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What does TROPICAL mean?

* The adjective “tropical” was coined by French mathematicians Dominique
Perrin and Jean-Eric Pin, to honor their Brazilian colleague Imre Simon, a
pioneer of min-plus algebra as applied to finite automata in computer science.

* Tropical (Tpomkog in Greek) comes from the greek word «Tpozm1)» which
means “turning” or “changing the way/direction”.

Polygonal lines




Outline (and some introductory references)

1. Elements of Tropical Geometry
“a marriage between algebraic geometry and polyhedral geometry” [Maclagan & Sturmfels 2015]

. Tropical semirings: Max-plus & Min-plus Arithmetic
. Tropical Polynomials
" Geometrical objects: tropical curves/surfaces, halfspaces, Newton polytopes

= Max-plus Matrix Algebra: “linear algebra of DP & Combinatorics” [O.R., Graphs:
Cuninghame-Green 1979], [DES, Nonlinear Control: Baccelli et al. 2001, Butkovic 2010],
Optimization [Gaubert et al, Max-plus group], Mathematical Morphology & Image Analysis,
Idempotent Mathematics [Maslov, Litvinov, et al]

2. Applications to Neural Networks:

" Tropical Geometry of NNs with PieceWise-Linear (PWL) Activations
. Advances in Morphological Networks: Training and Pruning
. NN Minimization via Tropical Polynomial Division and Zonotopes

3. Optimization and Tropical Regression:

- Optimal solutions of max-plus matrix equations
. Tropical Regression: fitting tropical polynomials to data



Tropical Semirings
Scalar Arithmetic Rings
Integer/Real Addition-Multiplication Ring: (R, +,x), (Z,+,x)

Tropical Semirings
R,..=RuU{-0}l, R =RuU{+x]

m min
V =max, A =min

Max-plus semiring: (R __,v,+)

max 2

Min-plus semiring: (R _. ,A,+)

min 2

Correspondences between linear and (max, +) arithmetic

Linear arithmetic | (max, +) arithmetic

=+ max
X =
0 —00
1 0

g =1/ B = —g




Maslov Dequantization - Log - Sum - Exp approximation
Log-Sum-Exp (LSE) approximation

(Maslov "Dequantization" in idempotent mathematics [Maslov 1987, Litvinov 2007])

al/T

limT-log(e”” + e”") = max(a,b)

T1¢i<)m(_T Ylog(e " +e ") =min(a,b)

Effectof (@) = 204 2
temperature - foz) = —0.2¢ + 1
parameter T --- f3(z) =22 - 10

— f(z) = max{f1(z), f2(), f3(z)}

— fr=2(x)
fr=1(x)

fr=0.5(x)




Graphs of Max-plus Tropical 1D Polynomials

yt—line — max(a —|-X,b), Yt—parab — max(a + 2xab+x7 C)
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(a) Euclidean line (b) Tropical line (¢) Euclid parabola (d) Tropic parabola

Cubic polynomial




Max-plus and Min-Plus Tropical 1D Polynomials
Euclidean Max-plus Min-plus

a i(b_a)

(a) (b) (c)

(d)




Tropical Curve of Max/Min-Polynomials

Tropical curve of p(x,y) =
“Zero locus” of a max/min polynomial is the set of points where the max/min 1s attained by
more than one of the “monomial” terms of the polynomial.

y > max(2x, c) 2z < min(y, c) c < min(2z, y)

2z > max(y, ¢)

y < min(2z, c)

|
|
|
|
|
|
|
¢ > max(2z, y) |
|
|
|
|
|
|

c/2 'c/2

Tropical curve of the max-polynomial Tropical curve of the min-polynomial

p(x,y) = max(2x,y,c) p'(x,y) = min(2x,y,c)



Tropical Curve vs Newton Polytope

Max polynomial

p(m) — 611112(1}{ {(31 T1 + CiaZ2 + 1 Cip rn} — \/ C, &L
i .

“Zero locus” of a max polynomial 1s the Newton polytope N(p) of max polynomial p

set of points where the max is attained by is the convex hull of its coefficients’ vectors.
more than two polynomial terms.

e S N (p) = conv {vy,v9,v3}

—i——— y > max (0, x) ————E————I————:— U3 o

V(p)
J:————:L————E—————————;.r>111£-.1X(0 y)

0>111‘1x(:r,y)————--__4:____J:,____i_ ” ® .Uz
Tropical curve V(p) of Duality between Newton polytope N(p)

p(x,y) = max(x,y,0) and tropical curve V(p)



Graph and Trop Curve of a tropical “Conic” polynomial
Tropical Polynomial of degree 2 in two variables

classical: "ax’ +bxy+cy’ +dy+e+ fx"
tropical: p(x,y)=min(a+2x,b+x+y,c+2y,d+y,e, f +Xx)

Graph of p(x,»)
and

its Tropical Curve = set of (x,)) points

where the min is attained by more than

one terms.

y+d




Obtain Tropical Polynomials via Dequantization

K
Classic polynomial: f (u)=Z cu uy uw, w= (U Uy, U)
k=1

n b

Posynomial if ¢, >0, a, =(a,,,...,a,,) € R", u>0;

Log-Sum-Exp (Viro's "logarithmic paper" [Viro 2001]):

x = log(u), b, =log(c,)
K
. x/'T\ _ 12 .
1T1£101T-10gf(e )—1T1£101T ;exp«ak,x/T)erk/T) —>

Tropical (max-plus) Polynomial = Piecewise-Linear Function

K K
p(Xx) = MkéX {(ak,x>+bk} :MléX{azklx1 +--ta,x, +bk}
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Tropical Half-spaces and Polytopes in 2D
Tropical (affine) Half-space of R’ [ Gaubert & Katz 2011]

n n

T (a,b) = {xc R, :max(a,i. \/ a; +x;) < max(b,1, \/ b +xi)}

RT'E !;"'
/ Rp /
r< ] //
Ry~ R
_ /
0 0 .
4 =2 0 2 4 6
r

—2 0 2 | - 8

I

(a) Single region (b) Multiple regions

The region separating boundaries are tropical lines (or hyper-planes).

