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TaggedPAbstract

The paper focuses on the design of a practical system pipeline for always-listening, far-field spoken command recognition in every-

day smart indoor environments that consist of multiple rooms equipped with sparsely distributed microphone arrays. Such environ-

ments, for example domestic and multi-room offices, present challenging acoustic scenes to state-of-the-art speech recognizers,

especially under always-listening operation, due to low signal-to-noise ratios, frequent overlaps of target speech, acoustic events, and

background noise, as well as inter-room interference and reverberation. In addition, recognition of target commands often needs to be

accompanied by their spatial localization, at least at the room level, to account for users in different rooms, providing command disam-

biguation and room-localized feedback. To address the above requirements, the use of parallel recognition pipelines is proposed, one

per room of interest. The approach is enabled by a room-dependent speech activity detection module that employs appropriate multi-

channel features to determine speech segments and their room of origin, feeding them to the corresponding room-dependent pipelines

for further processing. These consist of the traditional cascade of far-field spoken command detection and recognition, the former

based on the detection of “activating” key-phrases. Robustness to the challenging environments is pursued by a number of multichan-

nel combination and acoustic modeling techniques, thoroughly investigated in the paper. In particular, channel selection, beamforming,

and decision fusion of single-channel results are considered, with the latter performing best. Additional gains are observed, when the

employed acoustic models are trained on appropriately simulated reverberant and noisy speech data, and are channel-adapted to the

target environments. Further issues investigated concern the inter-dependencies of the various system components, demonstrating the

superiority of joint optimization of the component tunable parameters over their separate or sequential optimization. The proposed

approach is developed for the Greek language, exhibiting promising performance in real recordings in a four-room apartment, as well

as a two-room office. For example, in the latter, a 76.6% command recognition accuracy is achieved on a speaker-independent test,

employing a 180-sentence decoding grammar. This result represents a 46% relative improvement over conventional beamforming.
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1. Introduction

TaggedPSignificant research effort has been devoted over the past decades to the design of Voice-enabled User Interfaces

(VUIs) for natural, hands-free human-computer interaction. Such interfaces have typically been employed in interac-

tive voice response systems at call centers and, more recently, in personal assistant applications on personal com-

puters or smartphones (Schalkwyk et al., 2010). State-of-the-art developments in acoustic modeling for speech

recognition (Hinton et al., 2012; Yu and Deng, 2015) have certainly contributed a lot to making VUIs practically

usable in a variety of everyday environments; however, untethered, far-field, and always-listening operation, robust

to noise, still constitutes a challenge that limits their universal applicability.

TaggedPThis challenge remains prominent in the very active research area of ambient assisted living inside smart homes,

where, among others, VUIs are seen as crucial to the occupants’ safety and well-being (Edwards and Grinter, 2001;

Chan et al., 2008; Vacher et al., 2015). Indeed, domestic environments typically exhibit inter-room interference, fre-

quent overlaps of various acoustic events and background noise with target speech, and moderate-to-high reverbera-

tion, when the acoustic scene is captured by far-field microphones, as is desired in an always-listening, untethered

operation scenario. Similar conditions are present in additional everyday indoors environments, for example multi-

room offices. Not surprisingly, Distant Speech Recognition (DSR) performance under such conditions lags dramati-

cally compared to close-talking, noise-free scenarios (Kumatani et al., 2012).

TaggedPA promising course for improving DSR in indoors environments is to exploit information from multiple audio

channels, if such is available by distributed microphone arrays (Brandstein and Ward, 2001), located inside the smart

space and providing sufficient spatio-temporal sampling of the acoustic scene. Such a solution has been investigated,

for example, in the recent EU-funded project DIRHA.1 The project focused on the design of a VUI for home automa-

tion, supporting distant speech interaction in different languages, targeting, in particular, people with kinetic disabil-

ities. The basic use-case involved command-like voice-control of automated home equipment, for example of the

room lights, temperature settings, door, window and shutter operation, etc. To enable hands-free operation, the VUI

was designed to be always-listening, employing key-phrase based activation. Further, to achieve appropriate disam-

biguation of uttered commands, allow possible interaction with multiple users in different rooms, and provide local-

ized feedback (VUI confirmation using room loudspeakers), room-level localization of the recognized commands

was also performed An example of the DIRHA challenging acoustic scene is depicted in Fig. 1.

