
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2019 1

Fusing Body Posture with Facial Expressions for
Joint Recognition of Affect in Child-Robot

Interaction
Panagiotis P. Filntisis1,3, Niki Efthymiou1,3, Petros Koutras1,3, Gerasimos Potamianos2,3 and Petros Maragos1,3

Abstract—In this paper we address the problem of multi-cue
affect recognition in challenging scenarios such as child-robot
interaction. Towards this goal we propose a method for automatic
recognition of affect that leverages body expressions alongside
facial ones, as opposed to traditional methods that typically
focus only on the latter. Our deep-learning based method uses
hierarchical multi-label annotations and multi-stage losses, can be
trained both jointly and separately, and offers us computational
models for both individual modalities, as well as for the whole
body emotion. We evaluate our method on a challenging child-
robot interaction database of emotional expressions collected by
us, as well as on the GEMEP public database of acted emotions by
adults, and show that the proposed method achieves significantly
better results than facial-only expression baselines.

Index Terms—Gesture, Posture and Facial Expressions; Com-
puter Vision for Other Robotic Applications; Social Human-
Robot Interaction; Deep Learning in Robotics and Automation

I. INTRODUCTION

SOCIAL robotics is a fairly new area in robotics that has
been enjoying a swift rise in its applications, some of

which include robot assisted therapy in adults and children [1],
activities of daily living [2], and education [3]. A critical
capability of social robots is empathy: the capacity to correctly
interpret the social cues of humans that are manifestations of
their affective state. Empathic agents are able to change their
behavior and actions according to the perceived affective states
and as a result establish rapport, trust, and healthy long-term
interactions [4]. Especially in the field of education, empathic
robot behaviors that are congruent with the child’s feelings
increase trust and have a positive impact to the child-robot
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Fig. 1: Hierarchical multi-labels for affect recognition via body
and face cues, where y denotes the whole body emotion label,
y f the facial expression label, and yb the body expression one.

relationship, whereas incongruent behavior has a significantly
negative effect [5].

An important factor in many social robot applications, and
especially in child-robot interaction (CRI) [6], is the fact
that the flow of interaction is unpredictable and constantly
fluctuating [7]. Although interaction with adults can usually be
restricted and controlled, the spontaneous nature of children
fails to meet this criterion and becomes a true challenge. A
direct implication is the fact that robots can no longer rely
only on facial expressions to recognize emotion, which is the
main visual cue employed in automatic affect recognition [8],
but also have to take into account body expressions that can
stay visible and detectable even when the face is unobservable.

Research in bodily expression of emotion suggests that
emotion is equally conveyed through bodily expressions and
actions in most cases [8], [9], while both the static body
posture as well as the dynamics [10], [11] contribute in its
perception. Furthermore, there are emotions such as pride
[12] that are more discernible through body rather than face
observation. An also consistent finding in multiple studies
is the fact that considering both body and face concurrently
increases emotion recognition rates [13]. Aviezer et al. also
point out in [14] that the body can be a deciding factor in
determining intense positive or negative emotions. However,
to date, most research has focused on automatic visual recog-
nition of emotion from facial expressions [15], [16], with only
few including emotional body expressions into the recognition
loop [8].

Motivated by the above, in this paper, we propose an end-
to-end system of automatic emotion recognition for CRI that
hierarchically fuses body and facial features. We show that
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by using only a skeleton structure which describes the human
pose obtained by leveraging the latest advancements in human
pose recognition [17], we can satisfactorily assess the human
emotion and increase the performance of automatic affect
recognition in CRI scenarios. In summary, our contributions
are as follows:
• We propose a method based on Deep Neural Networks

(DNNs) that fuses body posture skeleton information with
facial expressions for automatic recognition of emotion.
The networks can be trained both separately and jointly,
and result in significant performance boosts when com-
pared to facial-only expression baselines.

• We use hierarchical multi-label annotations (Figure 1),
that describe not only the emotion of the person as a
whole, but also the separate body and facial expressions.
These annotations allow us to train, either jointly or
separately, our hierarchical multi-label method, providing
us with computational models for the different modalities
of expressions as well as their fusion.

• We develop and analyze a database containing acted and
spontaneous affective expressions of children participat-
ing in a CRI scenario, and we discuss the challenges
of building an automatic emotion recognition system for
children. The database contains emotional expressions
both in face and posture, allowing us to observe and
automatically recognize patterns of bodily emotional ex-
pressions across children in various ages.