Tropical Polyhedra are formed from finite intersections of tropical
half-spaces. Polytopes are compact polyhedra.
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Tropical Halfspaces and Polyhedra in 3D

f(r,y) = max (z,2 4+ y,7) g(x,y) = min(5+2,7+y,9)
/\ B e S
10 : V' 10 ‘ (14,2, 9)

5 10 ' 0 10
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(Extended) Newton Polytope

Let p(x) = max, (aj x + b;) be a max-polynomial.

Definition ((Extended) Newton Polytope): We define as the
(Extended) Newton Polytope of p the following:
Newt(p) = conv{a;,i =1, ..., k}
ENewt(p) = conv{(a;, b;),i =1, ..., k}

where conv signifies the convex hull of the given set.

Theorem [Charisopoulos & Maragos, 2018; Zhang et al., 2018]:

Maxpolynomials with the same vertices in the upper hull of their
Extended Newton Polytope correspond to the same function.
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Coefficient

Examples of (Ext) Newton Polytopes

15 - —@— ENewt
i —— Newt
F 1.0
1.0 -
0.8
. 5
Wedl - 0.6 ©
"
0.0 - ¢ ¢ 04 O
0.2
—05 -
0.5 -
—&— ENewt
. il
—1.0 4 == Newt 50 Q@
0.6 Qée?’
1 1 1 1 . ()
0 1 2 3 W08 iy . 1-1.8'2.@0
Tropical Degree Tropical Degree (x) B “oQ\

Figure: Polytopes of
max(3x,2x + 1.5,x + 1,0).

Figure: Polytopes of
max(2x,x+y+1L,x+1,y+1,1).
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Newton Polytope and Maxpolynomial Function

2.00 A

« “Upper” vertices of ENewt(p)
define p(x) as a function.

1.75 1
1.50 A

1.25 A X

« Geometrically:
max(3x + 1,2x + 1.25,x + 2,0)
= max(3x +1,x+ 2,0) 050 1

Tropical Coefficient
o
o

(extra point is not on the upper hull).

0.00 A

0.0 0.5 1.0 1.5 2.0 25 3.0
Tropical Degree

ENewt(p), p(x) = max(3x + 1,x + 2,0)
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Tropical Algebra of Max-plus Polynomials €< -
Tropical Geometry of their Newton Polytopes

Newt (p1 V p2) = conv (Newt (p1) U Newt (p2))
= Newt (p1) & Newt (p2)

Newt (p1 + p2)

Py (—1,1)
L] * f
(3.1)

(—1,0)

(a)

P

|
o

(1,2)

\\
P, T~
T

iconv(Pl U P;) (371)

(—1,0)

(0,0)

(b)

Newton polytopes of (a) two max-polynomials

————————————

(c)

P.(X,y) = max(x+y, 3x+y, Xx+2y) and p,(X,y) = max(0, -x, Y, y-X),

(b) their max(p,, p,), and (c¢) their sum p, + p,

17



Tropical Geometry of Neural Nets
with Piecewise-Linear Activations

References:

1. Charisopoulos, V., & Maragos, P. (2017, May). Morphological
perceptrons: geometry and training algorithms, ISMM ‘17.

2. Charisopoulos, V., & Maragos, P. (2018). A Tropical Approach to
Neural Networks with Piecewise Linear Activations.
arXiv:1805.08749.

3. Zhang, Liwen and Naitzat, Gregory and Lim, Lek-Heng. Tropical
geometry of deep neural networks, Proc. ICML(35) 2018.
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NNs with PWL functions

Piecewise-linear functions used as activation functions o:
1. ReLU: max(0,v) or max(av,v), a < 1 with v:=w'x + b

2. Maxout: maxge (K] Vk with v 1= WJ:I} + by

X1

_— wl\
w O\

T2 a2 ™ ga(fme b)
LW

Dy /bT

Linear regions: maximally connected regions of input space on which
the NN's output is linear [Montufar et al., 2014].
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Figure: Input space is subdivided into convex polytopes, each of which is a
“linear region” for the NN. Reproduced from [Raghu et al., 2016]

Claim: more linear regions = more expressive power
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PWL functions and tropical geometry

Convex + PWL: ideal to study under lens of tropical geometry -

Formally: tropical semiring (RU {—oc},V,+)
® binary “addition” z V y := max(x,y), “multiplication” x + y

¢ operations on vectors &, y:

[ max(z1,y1) ) .
T Vy = f ;, B y3:v$i+yi
\max(z,, yn) -

Key object: tropical {poly, posy, sig}nomials

21



Single neuron result

An application of the fundamental theorem of LP vyields:

The number of linear regions for a single maxout unit p(x) =

maX;e g 'ijaz + b; are equal to the number of vertices on the
upper hull of N'(p)

® subsumes relu

® all terms corresponding to interior vertices can be removed without
affecting p(x) as a function.