TaggedPIn this paper, we describe in detail the design of a robust multichannel distant speech processing pipeline, devel-

oped for the purposes of the aforementioned DIRHA domestic interaction scenario in the Greek language. The
Fig. 1. An example of a multi-room, multi-speaker acoustic scene considered in this paper, captured by a network of distributed microphones

installed in the apartment and depicted as black dots in its floorplan (left). Four of the recorded signals are also shown (right), captured by the cen-

tral microphones of the six-channel ceiling arrays (inside the Kitchen and Livingroom) and of the three-channel wall arrays (in the Bedroom and

Bathroom). The goal in this example scene is to detect and recognize the command uttered by “speaker3” in the Kitchen (speech segment inside

the red box), under the presence of other speech and non-speech events occurring in the various rooms (their time boundaries are annotated on the

waveforms, and their source locations and directions are shown on the floorplan). (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

1 DIRHA: distant-speech interaction for robust home applications (http://dirha.fbk.eu).

http://dirha.fbk.eu
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TaggedPadopted methodology is rather general, being readily applicable to support VUIs in other everyday indoors multi-

room environments equipped with multiple microphone sensors, such as smart offices, for example. The work deals

with a wide range of challenging topics in the area of distant speech processing, where its contributions lie, namely

addressing the following topics:

TaggedP� Always-listening operation, achieved by employing Speech Activity Detection (SAD), key-phrase detection, and
F
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DSR.
TaggedP� R
oom-localized operation, based on a multi-room SAD component used to drive separate, parallel cascades of

key-phrase detection and DSR for each room of the smart space.
TaggedP� M
ultichannel speech processing beyond beamforming, such as channel selection and decision fusion of single-

channel results, considered in all pipeline components.
TaggedP� R
obust acoustic modeling, based on far-field data simulation and per-channel adaptation with little training data

available in the target environment.
TaggedP� P
ipeline component optimization, studying component inter-dependencies and optimizing their tunable parame-

ters separately, sequentially, or jointly.
TaggedP� S
ystem and pipeline component evaluation on both simulated and real corpora in two multi-room, multichannel

smart environments.

TaggedPIn more detail, to support always-listening operation, we build on the widely used cascade of three speech proc-

essing stages, as overviewed in Fig. 2, namely: (a) SAD, to separate speech from non-speech events; (b) key-phrase

detection, to identify a predefined system activation phrase; and (c) DSR, to recognize the issued command. Combi-

nations of some of the above components can be found in a variety of VUIs, providing partial robustness against

non-speech events and increased efficiency, by processing only the speech segments of the incoming signals.

TaggedPFurther, to allow room-localized operation, we modify the aforementioned traditional cascade by designing a

multi-room SAD component, instead of employing a generic, room-independent SAD. Such is able to identify

speech segments in conjunction with their room of origin, robustly addressing the problem of inter-room interfer-

ence. The component is used to drive separate cascades of key-phrase detection and DSR for each room of the smart

space, operating in parallel. The process yields room-localized speech command recognition, as required by the VUI

scenario considered in this paper.

TaggedPTo fulfill the needs of the detection and recognition tasks involved in the system, we elaborate and combine multi-

channel speech processing methods that have been explored in our previous preliminary studies (Giannoulis et al.,

2015; Katsamanis et al., 2014; Tsiami et al., 2014a), achieving promising results and robustness in the challenging

conditions considered. The implemented components make extensive use of channel selection and combination

strategies to benefit from the available network of microphones inside the rooms. The advantage of these approaches
. 2. An overview of the proposed always-listening DSR system for smart environments that consist of R rooms equipped with multiple micro-

nes. The system is parallelized into independent room-specific recognizers that perform command detection and recognition on room-localized

ech segments produced by a multi-room SAD component. Multichannel processing is employed at all stages. The system is intended as input to

eech understanding and dialogue management component, as part of a voice interface (not addressed in this paper).
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TaggedPis that they require no prior information regarding microphone network topology, other than mere room-microphone

association. The proposed channel combination methods are based on decision fusion schemes, and they appear to

outperform beamforming in most cases.

TaggedPWe gain additional benefits by employing robust modeling, in order to reduce mismatch between training and test

conditions. In particular, we generate artificial training data simulating the test conditions, and, furthermore, we

employ statistical model adaptation for each microphone channel, using few data from the target environment, if

available.

TaggedPFurther, we consider optimization of a number of tunable system component parameters, while taking into consid-

eration their inter-dependencies. Specifically, we observe that their joint optimization, rather than separate or

sequential optimization, leads to improved command recognition accuracy.