The remainder of the paper is organized as follows: Section
II presents previous works in emotion recognition based on
facial and body expressions, as well as related research on ap-
plications of emotion recognition in CRI scenarios. In Section
III we present our method for automatic recognition of affect
by fusing body posture and facial expressions with hierarchi-
cal multi-label training. Section IV describes the BabyRobot
Emotion Database that has been collected for evaluating our
approach. Then, Section V includes our experimental results,
and Section VI our conclusive remarks and future directions.

II. RELATED WORK

The overwhelming majority of previous works in emotion
recognition from visual cues have focused on using only
facial information [8]. Recent surveys however [18], [19], [20]
highlight the need for taking into account bodily expression
as additional input to automatic emotion recognition systems,
as well as the lack of large-scale databases for this task.

Gunes and Piccardi [21] focused on combining handcrafted
facial and body features for recognizing 12 different affective
states in a subset of the FABO database [22] that contains
upper body affective recordings of 23 subjects. Barros et
al. [23] used Sobel filters combined with convolutional layers
on the same database, while Sun et al. [24] employed a hier-
archical combination of bidirectional long short-term memory
(LSTM) and convolutional layers for body-face fusion using
support vector machines. Piana et al. [25] built an automatic
emotion recognition system that exploits 3D human pose and
movements and explored different higher level features in the
context of serious games for autistic children.

Bänziger et al. [26] introduced the GEMEP (GEneva Mul-
timodal Emotion Portrayal) corpus, the core set of which in-
cludes 10 actors performing 12 emotional expressions. In [27],
Dael et al. proposed a body action and posture coding system
similar to the facial action coding system [28], which is
used for coding human facial expressions, and subsequently
utilized it in [29] for classifying and analyzing body emotional
expressions found in the GEMEP corpus.

In [30], Castellano et al. recorded a database of 10 partic-
ipants performing 8 emotions, using the same framework as
the GEMEP dataset. Afterwards, they fused audio, facial, and
body movement features using different Bayesian classifiers
for automatically recognizing the depicted emotions. In [31],
a two-branch face-body late fusion scheme is presented by
combining handcrafted features from 3D body joints and
action units detection using facial landmarks.

Regarding the application of affect recognition in CRI,
the necessity of empathy as a primary capability of social
robots for the establishment of positive long-term human-robot
interaction has been the research focus of several studies [4],
[5]. In [32], Castellano et al. presented a system that learned
to perceive affective expressions of children playing chess with
an iCat robot and modify the behavior of the robot resulting
in a more engaging and friendly interaction. An adaptive robot
behavior based on the perceived emotional responses was also
developed for a NAO robot in [33]. In [34], 3D human pose
was used for estimating the affective state of the child in
the continuous arousal and valence dimensions, during the
interaction of autistic children with a robot.

Compared to the existing literature, our work introduces
hierarchical multi-labels, by taking into account the medium
through which a person expresses its emotion (face and/or
body). These labels are used in a novel neural network
architecture that utilizes multi-stage losses, offering tighter
supervision during training, as well as different sub-networks,
each specialized in a different modality. Our method is end-
to-end, uses only RGB information, and is built with the
most recent ML architectures. The efficiency of the proposed
framework is validated by performing extensive experimental
results on two different databases, one of which includes
emotions acted by children and was collected by us during
the EU project BabyRobot1.

III. WHOLE BODY EMOTION RECOGNITION

In this section we first present an analysis of bodily expres-
sion of emotion. Then, we detail our method for automatic
recognition of affect.

A. Bodily expression of emotion

While the face is the primary medium through which
humans express their emotions (i.e., an affect display [35]),
in real life scenarios it is more often that we find ourselves
decoding the emotions of our interlocutor or people in our
surroundings by observing their body language, especially
in cases where either the face of the subject in question is

1More info: http://babyrobot.eu/

http://babyrobot.eu/
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Fig. 2: Hierarchical multi-label training for recognition of affect from multiple visual cues in CRI.

occluded, hidden, or far in the distance. In general, the body
language can act both as a supportive modality, in which case
it enforces the confidence on an already recognized emotion
from the face or provides crucial missing information (e.g., in
cases where the face cannot reliably identify the emotion due
to its intensity [14]), as well as a primary modality, in which
case it is the only source of information from which we can
deduce the emotion.