22



Upper Hull

Figure: Upper Hull example for
p(x) =max (1+ 21,24+ x1,2,2+ 22,2 + 1 + x2)
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For a collection of tropical polynomials, suffices to work with Minkowski
sums:

Proposition [Charisopoulos & Maragos, 2018] [Zhang et al., 2018]

The number of linear regions of a layer with n inputs and m neurons
is upper bounded by the number of vertices in the upper convex

hull of
N(pl) D--- @N(pm)a

where @ denotes Minkowski sum.

24



Main Result

Immediate application of a bound from [Gritzmann and Sturmfels, 1993]
on faces of Minkowski sums gives

Proposition [Charisopoulos & Maragos, 2018]

The number of linear regions of n input, m output layer consisting
of convex PWL activations of rank k is bounded above by

n mk(k—l)
min km,ZZ( e ) :
j=0 \

In case of RelLU, use symmetry of zonotopes to refine to

(0]

7=0

25



Counting In practice

Goal: given a network, count # of linear regions (exactly or
approximately)

Exact counting using insight from Newton polytopes:

> vertex enumeration algorithm for Mink. sums [Fukuda, 2004| =
requires solving (|vert(P)|) LPs.

> impractical unless problem is small

MIP representability of NNs [Serra et al., 2018]:
> Assumes bounded range of input space

> Requires enumerating solutions of MILPs

Geometric Algorithm: Randomized method for Sampling the Extreme Points of

the Upper Hull of a Polytope [Charisopoulos & Maragos 2019, arXiv:1805.08749v2],
[Maragos, Charisopoulos & Theodosis, Proc. IEEE 2021]
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Geometry & Algebra of NNs with PWL Activations

Theorem (Wang 2004): A continuous piecewise linear
function is equal to the difference of two max-polynomials.

Theorem (Charisopoulos & Maragos 2018): The essential
terms of a tropical polynomial are in bijection 1 — 1 with the
vertices on the upper convex hull of its extended Newton
polytope.

Theorem (Zhang et al. 2018): A neural network with ReLU-
type activations can be represented as the difference of
two max-polynomials, i.e. with a tropical rational function.

27



[Calafiore et al., 2019] use the Maslov dequantization to design
universal approximators for convex (+loglog-convex) data

f convex = f ~ fpwL & f = fr,

where fpwi, < fr < T'log K + fpwr, and are given by

[ fpwL 1= &1%] (ak, x) + by,
{ K
fr :=Tlog (Z exp {br + (ar, :B)}l/T)
\ fe—1

In particular, fixing € > 0 and compact C, a small enough 71" will
satisfy

sup [ fr(z) — f(z)] < e.

xeC

28



Morphological Networks:
Geometry, Training, and Pruning

References:

V. Charisopoulos and P. Maragos, “Morphological Perceptrons: Geometry
and Training Algorithms”, Proc. ISMM 2017, LNCS 10225, Springer.

N. Dimitriadis and P. Maragos, “Advances in Morphological Neural
Networks: Training, Pruning and Enforcing Shape Constraints”,

Proc. ICASSP, 2021,
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Motivation

B Explosion of ML research in the last decade (how models with near-
human or even human performance)

B Recent advances indicate shift towards nonlinearity, but...

B .. .the “multiply-accumulate” (= linear) activations of the perceptron are
still ubiquitous

Our Questions:
* Are dot products and convolutions the only biologically plausible models of
neuronal computation?

e Can we use results and tools from “nonlinear” mathematics to reason
about complexity and dimension of learning models in current literature?

30



Rosenblatt's perceptron

Introduced 1n 1943, still prevalent neural model

P b

Nonlinearity at the output (e.g logistic sigmoid, ReLU):

y(x) = o(o(x))

Multiply-accumulate architecture — archetypal building block of all

Activation: ¢(x) = w

architectures (e.g. fully-connected, convolutional etc.)

L1
> Wi
5
> (10)5)
T3 w3 o)

v
v
v

=

8
I

2

&
~

8
_|_
=

Y
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Max-
plus
Matrix
Algebra

vector/matrix ‘addition’ = pointwise max

X\/y — [:El\/yls"'?xn\/y”]T

AVB @ij v bij]

vector/matrix ‘dual addition’ = pointwise min

X/\y — [;1,'1 /\yl,. « oy Ln /\:l n_]T
AANB = [aj; Abij]

vector/matrix ‘multiplication by scalar’

e+X = [C—FIIJ],----,C‘FQJN}T
c+A = [c+a]

(max, 4+) ‘matrix multiplication’

[A H B],'j = \/ Ak + b]fj
k=]

(min, +) ‘matrix dual multiplication’

n

[A EE" B] ij — /\ ik + bkj
k=1

32



Morphological Operators on Lattices

(£ =partial ordering, V = supremum, A = infimum)

* I 1s increasing iff f <

0 is dilation iff o&(v, f,

g=>yp(f)<w(g)
): vig(fi)

* ¢ 1s erosion iff g(A, f))=ne(f).

* o 1s opening iff increasing and antiextensive (a(f)< f),

and idempotent (o = ).

and idempotent (S= 5°).

[ is closing iff increasing and extensive (S(f)= f),

* (&0) 1s adjunction iff

o(g)< fo g<e&(f)

Then: & iserosion, O is dilation,

(Galois connection)
Residuation pair
(“Tropical Adjoints”)

o¢ is opening (projection), €0 is closing (projection).