TaggedPFinally, we conduct extensive experimentation on both simulated and real datasets, where the adopted system

architecture is evaluated systematically. For this purpose, we employ three separate databases: (a) DIRHA-sim, a

corpus of simulated long audio recordings inside a real multi-room apartment (Cristoforetti et al., 2014); (b)

ATHENA-real, a set of real recordings in a two-room office environment (Tsiami et al., 2014b); and (c) DIRHA-

real, a corpus of real recordings captured inside the multi-room apartment also used for the first set. The first two

consist of both development and test subsets, allowing for model adaptation and system optimization, while the third

one is employed for testing the proposed pipeline on real data, unseen during its training. Reported results vary due

to different characteristics and challenges of each dataset, reaching 76.6% in command recognition accuracy on the

ATHENA-real corpus.

TaggedPThe rest of the paper is organized as follows: Section 2 overviews related work in the literature. Section 3 presents

the proposed system, describes its components in detail, and reviews the adopted robust modeling and multichannel

processing methods. Section 4 describes the databases used for the development and evaluation of the system pipe-

line. Section 5 introduces the adopted experimental framework and presents results of both the isolated components

and the integrated system. Details on system optimization, final pipeline evaluation, and an error analysis are also

included. Finally, Section 6 concludes the paper with a brief discussion.

2. Related work

TaggedPSeveral projects and challenges have been launched over the last decade targeting intelligent interfaces for

indoors smart environments and addressing DSR via multiple distributed microphones. Initially, the community

focused on single-room setups for the analysis of lectures and meetings. Research projects like CHIL (Chu et al.,

2006) and AMI (Hain et al., 2008) produced a wide range of results under the framework of the NIST Rich Tran-

scription evaluation campaigns (Fiscus et al., 2008). Although meeting rooms are more controlled environments

with fewer background noises compared to multi-room domestic environments, the largest portion of the corre-

sponding acoustic scenes consisted of conversations between multiple speakers, and thus speech often overlapped.

The focus there has mainly been on large-vocabulary continuous speech recognition in English, based on language

models with dictionaries of approximately 50 k words. A representative recognition result reported by Hain et al.

(2012) on the AMI corpus was 33.2% Word Error Rate (WER) on non-overlapped speech, employing beamforming,

speaker adaptation, and lattice rescoring methods. Further improvements were achieved in more recent works by

Liu et al. (2014) and Renals and Swietojanski (2014), where beamforming was replaced by multichannel processing

based on convolutional neural networks for training acoustic models on supervectors of concatenated single-channel

features.

TaggedPMoving from single-room to multi-room environments with more complex acoustic conditions, a hierarchical

sound analysis system (Sehili et al., 2012) has been developed within the SWEET-HOME project (Vacher et al.,

2011; 2015) for command recognition in French and detection of distressed situations in apartments with elderly or

impaired occupants. Its authors conducted a user evaluation on a small set of real recordings of regular and impaired

speakers inside a four-room apartment with Signal-to-Noise Ratios (SNRs) within 15�25 dB. To recognize every

speech instance, they used task-dependent language models of about 10 k words, combining results from different

rooms, but employing one microphone per room for cost efficiency. In most of the reported WERs (35�120%) there

was a significant amount of insertions, caused by false detection of speech. In more recent work, though, Vacher

et al. (2014b) presented improved recognition results using robust training and environmental adaptation, reducing

command recognition error rate to 13%. This score was obtained after correcting misrecognized words at the syllable
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TaggedPlevel, in order to match words of predefined commands. A similar system for voice command recognition and emer-

gency detection inside smart homes was also proposed in the recent work of Principi et al. (2015), however, its

evaluation was conducted on single-room multichannel data (in both Italian and English). In other work, Morales-

Cordovilla et al. (2014) employed beamforming to recognize room-localized commands of the DIRHA-GRID cor-

pus (Matassoni et al., 2014), consisting of six-word English sequences simulated in a five-room environment with

distributed microphone arrays. Although the acoustic scenes were simpler, without overlapped commands and back-

ground speech, the obtained WER of 39% showcased the degradation caused by factors such as background noise,

interference across rooms, and reverberation.