A problem that arises when dealing with spontaneous (i.e.,
not acted) or in-the-wild data is the fact that different individu-
als express themselves through different modalities, depending
on which cue they prefer using (body, face, voice) [36].
This fact is cumbersome for supervised learning algorithms,
e.g., in samples where an emotion label corresponds to the
facial expression only and not the body, which means that
the subject in question preferred to use only the face while
the body remained neutral. In such data, one way to alleviate
this issue is to include hierarchical labels, which first denote
the ground truth labels of the different modalities. Examples
of hierarchical multi-labels are shown in Figure 1, where y
denotes the emotion the human is expressing (which we call
the “whole” body label), y f the emotion that is conveyed
through the face (i.e., y f = y if the subject uses the face,
else y f = “neutral”), and yb the emotion that is conveyed
through the body (i.e., yb = y if the subject uses the body,
else yb = “neutral”).

B. Method

Based on the aforementioned analysis, Figure 2 presents our
DNN architecture for automatic multi-cue affect recognition
using hierarchical multi-label training (HMT). We assume that
we have both the whole body label y, as well as the hierarchical
labels y f for the face and yb for the body. The network initially
consists of two different branches, with one branch focusing on
facial expressions, and one branch focusing on body posture.
The two branches are then combined at a later stage to form
the whole body expression recognition branch that takes into
account both sources of information. This design allows setting
up different losses on different stages of the network based
on the hierarchical labels, offering stricter supervision during
training. The output of the network is the recognized emotional
state of the person detected in the input video.

a) Facial Expression Recognition Branch: The facial
expression recognition branch of the network is responsible
for recognizing emotions by decoding facial expressions. If
we consider a frame of a video sequence Ii|i=1,..,N , at each

frame we first apply a head detection and alignment algorithm
in order to obtain the cropped face image (see Section V-A).
This is subsequently fed into a Residual Network [37] CNN
architecture to get a 2048-long feature vector description of
each frame H f

i |i=1,..,N . Then, we apply temporal max pooling
over the video frames to obtain the representation of the facial
frame sequence:

H f = max
i

H f
i |i=1,...,N (1)

By assuming that the feature map obtains its maximum values
in frames where the facial expression is at peak intensity,
max pooling selects only the information regarding the facial
expressions at their peak over the frame sequence. Then, we
apply a fully connected (FC) layer on H f to obtain the facial
emotion scores, s f .

We can calculate the loss obtained through this branch as
the cross entropy L f (y f , s̃ f ) between the face labels y f and
the probabilities of the face scores s̃ f obtained via a softmax
function:

L f (y f , s̃ f ) =−
C

∑
c=1

y f
c log s̃ f

c (2)

with C denoting the number of emotion classes.
b) Body Expression Recognition Branch: In the second

branch, for each frame of the input video Ii|i=1,..,N , we apply
a 2D pose detection method in order to get the skeleton Ji ∈
RK×2, where K is the number of joints in the detected skeleton
(see Section V-A). The 2D pose is then flattened and input as a
vector into a DNN in order to get a representation Hb

i |i=1,..,N .
We then apply global temporal average pooling (GTAP) over
the entire input sequence:

Hb =
1
N

N

∑
i=1

Hb
i (3)

In contrast to the face branch, we use temporal average pooling
for the body branch in order to capture the general pattern of
the features during the temporal sequence and not completely
discard temporal information. The scores for the body emotion
sb are obtained by passing the pose representation of the
video Hb over an FC layer. The loss in this branch is the
cross entropy loss (Eq. 2) between the body labels yb and the
probabilities s̃b, L b(yb, s̃b).

c) Whole Body Expression Recognition Branch: In order
to obtain whole body emotion recognition scores sw, we
concatenate H f and Hb and feed them through another FC.
We then use the whole body emotion labels y to obtain the
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Fig. 3: The experimental setup of the BRED Database and
snapshots showing children playing the “Express the feeling”
game.

whole body cross entropy loss between the whole body labels
y and the probabilities s̃w, L w(y, s̃w).

d) Fusion: Finally, we employ a fusion scheme as fol-
lows: we concatenate the scores s f , sb, and sw and use a final
FC in order to obtain the fused scores sd . This way we get
a final loss L d(y, s̃d) which is the cross entropy between the
whole body labels y and s̃d .

