therefore, modelling the limbs of a legged robot as independent agents appears

to be a natural extension of our research work. In this direction, future research activity will

investigate the adaptation of our architecture on a quadruped robot trying to learn gait

parameters, in order to achieve a desired velocity with certain orientation. Furthermore, the

proposed multi-agent system, owing to its homogeneous characteristics (all agents obey the

same structural/modular internal architecture), as well as to its hierarchical formation,

facilitates scaling to more complex structures. Figure 30 depicts a potential application of the

proposed framework, where a more complicated multi-agent topology could be envisaged.

By employing the proposed framework in the domain of dexterous articulated robotic

mechanisms, we believe that challenging problems in this domain can be tackled in a very

elegant and powerful way (in the sense of modularity, robustness and scalability). Similar

(in some ways equivalent) problem settings, such as grasp planning, locomotion control or

Figure 30. Dexterous robotic chains performing hybrid locomotion/manipulation tasks (such as climbing).
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designing optimal climbing (and generally gaiting or locomotion) patterns, could also be

approached within the same framework, leading to the notions of evolving cooperative learning

and developmental robot control skills.
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