TaggedPIn the context of robust speech technologies, the REVERB (Kinoshita et al., 2013), CHIME (Vincent et al., 2013),

and ASpIRE (Harper, 2015) Challenges have been recently launched to provide a common evaluation framework

concerning datasets, tasks, and evaluation metrics for a wide range of problems related to DSR in single-room noisy

and reverberant environments with mismatch between training and testing conditions. In general, the approaches

reported in the aforementioned campaigns can be grouped into two categories, namely, (a) robust modeling and (b)

multichannel processing (Delcroix et al., 2015). The former refer to data contamination and environmental adapta-

tion methods. More specifically, in the absence of training data, the mismatch between complex acoustic environ-

ments and generic speech models can be reduced by artificially distorting training data (Matassoni et al., 2002;

Ravanelli et al., 2012), and/or adapting to an available development set (Matassoni et al., 2002; Lecouteux et al.,

2011). On the other hand, methods for channel selection and combination constitute multichannel processing

approaches. Channel selection is based on channel confidence measures, mainly signal-based, such as SNR (W€olfel
et al., 2006), or decoder-based (Wolf and Nadeu, 2014). Channel combination may be realized at the signal-level, e.

g., by beamforming (W€olfel et al., 2006; Lecouteux et al., 2011), or at the decision-level employing techniques such

as ROVER (Chu et al., 2006), SNR-weighted confusion-network based fusion (W€olfel et al., 2006), or the driven

decoding algorithm of Lecouteux et al. (2011).

TaggedPResearch, development and evaluation of the involved multichannel processing modules in the recognition chain

of an always-listening distant VUI depend on the existence of databases, either simulated or recorded in smart envi-

ronments. Due to the complexity of the targeted acoustic scenes, collecting data in a realistic setup is demanding in

terms of design, resources, and data annotation. A possible solution is the production of simulated data by convolv-

ing clean pre-recorded signals with estimated room impulse responses, and then mixing the signals to form sequen-

ces with overlaps and noise (Cristoforetti et al., 2014). Although simulated data are easier to produce for more

controllable acoustic scenes, experimentation on real data is essential in order to evaluate the system in real condi-

tions. Regarding the number of rooms, most of the publicly available databases (Le Roux and Vincent, 2014) have

been acquired in a single-room multi-microphone setup for meeting analysis (Janin et al., 2003; Mostefa et al., 2007;

Carletta et al., 2006), acoustic event detection (Temko et al., 2007) and DSR (Bertin et al., 2016). A limited only

number of corpora have been released for the case of home automation in multi-room setups. For instance, Vacher

et al. (2014a) recorded speech in French by regular and impaired participants performing activities of daily living

while interacting with a VUI through commands in a health smart home with four rooms equipped with two micro-

phones. Another database was acquired in a similar health apartment by Fleury et al. (2013), giving emphasis on the

task of distress situation detection via voice or other related acoustic events.

TaggedPTo our knowledge, concerning the language targeted in this paper, there exist few only works that address Greek

for VUIs in smart environments. For example, Giannakopoulos et al. (2005) report preliminary results on distant

command recognition for the control of home appliances using a similar pipeline to the one described in this work.

The authors mainly focus on implementation issues of source localization and beamforming techniques in order to

locate and enhance speech in a reverberant room, where the user walks and utters commands while engaged in con-

versation with other speakers in the same room. Although the task is challenging due to user motion and speech over-

lap, the reported task completion rates are above 80%. However, the experiments are restricted to three conversation

scenarios, designed for a minimal set of 20 commands, in which the employed linear microphone array is steered to

a specific area where the conversation is taking place, while the room is mainly quiet. Generally speaking, Automatic

Speech Recognition (ASR) of Greek remains challenging due to the rich morphology of the language and the limited

resources available for acoustic and language modeling (Gavrilidou et al., 2012). As a matter of fact, few only works

in the literature address large-vocabulary Greek ASR. Indicative results are reported in the works of Digalakis et al.

(2003) and Rodomagoulakis et al. (2013) for read newspaper articles, achieving WERs within the 11.5�21% range,

and by Riedler and Katsikas (2007) and Dimitriadis et al. (2009) for the transcription of news broadcasts, with
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TaggedPWERs close to 38%. Finally, multi-lingual acoustic modeling approaches are examined for Greek (together with

other under-resourced languages) by Imseng et al. (2012).

3. Proposed multichannel, always-listening, distant speech recognition pipeline

TaggedPAs already outlined, the proposed speech processing pipeline aims at recognizing spoken commands for home and

office automation. The user is potentially able to address the system from any position in the multi-room space. This

is achieved by designing it to operate in parallelized room-dependent speech processing cascades, consisting of

(a) microphone selection, (b) command detection, and (c) command recognition, all driven by multi-room SAD

that provides candidate speech segments for each room (see also Fig. 2). Details of the system modules follow.