During training, the loss that is backpropagated through the
network is:

L = L f (y f , s̃ f )+L b(yb, s̃b)+L w(y, s̃w)+L d(y, s̃d) (4)

The network final prediction of the human affect in the video
is obtained by the fusion score vector sd .

IV. THE BABYROBOT EMOTION DATABASE

In order to evaluate our method, we have collected a
database which includes multimodal recordings of children
interacting with two different robots (Zeno [38], Furhat [39]),
in a laboratory setting that has been decorated in order to
resemble a child’s room (Figure 3).

We call this dataset the BabyRobot Emotion Database
(BRED). BRED includes two different kinds of recordings:
Pre-Game Recordings during which children were asked by a
human to express one of six emotions, and Game Recordings
during which children were playing a game called “Express
the feeling” with the Zeno and Furhat robots. The game
was touchscreen-based, and throughout its duration children
selected face-down cards, each of which represented a different
emotion. After seeing the cards, the children were asked to
express the emotion, and then one of the robots followed up
with a facial gesture that expressed the emotion as well. A
total of 30 children of ages between 6 to 12 took part in both
recordings. It is important to note that we did not give any
guidelines or any information to the children on how to express
their emotions. The experimental procedure was approved by
an Independent Ethics Committee from the Athena Research
and Innovation Center in Athens, Greece.

The emotions included in the database are: Anger, Happi-
ness, Fear, Sadness, Disgust, and Surprise, the 6 basic emo-
tions included in Ekman and Freisen’s initial studies [40]. This
categorical representation of emotion is the most commonly
used in research studies of automatic emotion recognition [41],
and is typically adopted across different databases of emotional
depictions [42]. When compared to dimensional approaches

Emotion % using facial exp. % using body exp.
Happiness 100% 20%
Sadness 86% 49%
Surprise 100% 43%
Fear 42% 98%
Disgust 98% 42%
Anger 85% 70%

TABLE I: Hierarchical multi-label annotations of the Baby-
Robot Emotion Dataset (BRED) depicting usage of body and
facial expressions for each emotion.

(e.g., valence/arousal space), the categorical emotional ap-
proach is less flexible in expressing more complex emotions,
however it is easier to annotate [43].

a) Hierarchical Database Annotations: In total, the ini-
tial recordings included 180 samples of emotional expressions
from the “Pre-Game” session and 180 samples from the
“Game” session (30 children × 6 emotions for both sessions).
The annotation procedure included three different phases. In
the first phase, 6 different annotators filtered out recordings
where the children did not perform any emotion (due to
shyness, lack of attention, or other reasons), and identified the
temporal segments during which the expression of emotions
takes place (starting with the onset of the emotion and ending
just before the offset). In the second phase, 2 annotators
validated the annotations of the previous phase. Finally in the
third phase, three different annotators annotated the videos
hierarchically, by indicating for each video whether the child
was using the face, body, or both, to express the emotion. The
final hierarchical labels were obtained using majority voting
over the three annotations. Inter-annotator agreement was also
measured using Fleiss’ kappa coefficient [44], with value 0.48
for the face labels and 0.84 for the body labels. The values
show that for the body labels we have an almost perfect
agreement between the annotators, while for the face labels
there are some cases where the annotators disagreed due to
really slight facial expressions.

In total, the database features 215 valid emotion sequences,
with an average length of 72 frames at 30FPS. The smaller
number of valid sequences extracted from the 360 initial
recordings shows that, when collecting data from children,
attention should be paid in data validation and cleaning.
Table I contains more insights regarding the database and
its annotations. For each different emotion, we show the
percentage of samples where the child used its face/body
to depict emotion, against the number of total samples. We
observe that almost all children used their body to express fear
(98%), while less than half used their face. Another emotion
where a large percentage of children utilized the body is anger
(70%). To indicate happiness, surprise, and disgust, almost
all children used facial expressions (100%,100%, and 98%,
respectively). Table II also contains some of the annotators
observations regarding the bodily expression of emotion in
BRED, as well as examples from the database. All images
include facial landmarks (although we do not use them in any
way in our method) in order to protect privacy.