[ Serra 1988; Heijmans & Ronse 1990 |



Solve Max-plus Equations

e Problems:
(1) Exact problem: Solve d4(x) = ABHx=b, AceR ", beR

(2) Approximate Constrained: Min ||ABHx —b||,=1 ~ s.t. AHx<b

=X T e~ f {}

e Theorem: (a) The greatest (sub)solution of (1) and unique solution of (2) is

Xx=c4(b)=A*HDb /\b aij], A* & —AT

and yields the Greatest Lower Estimate (GLE) of data b:
da(ca(b)=ABHA*Hb) <D
(b) Min Max Absolute Error (MMAE) unconstrained unique solution:

X=X+pu, p=|[AHX—Db|/2

e Geometry: Operators 0, ¢ are vector dilation and erosion, and
the GLE b — de(b) is an opening (lattice projection).

e Complexity: O(mn)



Morphological Perceptron

B Introduced in the 1990’s. Instead of multiply-accumulate, computes a
dilation (max-of-sums):

n
(x) =w! Bx 2 \/ w; +
i=1

or an erosion:
n

A
w! H x 2 /\ w; + a;

1=1

7' ()

B Ritter & Urcid (2003): argued about biological plausibility and proved that
every compact region in n-dim Euclidean space can be approximated by
morphological perceptrons to arbitrary accuracy.

B Related to a Maxout unit.
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Feasible Regions & Separability Condition for Max-plus Percepton

Let X € IRﬁf;;” be a matrix containing the patterns to be classified as its

rows, let £(*) denote the k-th pattern (row) and let C;,Cy be the two classes

Max-plus perceptron [7(x) = w! B

!’
’T(iﬂ) — wq V ("“’1 T i-'l) VeV ('“—»-‘n + ifn) = wo V (\/ w; T «1'1)
i=1

Feasible Region = Tropical Polyhedron
T (Xpos, Xneg) ={we R, Xpos Bw >0, X Bw <0}

Imax
| | : | ‘é[
0.6 |- . : .cl)
r9 +wy >0 .

Separability Condition, equivalent 0.4 = o ! . i
to Nonempty Trop. Polyhedron ~ p==mmmmmmmmmmnaes SUTEEEEEEES
2 02Ff X - |

>3 / A 4 E °®
XpOS (Xneg O) Z 0 0 ’UJTEE{IISO : $1+UJ120’
—09 1 A E ° .

[ Charisopoulos & Maragos, 2017 ] T »



Morphological Neural Nets (MNNs) and Training Approaches

e Constructive Algorithms

Dendrite Learning [Ritter & Urcid, 2003], Iterative Partitioning / Competitive Learning [Sussner & Esmi,
2011]: combine (max, +) and (min, +) classifiers, build “bounding boxes” around patterns

- "perfect” fit to data, no concept of outlier
* Morphological Associative Memories

Introduce a Hopfield-type network, computing (noniteratively) a morphological/fuzzy response (e.g.
Sussner & Valle, 2006):

e G@Gradient Descent Variants

Min-max classifiers [Yang & Maragos, 1995], MRL nodes [Pessoa & Maragos, 2000], Dilation-Erosion
Linear Perceptron [Araujo et al. 2012].

* Recent Approaches:

Convex-Concave Programming (CCP) for Max-plus Perceptron and DEP (Binary Classification)
[Charisopoulos & Maragos 2017 ]

Reduced Dilation-Erosion Perceptron (r-DEP) trained via CCP for Binary Classification [Valle 2020]
Dense Morphological Networks [Mondal et al. 2019]

Deep Morphological Networks [Franchi et al. 2020]

r-DEP for Multiclass Classification via CCP, L1 Pruning on Dense MINNs [Dimitriadis & Maragos 2021]
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Our Approach for Training MP on Non-separable Data

Training a (max, +) perceptron can be stated as a difference-of-convex (DC) optimization
problem. Solved iteratively (but global optimum not guaranteed) by the Convex-Concave
Procedure (CCP) [Yuille & Rangarajan, 2003], implemented via DCCP [Shen et al. 2016]

Given a sequence of training data {;1:1" }{‘ -

K
Minimize J(X, w,v) = Z v, - max(&, 0)
k=1

\/ w; + :CZ(.k) < & if z(%) € ¢,
g . 4 =1

\/ w; + :cgk) > =&, it z*) e ¢4

s =l

V. Some measure of "being outlier"

¢

& Positive only if misclassification occurs at k-th pattern

Negative

Positive
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Gradient Descent vs. CCP for Training (max, +) Perceptron

Two Binary Classification Experiments.

Gradient descent with fixed N = 100 epochs vs. CCP using the DCCP toolkit

for CvxPy (default parameters).

Ripleys WDBC
" SGD WDccp SGD WDccp
0.01]0.838 + 0.011 0.726 + 0.002
0.02]0.739 4+ 0.012 0.763 + 0.006
0.03 | 0.827 4+ 0.008 0.726 + 0.004
0.04 | 0.834 + 0.008 0.751 + 0.007
0.05|0.800 4+ 0.009 | 0.902 |0.783 +0.012| 0.908
0.06 | 0.785 4+ 0.008 | +£0.001 | 0.768 +0.01 | £0.001
0.07 | 0.776 &+ 0.009 0.729 + 0.009
0.08 | 0.769 + 0.01 0.732 + 0.01
0.09 | 0.799 + 0.009 0.730 + 0.015
0.1 | 0.749 + 0.011 0.729 + 0.009

CCP: more robust results




Dilation-Erosion Perceptron (DEP)
T — A(z) + (1 — N)7'(2)

SPANS

w

y = fx) =26, (x) + (1 = Dep(x)
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Dilation-Erosion Perceptron Training

y =fx) =16, (x) + (1 — Dep(x) = 16, (%) — (1 — D[—€,(x)]
= convex — (—concave)
= convex — convex