3.1. Multi-room speech activity detection

TaggedPDetection of room-localized distant speech in multi-room environments presents several challenges, com-

pared to traditional SAD approaches as applied to single-channel, single-space recordings, with interference

across rooms causing additional significant difficulties. To solve this problem, the multi-room SAD approach

of Giannoulis et al. (2015) is employed with slight modifications. There, two steps are followed: (a) first,

speech/non-speech segmentation is performed for the entire multi-room space using multi-stream speech/non-

speech Gaussian Mixture Models (GMMs). (b) Subsequently, the resulting speech segments are further proc-

essed to decide whether they occurred inside or outside a given room, by utilizing room-dependent Support

Vector Machine (SVM) classifiers, trained on carefully crafted acoustic features that capture reverberation and

attenuation effects in the microphone signals.

TaggedPFirst step of multi-room SAD. TaggedPIn this paper, the first step of the aforementioned approach is modified to perform

speech/non-speech segmentation for each room independently, using only the microphones located inside it. As a

result, detected speech is more room-localized, facilitating effective inside/outside speech classification at the sec-

ond step. In more detail, channel-dependent two-class (speech/non-speech) GMMs, consisting of 32 mixtures with

diagonal covariances, are trained on the development set data of each channel (see Section 4 and Table 1 for details).

A traditional acoustic front-end is used, based on 13-dimensional Mel-frequency Cepstral Coefficients (MFCCs)

appended by their first- and second-order temporal derivatives, extracted every 10 ms over Hamming-windowed sig-

nal frames of 25 ms duration. A multichannel score for both speech and non-speech classes at a given frame and

room is subsequently obtained, by summing the single-channel GMM log-likelihoods of all Mr microphones located

inside room r (room index r 2 f1; . . . ;Rg; where R denotes the number of available rooms). These scores can be

viewed as observation probabilities of a simple Hidden Markov Model (HMM) having a speech and a non-speech

state. Viterbi decoding can then be applied to determine the most likely sequence of such states, yielding a speech/

non-speech segmentation for each room.

TaggedPDuring the decoding process, a Speech Prior Log Probability (SPP) can be added to the speech scores, in

order to promote the occurrence of speech against non-speech, while transitions from speech to non-speech

states and vice-versa can be reduced by a Speech/non-speech Insertion Penalty (SIP), enforcing temporal

smoothness of the detected segments. Both parameters are tunable and can affect detection performance in

terms of precision and recall. For example, if SPP increases, detection promotes speech classification, leading

to higher recall performance.

TaggedPSecond step of multi-room SAD. TaggedPAt the second step of the approach, and given the detected speech segments derived

from its first step, inside/outside-room classification decisions are made for each room, based on appropriately

designed room-dependent SVMs. This step is also modified, compared to the earlier work of Giannoulis et al.

(2015), to yield decisions every 100 ms, instead of the entire segment, thus allowing its breakup across rooms. The

classification is performed using all available microphone data over longer windows of 600 ms in duration, shifted

by the desired decision step of 100 ms at a time. Results are further refined by simple majority voting over all conse-

cutive windows that partially overlap with the current 100 ms decision frame, with speech prevailing in case of a tie.

In addition, post-processing is applied to the results, by merging nearby speech segments (lying closer than 0.7 s)

and subsequently discarding any segments smaller than 0.2 s in duration.



Table 1

Overview of the corpora employed in this work. DIRHA-sim and ATHENA-real are used in the devel-

opment and evaluation of the proposed system, whereas DIRHA-real for its evaluation only. Reported

SNRs are average estimates over all speech segments from all the available microphones while rever-

beration times (T60) are averaged over a number of RIRs in each environment, estimated by the method

of Farina (2000). Speech is overlapped by speech and non-speech events while background noises are

present constantly in most of the 350 one-minute sessions.

Data Databases

characteristics DIRHA-sim DIRHA-real ATHENA-real

One-minute sessions (#) 150 60 240

Rooms (#) 4 4 2

Microphones (#) 40 40 20

Subjects (#) 20 5 20

Ages 25¡50 25¡55 18¡55

Total speech (min) 37 18 72

Unique commands (#) 99 59 172

Activation phrases (#) 12 12 12

Background noises (#classes) 10 Not transcribed 4

Non-speech events (#classes) 73 Not transcribed 15

Avg. SNR (dB) 13 15 9

Avg. T60 (sec) 0.72 0.72 0.50

Overlapped speech (%) 47% Not transcribed 40%

Close-talk mic available no No Yes

Split into dev, test test-only dev, test
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TaggedPThe employed SVMs are trained on development set data (like the GMMs in the first step of this module),

and they operate on multichannel features that are indicative of whether the candidate segment source lies

inside or outside the room of interest. Feature design is based on the expectation that a speech signal recorded

by the microphones of a given room exhibits lower energy and higher reverberation when produced outside

the room compared to inside it. The feature set comprises of three measurements, as discussed next. Note that

these are extracted for each of the R rooms, thus forming 3R-dimensional feature vectors, over which the

room-dependent SVMs operate.