The newly collected BRED dataset is very challenging
as it features many intra-class variations, multiple poses,
and in many cases similar body expressions for different
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happiness sadness surprise fear disgust anger
mainly facial, rare

jumping and/or open
raised hands, body
erect, upright head

crying (hands in front
on face), motionless,
head looking down,

contracted chest

expanded chest, hand
movement without

specific patterns, either
positive or negative

quick eye gaze, weak
facial expressions,

arms crossed in front
of body, head sink

mainly facial (tongue
out), movement away

from/hands against
robot

clenched fists, arms
crossed, squared

shoulders

TABLE II: Patterns of bodily expression of emotion in the BRED corpus and example images.

classes. These include the similar pattern of hand cross-
ing in anger and fear, and lowering of the head pose
in fear and sadness. The BRED dataset is available at
https://zenodo.org/record/3233060.

V. EXPERIMENTS

In this section we present our experimental procedure and
results. We first perform an exploratory analysis of the differ-
ent branches and pathways of the HMT architecture of Figure
2 on the GEMEP (GEneva Multimodal Emotion Portrayals)
database [26]. As far as we are aware, this is the only publicly
available video database that includes annotated whole body
expressions of emotions. We believe that databases of upper
body depictions, such as FABO [22] where the subjects are
sitting, restrict body posture expression and force the subjects
to focus mostly on using their hands. Our main evaluation is
then conducted on BRED where we experiment with variations
of the HMT network.

A. Network Setup and Initialization

In order to avoid overfitting due to the small number of
sequences in both GEMEP and BRED, and especially in the
facial branch which includes a large number of parameters,
we pretrain the branch on the AffectNet Database [45]. The
AffectNet Database contains more than 1 million images of
faces collected from the internet and annotated with one of the
following labels: Neutral, Happiness, Anger, Sadness, Disgust,
Contempt, Fear, Surprise, None, Uncertain, and Non-face. The
manually annotated images amount to 440k with about 295k
falling into one of the emotion categories (neutral plus 7
emotions). The database also includes a validation set of 500
images for each class, while the test set is not yet released.

To prepare the facial branch for the subsequent feature
extraction for our task, we start with a Resnet-50 CNN which
has been trained using the ImageNet Database2. Next, in order
to learn features that are pertinent to our task, we train again
the network, this time on AffectNet by replacing the final FC
layer of the network with a new FC layer with 8 output classes
(the 7 emotions of AffectNet plus neutral). The network was

2These weights are provided by the PyTorch Framework. More information
can be found in https://pytorch.org/docs/stable/torchvision/models.html.

Video
Method ACC
Body br. (TCN) 0.31
Body br. (LSTM) 0.28
Body br. (GTAP) 0.34
Face br. 0.43
Whole Body br. 0.51
Human Baseline 0.47 [26]

Frame
Method ACC
Body br. 0.23
Face br. 0.21
Whole Body br. 0.33

TABLE III: Accuracy results for the body, face, and whole
body branch on the GEMEP database (12 classes).

trained for 20 epochs using a batch size of 128 and the Adam
optimizer [46], achieving the best accuracy on the AffectNet
validation set at the 13th epoch (52.2%). As opposed to the
facial branch, the body branch was not pretrained and its
weights were initialized as in [47].

For detecting, cropping, and aligning the face for each
frame, we use the OpenFace 2 toolkit [48]. We then use our
pretrained facial branch to extract a 2048-dimensional feature
vector which is used during training. This means that during
training the parameters of the feature extraction layers of the
facial branch remain fixed. Similarly, we extract the 2D pose
of the subjects in each database (GEMEP and BRED) using
OpenPose [17] along with the 2D hand keypoints [49]. In order
to filter out badly detected keypoints, we set all keypoints
with a confidence score lower than 0.1 as 0 for BRED and
lower than 0.3 for the GEMEP database. These thresholds
result in a percentage of approximately 70% valid joints in
each database. The total size of the input vector for the body
expression recognition branch is 134: 25 2D keypoints of the
skeleton and 21 2D keypoints for each hand.

B. Exploratory Results on the GEMEP Database

The GEMEP database includes videos of 10 adult actors
performing 17 different emotions: Admiration, Amusement,
Anger, Anxiety, Contempt, Despair, Disgust, Fear, Interest,
Irritation, Joy, Pleasure, Pride, Relief, Sadness, Surprise, and
Tenderness. In this work we use the core set of the database
that includes the first 12 of the aforementioned emotions.