Training as Difference-of-Convex Optimization via Convex-Concave Programming

N
minimize Z v, max{0, &;}
i=1

subject to  Aow(x;) + (1 — Nem(x;) > =&  Vx, € P,
Mw(X)+ (1 —=Nem(x) <+& WX eN

41



X2

Effect of V' S P and Ordering Vector Data

Double Moons example

1.251 0.751 o s .
[ |
e
1.00- 0.50+ » &% m‘p
1] o \
0.751 0.25+ ==‘;'3E Eff °% o'o‘ﬂ\t'e
. . - ° , -'\ e ()
[ Y [ A AM (X1 & A A‘
A
0.50 0.001 ‘o3l . . s g h
.“E.r
0.251 ;? —0.25 munnnn 1P NIy
x"s’ N
0.00 —0.50 ) L4 *A deE N o h g
Al t i Y .’ ! AAA‘ ’
A A A s f
~0.251 _0.751 DYV o ¥ N AAQMQA -
. ‘A’? ‘ 44, AA A Fe ' ;
4 ﬁ 47
—0.50" —1.00- if:i‘_ X “‘ﬂ"‘igﬁA g
R S
—0.751 N
~1251 £ é
-0 -05 00 05 10 15 20 -20 -15 -10 -05 00 0.5 1.0
X1 X1
Reversed labels Correct labels

Reduced ordering [Valle 2020] for better ordering feature patterns:
Let V be a nonempty set, L be a complete lattice and p:V — L be a surjective mapping.

A reduced ordering is defined as: x <, y © p(x) < p(y) Vx,y € V.
Can be obtained via a supervised training on a set of positive and negative examples.
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Experiments: Multiclass r-DEP, CCP training

MNIST FashionMNIST

n=5 |97.72+0.01 88.21+0.01
n=101|97.72+0.01 88.07+0.01
n=151| 97.67=0.01 88.11+0.01
n=201| 97.64x0.01 83.12+0.01

Table: Results of Bagging multiclass r-DEP with n RBF kernels.

 Performance similar to MLP-ReLU architectures trained via SGD
« CCP training is more robust

[Dimitriadis & Maragos 2021]
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Dilation-Erosion Layer  Dilation-Erosion Layer

Dense Morphological Network with 2 hidden layers [similar to Mondal et al. 2019]

Focus on Sparsity [Dimitriadis & Maragos 2021] = Apply £, Pruning
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Experiments: Pruning Dense MNN vs MLP-ReLLU

Adaptive Momentum Estimation Stochastic Gradient Descent
p 0 € (6,e) FF-RelLU ] € (6,e) FF-RelLU

100% 97.62 96.17 97.95 098.13 94.86 93.36 96.07 08.16
75% 97.62 96.18 97.93 098.15 94.86 93.36 96.07 08.12

50% 97.62 96.22 97.90 98.17 94.86 93.37 96.07 98.08

E 25% 97.62 96.09 97.87 97.51 94.86 93.40 96.06 98.01
= 10% 97.62 95.78 97.74 93.38 94.86 93.38 96.09 96.67
= 75% 97.62 9542 97.76 90.17 9486 93.38 96.10 05.56
5% 97.62 9451 97.66 83.39 94.86 93.40 96.10 92.96

2.5% 97.62 93.43 97.37 68.93 94.86 93.39 96.09 80.48

1% 97.62 91.17 97.08 44 .22 94.86 93.38 96.08 58.07

100% 86.31 86.82 88.32 88.82 82.06 85.23 86.21 87.79
75% 86.30 86.81 88.30 88.88 82.00 85.23 86.21 87.75

E 50% 86.22 86.80 88.33 88.18 82.05 85.25 86.20 87.19
= 25% 85.95 86.85 88.31 82.15 81.90 85.26 86.28 84.35
S 10% 85.58 86.27 88.05  65.89 81.67 85.27 86.23  73.22
< 7.5% 85.47 86.15 87.99 57.93 81.63 85.27 86.21 63.95
Ly 5% 85.37 85.81 87.76 49.12 81.52 85.24 86.22 47.73
2.5% 8491 8547 87.56 42 .48 81.14 85.26 86.22 38.84

1% 81.14 84.86 86.85 28.13 80.68 | 85.27 86.18 35.46

Table: Accuracy of pruned networks on the MNIST and FashionMNIST datasets.

Models: § — only dilation neurons, € — only erosion, (4, €) — split equally, FF-ReLU — FeedForward NN with RelLU.

shades of red showcase the degree of (severe) deterioration in accuracy green indicates the absence of performance loss 45



Qualitative Perspectives on Sparsity

0 5 10 15 20 25 0 5 10 15 20 25

(6,€) — Adam

0 5 10 15 20 25

(6,e) —SGD FF-ReLU —SGD

Examples of hidden layer activations for various NN models (MNIST dataset) 4



Minimization of Neural Nets via
Tropical Division and Newton
Polytope Approximation

References:
G. Smyrnis, P. Maragos and G. Retsinas, “MaxPolynomial Division With
Application to Neural Network Simplification”, Proc. ICASSP, 2020.
G. Smyrnis and P. Maragos, “Multiclass Neural Network Minimization Via
Tropical Newton Polytope Approximation”, Proc. ICML 2020.
P. Misiakos, G. Smyrnis, G. Retsinas and P. Maragos, “Neural Network

Approximation based on Hausdorff distance of Tropical Zonotopes”, Proc.
ICLR 2022. 47