TaggedPK-best room SNR dominance: this feature is based on the assumption that microphone recordings inside the source

room for a particular speech event will generally have higher SNRs than microphones in other rooms. Consequently,

the K-best signal-to-noise energy ratios are computed over the current speech segment window (no logarithm is used

in this calculation). The feature is then estimated as the sum of these quantities for microphones located inside the

room of interest, minus the ones of microphones outside it.

TaggedPRoom microphone cross-correlation: this stems from the expectation that microphone recordings inside the source

room will be less reverberant than those in other rooms, thus exhibiting higher pairwise cross-correlation on average

(Morales-Cordovilla et al., 2014). To compute this feature, given a candidate speech segment and a room of interest,

the maximum cross-correlation among all pairs of adjacent microphones inside the room is estimated, computed

over 100 ms signal lengths. For improved robustness, consecutive such estimates are averaged with a 25 ms window

shift within the examined 600 ms window.

TaggedPRoom envelope variance: similarly to the above, this is based on the expectation that short-time signal energy will

vary more (be less smooth) inside the source room compared to microphone recordings outside it, due to less rever-

beration of the former. Such effect is captured by the signal Envelop Variance (EV), further discussed in Section 3.2

(Wolf and Nadeu, 2014). To compute this feature, EVs are first estimated for each microphone channel located

inside the room of interest, over the entire 600 ms window examined. The desired feature is then obtained as the

maximum of the resulting EVs.

TaggedPAn example of the multi-room SAD module output, applied to the acoustic scene of Fig. 1, is provided in Fig. 3. It

can be readily observed that, at its first step, the algorithm successfully overlooks non-speech acoustic activity such

as water, baby cry, and radio music. Further, at the second step, it manages to exclude speech by “speaker4”, located

in the Bedroom, from the speech segments localized in the Kitchen.



Fig. 3. Example output of the two-step multi-room SAD algorithm detailed in Section 3.1, applied to the recordings of Fig. 1. Speech segments

resulting from the first step are depicted with red, thin rectangles. These are refined at the second step, as shown by the green, thick rectangles.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.2. In-room channel selection

TaggedPThe tasks of distant key-phrase detection and ASR are strongly affected by noise and reverberation. In scenarios

where speech is captured by a network of distributed microphones, the degree of distortion may differ significantly

among them. Channel/microphone selection aims at identifying a subset of them, considered as more reliable for fur-

ther processing. The advantage of channel selection versus signal fusion/enhancement approaches based on beam-

forming lies on the fact that a good trade-off between recognition accuracy, latency, and computational cost can be

accomplished, avoiding source localization or time-difference-of-arrival (TDOA) estimation that can be error-prone

in challenging acoustic scenes.

TaggedPChannel selection in the proposed pipeline is based on the EV measure, advocated by Wolf and Nadeu (2014),

who showed its superiority in DSR over other signal-, statistical-, or model-based selection criteria. As also men-

tioned in Section 3.1, EV indicates how reverberant or, in general, distorted a channel is, by capturing the smooth-

ness of short-time speech energy. It is estimated as the average of the variances of properly normalized and cube-

root compressed energies, which are computed on 24 mel-spaced sub-bands, frame-by-frame (exactly as in MFCC

feature extraction), and subjected to log-domain mean subtraction (over the segment) to remove short-term channel

effects. To obtain reliable variance estimates, EV is typically calculated over longer windows (here, 400 ms in dura-

tion). Further, EV over a longer duration segment is obtained by shifting the window by 50 ms at a time and comput-

ing the average of the resulting EV sequence.

TaggedPBased on the above, for a given speech segment detected inside room r by the multi-room SAD module, bMr chan-

nels are selected among the Mr available room microphones as the ones with the highest speech segment EVs. After

experimenting with bMr values within the range ½2; . . . ; 6�; based on the resulting performance of system modules

that follow, the choices of bMr D 4 for command detection (Section 3.3) and bMr D 3 for command recognition

(Section 3.4) are made. Of course, for rooms with fewer microphones, bMr DMr . Generally speaking, the choice ofbMr depends on the microphone setup, e.g., larger values of bMr may add outlier microphones in the subsequent chan-

nel combination when the microphones arrays are placed sparsely in a room and their recognition results are

expected to be quite different due to the localized interfering noises.