We use 10-fold leave-one-subject-out cross-validation and
repeat the process for 10 iterations, averaging the scores in
the end. For all different evaluation setups, we train for 200
epochs, reducing the learning rate by a factor of 10 at 150
epochs. We report Top-1 accuracy for several experimental

https://zenodo.org/record/3233060
https://pytorch.org/docs/stable/torchvision/models.html
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Label y (6 classes) y f (7 classes) yb (7 classes)
F1 ACC F1 ACC F1 ACC

SE
P Body br. 0.30 (0.29) 0.35 (0.33) - - 0.34 (0.48) 0.37 (0.46)

Face br. 0.60 (0.62) 0.65 (0.65) 0.54(0.61) 0.59 (0.63) - -
Sum Fusion 0.62 (0.64) 0.65 (0.66) - - - -
Joint-1L 0.66 (0.67) 0.67 (0.67) - - - -

H
M

T-
3a Body br. 0.30 (0.30) 0.34 (0.33) - - 0.32 (0.44) 0.36 (0.44)

Face br. 0.58 (0.61) 0.65 (0.66) 0.53 (0.59) 0.60 (0.64) - -
Fusion 0.67 (0.69) 0.69 (0.70) - - - -

H
M

T-
3b Body br. 0.29 (0.29) 0.33 (0.32) - - 0.35 (0.47) 0.38(0.46)

Face br. 0.57 (0.60) 0.64 (0.66) 0.54 (0.59) 0.60 (0.65) - -
Whole body br. 0.65 (0.67) 0.68 (0.69) - - - -

H
M

T-
4 Body br. 0.30 (0.30) 0.34 (0.32) - - 0.32 (0.44) 0.36(0.44)

Face br. 0.57 (0.60) 0.64 (0.66) 0.53 (0.59) 0.59 (0.64) - -
Fusion 0.70 (0.71) 0.72 (0.72) - - - -

TABLE IV: Detailed results on the BRED database for various configurations of the HMT network. Numbers outside parentheses
report balanced scores and inside parentheses unbalanced scores. The highest achieved scores when evaluating against whole
body labels are shown in bold.

setups in Table III. For the body expression recognition branch
we compare three different implementations: a) the implemen-
tation with global temporal average pooling (GTAP) using a
hidden FC layer of 256 neurons with ReLU activation, b) a
temporal convolutional network (TCN) [50] with 8 temporal
convolutional residual blocks, 128 channels and kernel size
2, and c) a bidirectional long short-term memory network
(LSTM) [51] with 100 hidden units and two layers preceded
by an FC layer of 128 neurons with activation. For both TCN
and LSTM we average the outputs over all time steps. In
the first part of the table we observe that GTAP (shown in
bold) achieves the highest accuracy (0.34) although it’s a much
simpler method. We believe that due to the small amount of
data the methods focus only on certain representative postures
that occur during the expression of emotions and ignore
sequential information. As a result, the LSTM and TCN cannot
outperform the DNN combined with GTAP, and would require
a larger database in order to accurately capture temporal
information. The face branch achieves a higher accuracy score
(0.43) than the body branch (0.34), which is an expected result.
Our main observation is the fact that the whole body emotion
recognition branch (with the GTAP implementation) (shown in
bold) achieves a significant improvement over the face branch
baseline (an absolute 8% improvement, from 43% to 51%).

In Table III we also include experiments at the frame level,
where we take only the middle frame of each video sequence
and skip the temporal pooling structures in each branch. We
observe that again the whole body emotion recognition branch
(in bold) yields a large performance boost over the facial
branch (from 21% to 33%), as well as the significance of
applying temporal pooling over all video frames.

Emotion specific details can be seen in the confusion
matrices of Figure 4. We show the confusion matrices for the
separately trained body, face, and whole body branches. We
can see that in cases such as pride, the body branch is much
more efficient in recognizing the emotion, as opposed to the
face branch, a result which is also in line with [12]. In other
emotions such as joy and anger, combination of face and body
posture results in a higher accuracy. There are also emotions
for which the body branch fails to learn any patterns such as
anxiety or pleasure. In these cases, the whole body branch

Body Branch Face Branch Whole Body Branch

Predicted Label

Tr
ue

 L
ab

el

Fig. 4: Confusion matrices for the face, body and whole body
branches of HMT in the GEMEP corpus.

achieves a lower accuracy than the face branch.