Tropical Polynomials

Tropical Semiring (Ruax,V,+)

Rpax = RU {—00}
a Vb= max(a,b)

a+b=a+b

Tropical Polynomials

| — Real coefficients
f(z) = max;cm{a = + b;}
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Newton Polytopes

Newton Polytopes

Newt (f) = conv{a; : i € [n]}
ENewt (f) = conv{(a;, b;) : i € [n]}

Polytope computation

ENewt (f V g) = conv{ENewt (f) U ENewt (¢)}
ENewt (f 4+ g) = ENewt (f) ® ENewt (g)
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Example: Polytope Computation

f(z,y) = max(2z +y + 1,0)

g(x.y) = max(x,y, 1)

(27111) (D>071)

/ \(0,1,0)
(1,0,0)

(0,0,0)

ENewt (f) ENewt (g)

fVg=max(2z+y+1,0,2,9y,1)

f+g=max(x,y,1,3x+y+ 1,20 +2y+ 1,22+ y + 2)
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General idea for Geometric NN Minimization

‘ 3
S o
LB =
5 2 | & “ ]
: 3
- 1 | 1n s
0 0 -
3 =
S 4 5. 4
2 (8—)—2
= 3
®
® 0 4 ® 0 1
5 0 2 3 0 2
L Tropical Degree ! e

Original Network Polytope Approximate Network Polytope
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Maxpolynomial Division

Problem: Assume we have two maxpolynomials p(x), d(x)
(dividend and divisor). We want to find two maxpolynomials
q(x),r(x) (quotient and remainder) such that:

p(x) = max(q(x) + d(x),7(x))

However! The above is not always feasible (non-trivially).

Approximate Division: We relax the requirements, so that
the polynomials we want to find satisfy:

p(x) = max(q(x) + d(x),r(x))

We also require that q(x), r(x) satisfy the above maximally.
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Algorithm for Approximate Maxpolynomial Division

1. Let C be the set of possible

vectors ¢ by which we can h-shift

Newt(d) (each of which

corresponds to a linear term in q).

2. We raise the shifted version of

ENewt(d) as high as possible so

that it still lies below ENewt(p),
and we mark the vertical shift as

qc-
3. We set the quotient equal to:
g(x) = max(q, + c'x)
ceC
and add all terms not covered by

a h-shift c to the remainder r(x).

1.5

1.0 1

Coefficient

0.0 1

—0.5 7

—1.0 1

1 ] 1 1 1

1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Tropical Degree

Figure: Division Method
Division of p(x) = max(3x,2x + 1.5,x + 1,0)
by d(x) = max(x, 0).
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Division Example (1)

1.5 4
1.0
& 0.5- 5
i O
o 0.0 X Q
@) Q
—0.5 - —0.5 A
—— p(x) —+- aq(x)
—1.0 + = d(x) -1.0 4 === g{x)+d(x)
0 1 2 3 0 1 2 3
Tropical Degree Tropical Degree

Figure: Division of p(x) = max(3x,2x + 1.5,x+1,0) by d(x) = max(x,0).

Note: The Newton Polytope of the divisor is raised as much as possible, but it cannot
match the polytope of the dividend exactly. Thus, only 3 out of the 4 vertices are
perfectly matched.
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Division Example (2)

1.5 A
1.0 H
T 0.5 ko
© O
g 0.0 @
QO @)
_05 .
— p(x)
—1.0 4 —=¢ d(x)
0 1 2 3 0 1 2 3

Tropical Degree Tropical Degree

Figure: Division of p(x) = max(3x,2x + 1.5,x+1,0) by d(x) = max(x + 1,0).

Note: In this case, the polytope of the divisor can match that of the dividend
perfectly, so all vertices are covered.
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Application to Neural Network Minimization

General idea: Our algorithm seeks to minimize the network by
matching the most important vertices of the Newton Polytopes
of its maxpolynomials.

2-layer 1-output NN:
The NNs considered are the difference of two maxpolynomials.

For each of the two (+,-) maxpolynomials p(x) of the network,
we first find a divisor d(x). This is done by:

Finding the most important vertices of ENewt(p), via the
weights of the network (based on which combination of neurons
IS activated).
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Method for Single Output Neuron

@® Vertices Kept
® Vertices Kept
g |

UBIDYJR0D)

1USID1§20D)

0
225
g, 2l 2
= 1.3 [}
2 1.0 o
2 0.5 i
® (. 5 2.0 4.9
,(:DDOO 0.0 0.5 1.0 j
NS}

Trop'lca\ Degree 1

* Final polytope (right) is precisely under the original (left).

* The process is a “smoothing” of the original polytope.

(From the 8 vertices of the original-yellow polytope we keep only the
4 blue which comprise the vertices of the final-red polytope.)
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Properties of Trop. Div. Approximation Method

BI040
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1
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Tropical Degree 1

(4]
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el

Original Network Polytope

1.
2.

the two networks.
3. Atleast

j=0\Jj

9 |

1UB1214§90D)

1 -

0 A

4

()

&

4

o

T,
O
0.
e
@ 0 4

0 2

® 1
™ Tropica'l Degree

Approximate Network Polytope

Approximate polytope contains only vertices of the original.

The input samples activating the chosen vertices have the same output in

ZdL(n) 0(logn") samples retain their output

(N is # of samples, n and n' the # of neurons in hidden layer before and after
the approximation). Note: this is not a tight bound.
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Extension with Multiple Output Neurons

® Vertex 101 ® Vertex 101
N 4 A 4
o 2
= 3 == .3
Q Q.
s g
1 1
0 0 |
A e
5 3 3 B
B2 E
© 33
Q! o !
%0 1 2 ° %%0 1 2 7
© Tropical Degree 1 £ Tropical Degree 1
Upper hull of polytope, Neuron 1 Upper hull of polytope, Neuron 2

- What we have: Multiple polytopes (one pair for each output
neuron), interconnected (Minkowski sums of same hidden
neurons but with different scaling weights).