3.3. Command detection

TaggedPThe role of the proposed command detection component, following multi-room SAD and in-room channel selec-

tion, is two-fold: (a) it first detects whether a key-phrase has been uttered within a given room-localized speech seg-

ment, and (b) it specifies the temporal boundaries of the command that follows. Key-phrases are typically followed

by commands, but the pause duration between them may vary. Given that other speech events can occur simulta-

neously, finding the exact start- and end-time of an uttered command can be challenging. To address this issue, a
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TaggedPmultichannel key-phrase detection scheme is introduced, followed by a rule-based command segmentation module.

Details are provided next.

TaggedPKey-phrase detection. TaggedPThe adopted methodology is based on the classical keyword-filler approach (Wilpon

et al., 1990; Katsamanis et al., 2014). It employs whole-word HMMs for the words in the key-phrases and a

separate HMM for general/irrelevant speech, known as the filler model. Following experimentation with the

filler HMM topology, optimal detection is achieved when 24 states are used with left-to-right state transitions

and observation probabilities consisting of 32-mixture GMMs with diagonal covariances, based on a standard

MFCC-plus-derivatives front-end. In the absence of domain-specific training data, HMMs for the key-phrase

words are constructed by concatenating sub-word models (tri-phones), pooled from the large-vocabulary con-

tinuous speech recognition system in Greek, built by Rodomagoulakis et al. (2013) on the “Logotypografia”

corpus (Digalakis et al., 2003), as further discussed in Sections 3.4 and 4.4. A subset of the same database,

consisting of 10 h of speech, is also employed for filler HMM training. Additional model training and per-

channel adaptation are also performed to better match the far-field conditions, following the robust modeling

steps detailed in Section 3.5. The employed keyword-filler approach is designed to detect a predetermined set

of 12 short key-phrases in Greek for system activation, for example translating to “DIRHA activate”, “DIRHA

execute”, and “DIRHA listen”, among others. This is accomplished by grammar-based ASR employing the

finite state grammar depicted in Fig. 4(a). Viterbi decoding is further controlled by a tunable Filler Word

Insertion Penalty (FWIP) that penalizes transitions between models.

TaggedPKey-phrase recognition is implemented to generate results every 2 s, for a 3-second long sliding window inside a

speech segment (as detected by SAD). A hypothesis test is performed over each such window, in which the log-like-

lihood score of the optimal model sequence is found, assuming that a key-phrase is present, and compared to the
Fig. 4. (a) Finite-State-Automaton (FSA) representation of the finite state grammar used for key-phrase detection of 12 possible Greek phrases, as

discussed in the first part of Section 3.3. (b) FSA for parts of the finite state grammar used for command recognition, as discussed in Section 3.4,

with 16 out of the 180 possible home automation commands depicted. English translations are also provided. The filler model is denoted by FLR

and silence/non-speech as SIL. Double circles indicate final states, bold circles initial ones, and < eps> implies an empty transition.
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TaggedPfiller model score, assuming that no key-phrase is uttered. A key-phrase is detected for a particular channel if the

resulting Log-Likelihood Difference (LLD) exceeds a threshold T, which is tunable to allow the desired balance

between recall and precision. In case a key-phrase is detected in multiple windows within a given segment, the one

scored with the maximum LLD value is kept.

TaggedPThe above algorithm is applied separately to each of the bMr channels that are selected based on the microphone

EVs of the room-localized candidate segment, as discussed in Section 3.2. The resulting binary decisions (key-

phrase presence or absense) can be easily combined via majority voting with equal weights among them, thus

exploiting the available multichannel information. In this scheme, if at least half of the microphones agree on key-

phrase presence inside the examined segment, command detection prevails. In such case, the detected key-phrase

(content and temporal boundaries) of the most confident channel (that with the highest LLD) are kept.

TaggedPCommand segmentation. TaggedPGiven SAD output and the end-point of a detected activation key-phrase, the next module

in the pipeline determines the accompanying command temporal boundaries as accurately as possible, providing

input to the DSR component for command recognition. This is achieved using heuristics on keyword-command dis-

tance and expected command duration, assuming that commands are short speech segments appearing shortly after

key-phrases. Command segments are thus expected inside the nearest speech segment for the particular room, fol-

lowing the key-phrase segment, or within the same segment where the key-phrase lies, if it is sufficiently long. Com-

mand duration must also not exceed a maximum. This rule-based approach depends on a set of four tunable

parameters that correspond to the expected minimum and maximum values of the keyword-command distance

(denoted by dmin and dmax , respectively) and command duration (denoted by lmin and lmax). The method is more for-

mally described in Algorithm 1.
Algorithm 1. command segmentation algorithm.
3.4. Command recognition