C. Results on the BabyRobot Emotion Database

For BRED we follow the exact same procedure as with
the GEMEP database: training for 200 epochs, reducing the
learning rate by a factor of 10 at 150 epochs, and 10-fold cross
validation for 10 iterations. For the 10-fold cross validation,
we ensure that each subject (30 in total) does not appear in
both the training and test set of the same split. Because the
database is highly unbalanced, especially for the body labels,
we report results in balanced and unbalanced F1-score and
accuracy. Due to this imbalance we also use a balanced cross
entropy loss for L b, since the amount of instances labeled as
neutral are much larger than the emotion instances. We also
note that for BRED, the annotations y f and yb include 7 classes
(all emotions plus neutral), while the whole body annotation
y includes 6 classes (all emotions).

We report our results in Table IV. The column labeled with y
reports the metrics on the whole body labels, while columns y f

and yb report results on the hierarchical face and body labels,
respectively. For calculating the metrics of the face and body
branches against y, we ignore the scores of the “neutral” label.
Numbers outside parentheses report balanced scores and inside
parentheses unbalanced scores. The highest achieved scores
when evaluating against whole body labels are shown in bold.

Table IV contains results of 5 different methods: SEP
denotes independent training of the body and face branch
using their corresponding labels. Joint-1L denotes training of
the whole body emotion branch and only using the L w loss.
HMT-3a denotes joint training of the hierarchical multi-label
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Fig. 6: Confusion matrices of the body, face, and fusion
branches of HMT-4, against whole body labels y on the BRED
database.

training network, if we omit the branch of the whole body
emotion recognition, i.e., with the losses L d , L f , and L b.
HMT-3b denotes joint training of the three losses: L b, L f ,
and L w, by omitting the final score fusion. Finally, HMT-
4 denotes the joint training with all four losses of the HMT
network. In the methods that include the fusion branch, we
obtain the final prediction by the scores of the fusion sd . In the
case of HMT-3b, where we omit the final fusion, we obtain the
final whole body label prediction by the whole body branch.

Our initial observation is the fact that the combination of
body posture and facial expression results in a significant
improvement over the facial expression baselines, for all
different methods. Secondly, we see that HMT-4 achieves the
highest scores for all metrics (0.70 balanced F1-score and 0.72
balanced accuracy), across all methods, as far as the whole
body emotion label is concerned, while HMT-3a and HMT-3b
exhibit similar performance (0.67 and 0.65 balanced F1-score,
respectively) that is also comparable to the separate training of
the body and face branches and their combination with post-
process sum-based fusion (0.62).

We remind that y f and yb have one more class than y
(neutral), which is why the scores appear lower for the face
branch in the y f column. This is not the case for the body
branch, due to the fact that yb and y are different by a lot
more labels (99), while y f and y differ in only 37 labels.

In Figure 5 we present several results (both correct and in-
correct recognitions) of our method, while in Figure 6 we also
depict the confusion matrices for the body, face, and fusion
predictions when fared against the whole body labels y. We
observe that generally, due to the fact that children in BRED
relied more on facial expressions than bodily expressions (as
it was observed in Table I), only including the body branch in

a system would result in low performance. We also observe
that the face branch achieves low recognition rates for fear
and anger. However, fusing the two using the HMT network
results in a model that can reliably recognize all emotions.

VI. CONCLUSIONS

In this work we proposed a method for automatic recog-
nition of affect that combines whole body posture and facial
expression cues in the context of CRI. CRI presents a chal-
lenging application that requires leveraging body posture for
emotion recognition and cannot rely only on facial expres-
sions. The proposed method can be trained both end-to-end, as
well as individually, and leverages multiple hierarchical labels
providing computational models that can be used jointly and
individually.

We performed an extensive evaluation of the proposed
method on the BabyRobot Emotion Database that features
whole body emotional expressions of children during a CRI
scenario. Our results show that fusion of body and facial
expression cues can be used to significantly improve the
emotion recognition baselines that are based only on facial
expressions, and that 2D posture can be used with promising
results for emotion recognition. We also show that hierarchical
multi-label training can be exploited for improving system
performance.

We believe our research shows promising results towards
establishing body posture as a necessary direction for emotion
recognition in human-robot interaction scenarios, and high-
lights the need for creating large-scale whole body emotional
expression databases.
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