- What we want: Simultaneous approximation of all polytopes.
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One-Vs-All Framework

Compress £




Experiments: Trop. Division NN Minimization

Neurons Kept | TropDiv Method,
Avg. Accuracy

Original
15%
50%
25%
10%

5%

Original
75%
50%
25%
10%

98.604
96.560
96.392
95.154
93.748
92.928

88.658
83.556
83.300
82.224
80.430

TropDiv Method,
St. Deviation

0.027
1.245
1.177
2.356
2.572
2.589

0.538
2.885
2.799
2.845
3.267

MNIST
Dataset

Neurons Kept TropDiv Method, TropDiv Method, Fashion-
Avg. Accuracy St. Deviation

MNIST

Dataset

[G. Smyrnis & P. Maragos, “Multiclass Neural Net Minimization, Tropical Newton Polytope Approximation”, ICML 2020]
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Neural Network Tropical Geometry

7 — th hidden layer neuron

fi(x) = max (a'-ira: + b, 0)

Tropical polynomial

J— th output layer neuron

n

vi(x) = chz'fz‘( )
= Z cjil fi(x) — > lejilfil

bﬂ C:,"L>O CJ’L<O

1 hidden layer with ReLU = pj(x) — gj(@)
activations

Tropical rational function
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Neural Network Tropical Geometry

fi(z) = max (a] @ + b;,0) 0/

ENewt (f;) is a linear segment

= > leulfil®) = Y lejlfile

CJ’L>0 Cj’L<0

= pj(x) — gj(@)

P; = ENewt (p;)  Positive and Negative

zonotopes — or polytopes
. = ENewt (¢,
b, Qi ewt (4;) for deeper NNs

cji (@], bi)  Generators of the zonotopes
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Approximate Extended Newton Polytopes

f — ; vertices of the upper envelope of the

extended Newton polytope
: ' |
ENewt(p(::c))

p(x) ~ p(x)

Approximate extended Newton Approximate tropical
polytopes polynomials
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Approximating Tropical Polynomials

Proposition Let p,p € Ryax || and consider
the polytopes P = ENewt (p) , P = ENewt (p).
Then,

max|p(2) — p(@)| < p-H (P, P)

\—> Hausdorff distance
of polytopes
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Neural Network Approximation Theorem

Theorem: Consider two neural networks v, v with
output size m and Pj;, ();, P;, Q); be the positive and
negative extended Newton polytopes of v, ¥
respectively. Then,

ma o) — 5(2)1 < p- (ZH( °)+H(@ja©j))

Approximately equal - Approximately equivalent
zonotopes networks
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K-means on the positive and negative zonotope generators

cz(a'{.bz)
er(af. by)
Ny cs(ag'. bs)

es(al.bs)

cg(ag‘, bg)

er(ad’ by)

{asitien2). jetnm

Single-output network Original zonotopes

&y(ad  by)

[l encad . bg)

: 54(&.,:}",54) = c7(a.g‘.b7)

Approximated Zonotopes

&

)

%
{&@sitic 2,580

Reduced network
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T

T2

Lk

Td

Generalization for multi-output
networks

K-means on the vectors associated
with the neural paths
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Performance Results

Binary Classification Experiments

Percentage of MNIST 3/5 MNIST 4/9
IN{emaang Smyrnis et al., Zonotope Neural Path Smyrnis et al., Zonotope Neural Path
eurons 2020 K-means K-means 2020 K-means K-means

100% (Original)  99.18 + 0.27 99.38 +0.09 99.38 +0.09 99.53 +0.09 99.53 +0.09 99.53 + 0.09
5% 99.12 +£0.37 99.42 +£0.07 99.25 £0.04 98.99 4+ 0.09 99.52 +0.09 99.48 +0.15
1% 99.11 +0.36 99.39 +£0.05 99.32 £0.03 99.01 +0.09 99.46 +0.05 99.35 +0.17
0.5% 99.18 4+ 0.36 99.41 +£0.05 99.22 £0.11 98.81 4+ 0.09 99.35 +0.24 98.84 +1.18
0.3% 99.18 4+ 0.36 99.25 +£0.37 99.19 £0.41 98.81 +0.09 98.22 +1.38 98.22 +1.33

Multiclass Classification Experiments

Percentage of

MNIST

Fashion-MNIST

Remaining Smyrnis and Maragos, Neural Path Smyrnis and Maragos, Neural Path
Neurons 2020 K-means 2020 K-means

100% (Original)  98.60 + 0.03 98.61 £0.11 88.66 £ 0.54 89.52 £0.19
50% 96.39 £ 1.18 98.13 £0.28 83.30 £ 2.80 88.22 £0.32
25% 95.15 £ 2.36 98.42 4+ 0.42 82.22 +£2.85 86.67 +1.12
10% 93.48 £ 2.57 96.89 £ 0.55 80.43 £ 3.27 86.04 £0.94
5% 92.93 £ 2.59 96.31 +£1.29 — 83.68 £ 1.06

[ P. Misiakos, G. Smyrnis, G. Retsinas and P. Maragos, “Neural Network Approximation based on Hausdorff distance of
Tropical Zonotopes”, Proc. ICLR 2022 |
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Comparison with ThiNet and Baselines

MNIST

Accuracy (%)
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CIFAR-VGG

AlexNet

Comparison with baselines

CIFARI10

Accuracy (%)
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Tropical Regression and
Piecewise-Linear Surface Fitting

References:

P. Maragos and E. Theodosis, “Multivariate Tropical Regression and
Piecewise-Linear Surface Fitting”, Proc. I[CASSP, 2020.

P. Maragos, V. Charisopoulos and E. Theodosis, “Tropical Geometry and
Machine Learning”, Proceedings of the IEEE, 2021.
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Optimal Regression for Fitting Euclidean vs Tropical Lines

Problem: Fit a curve to data (x,,y,), i=1,...m

Euclidean:
Fit a straight line y = ax + b by minimizing /,-norm of error:

2= () () =L

b

Z(xi)z_(zxi)z/m e

Tropical:
Fit a tropical line y = max(a + x,b) by minimizing some ¢ -norm of error:

Greatest Subsolution: a=MIN y, —x, , 5=MIN y.

Target Data

8 o °f >
o /,../"

— Tropical
—— Euclidean

6 8 10
Input Data

~—

'

o
e
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Solve Max-plus Equations

e Problems: .
(1) Exact problem: Solve d4(x) = ABHx=b, AcR"" beR"

(2) Approximate Constrained: Min [[AHx —bl[,=1 ~ s.t. AHx<b

e Theorem: (a) The greatest (sub)solution of (1) and unique solution of (2) is

Xx=ca(b)=A*HDb /\b a;j], A* & —AT

and yvields the Greatest Lower Estimate (GLE) of data b:
04(ca(b)) = AH(A"H b)<b
(b) Min Max Absolute Error (MMAE) unconstrained unique solution:

X=X+4+pu p=|[AHX—Db|/2

e Geometry: Operators 0, € are vector dilation and erosion, and
the GLE b — 0¢(b) is an opening (lattice projection).

e Complexity: O(mn) Sparse solutions: [Tsiamis & Maragos 2019],
[Tsilivis et al. 2021]




Optimally Fitting Tropical Lines to Data

Problem: Fit a tropical line y = max(a + x,b) to noisy data (x,, f,), i=1,...,m,

.....

Greatest Subsolution (GLE): w=(4,b), = MIN f, —x, , b= MIN f

Min Max Abs. Error (MMAE) Solution: w=w+ u, u=||GLE error||_ /2

-z 0] f1
; . a | :
)]
T U N—— f m

_ > i B L |
f
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Numerical Examples of Optimally Fitting Tropical Lines to Data

Problem: Fit a tropical line y = max(a + x,b) to noisy data (x,, f,), i=1,...,m =200,

where f, = y,+error by minimizing ¢/, _ of error:

Greatest Subsolution (GLE): w=(4,b), = MIN 7 —x, , b=MIN £,
Min Max Abs. Error (MMAE) Solution: w=w+ u, u=||GLE error||_ /2

Max-plus Tropical Line Fitting Max-plus Tropical Line Fitting

8| Ground Truth:
y = max(x-2,3)

Target Data
Target Data

! — Tropic GLE 9 T — Tropic GLE

2| o
P g —— Tropic MMAE —— Tropic MMAE
— Euclid LSE — Fuclid LSE
b 0 2 4 6 8 10 12 v 0 2 4 6 3 10 12
Input Data Input Data
(a) T-line with Gaussian Noise (b) T-line with Uniform Noise
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Optimal Fitting Max-Plus Tropical Planes to Data

Problem: Fit a tropical plane z = max(a + x,b+ y,c) to noisy data (x,, y,, f,),

Greatest Subsolution (GLE): w= (&,Z;, C)
Min Max Abs. Error (MMAE) Solution: w=w+ 1, u=|| GLE error||_ /2

ry y1 0 | a | fi i@ | _/\Z-fi_xi_
A = |=|b|=| Nfi—v
Im  Ym 0 [ & fm |, i L /\2 f z 1
L o % , L i ; . o .
X w f W X*|@'f

GLE ——  MMAE —

Ground Truth:
Zz=max(x+5,y+7,9)
Noise: N(0,1) N

5 10 5 10



Optimal Fitting 2D Higher-degree Tropical Polynomials to Data

Data (noisy paraboloid): T
3D tuples (x,,y,, f,) e R’ '

fi= xi2 +yi2 &,
(x,, ) ~ Unif[L,1]
g ~ .7\/(0,0.252)

Model:
Fit K-rank 2D trop. polynomial

r

p(x.y) =MAX{aq,x+b,y+c} (a) 2D conic (K=11) (b) K=10
by minimizing error || f; — p(x,,y.) 1., D

Estimation algorithm:

K —means on data gradients - ¢, , b,

solve max-plus eqns — ¢,

Complexity: ~ Linear
O(#data, #dimensions)
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Conclusions

Tropical Geometry, and its underlying max-plus algebra,
provide many effective and insightful tools for the analysis of
NNs with PWL activations and other ML systems.

Morphological NNs (with max-plus & min-plus nodes): show
similar performance and superior compression ability compared
to their linear counterparts. (Trained via CCP or SGD/Adam.)

Tropical Regression: Tropical Polynomials for multidimensional
data fitting using PWL functions. Low-complexity algorithm
based on optimal solutions of systems of max-plus equations.

Approximation of NNs: Tropical geometry offers effective and
Insightful tools for compression of NNs.

Future work: extensions to deeper networks and to more general
functions using max-* algebra on weighted lattices.
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