TaggedPA multichannel speech recognition module is introduced as the last component of the proposed pipeline, designed

to perform robust DSR, separately for each room. The module uses the bMr most confident channels of a given room

r, as provided by the channel selection algorithm of Section 3.2. In particular, it first employs the most confident

channel to generate a list of possible command hypotheses, and subsequently exploits the remaining bMr¡1 channels

to rescore this list and yield the recognition result. More formally, the algorithm consists of the following steps:

TaggedP1. The bMr most confident microphones in terms of envelope variance (EV) are selected for a given room r into a
sorted list f m1;m2; . . . ;mbMr

g; where m1 denotes the microphone with the highest EV over the speech segment

where the command is detected.
TaggedP2.
 A variation of the Viterbi algorithm (Chow and Schwartz, 1989) is applied on the recording of microphone m1,

returning an N-best list of hypotheses, denoted as fHj ; jD 1; 2; . . . ;N g.
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TaggedP3.
 Each hypothesis Hj is rescored for each selected microphone. This is achieved by forced-alignment of Hj using

the Viterbi algorithm on the corresponding microphone recording and employing microphone-specific acoustic

models. Thus, best-path log-likelihood scores {ci,j} are obtained for each hypothesis Hj and microphone mi,

where iD 1; . . . ; bMr; jD 1; . . . ;N.

TaggedP4.
 The recognition result is hypothesisHbj ; where

bj D arg max
j 2 f1 ; ... ; Ng

XbMr

i D 1

ci;j ; ð1Þ

namely the hypothesis with the highest combined score.
TaggedPThe optimal value for parameter N was searched over the range of ½ 2 ; . . . ; 6 �; and it was found that ND 3
performed best. A version of this algorithm was originally proposed for fusing heterogeneous speech recognition

engines by Ostendorf et al. (1991) and then for the first time applied in the context of multichannel DSR in our

previous work (Katsamanis et al., 2014). For the individual task of DSR, it was shown there to provide addi-

tional performance improvements compared to single-channel DSR based on just the most confident micro-

phone. In the current work, we further investigate how channel combination behaves in the proposed integrated

setup.

TaggedPThe employed speech recognition engine is grammar-based, with the grammar designed to include a pre-defined

set of commands that cover a wide range of home automation tasks, for example, door/window/shutter opening/clos-

ing, light switching on/off, etc. The commands are 180 in total, possibly including two or three different wordings

for the same task, and also specifying the room of interest, e.g., “in the Livingroom”. An excerpt of the correspond-

ing command grammar is depicted in Fig. 4(b).

TaggedPRegarding acoustic modeling, GMM-HMM cross-word tri-phone models are used, based on a standard MFCC-

plus-derivatives front-end. The tri-phones have tied states and are approximately 8 k in total, with 16 diagonal-

covariance Gaussians per state. These are trained on 22.6 h of clean recordings that are part of a subset of the

“Logotypografia” corpus consisting of high-quality utterances recorded by a close-talk microphone. Similarly to

key-phrase detection, additional model training and per-channel adaptation are performed to better match the far-

field environment, as detailed in the robust acoustic modeling steps of Section 3.5. Finally, the Viterbi decoding

stage of the recognizer is fine-tuned by properly adjusting the Word Insertion Penalty (WIP) parameter.

3.5. Robust acoustic modeling

TaggedPTo increase robustness and reduce mismatch with the acoustic conditions in the targeted multi-room environ-

ments, in addition to the clean acoustic models for key-phrase detection and command recognition, discussed in Sec-

tions 3.3 and 3.4, respectively, further model training strategies are pursued. In particular, HMMs for these two

modules are also trained on artificially distorted data, following the same recipes as in the aforementioned sections,

and they will be referred to in this paper as the “reverbed” acoustic models. For this purpose, data contamination is

performed on available clean training data (discussed in Section 4.4), following the paradigm of Matassoni et al.

(2002). The distortion/simulation process involves convolution of all utterances of the clean speech training corpus

with Room Impulse Responses (RIRs) and addition of white Gaussian noise. The employed RIRs were measured in

real environments (here, for the domestic DIRHA one) using the exponential sine sweep technique (Farina, 2000;

Ravanelli et al., 2012). The exact number of RIRs employed is known to not affect ASR performance significantly

(Ravanelli and Omologo, 2014).

TaggedPThe reverbed acoustic models are further adapted to the environment conditions employing Maximum

Likelihood Linear Regression (MLLR) for additional performance gains. In our work, we only consider

supervised adaptation using the development data of the available corpora (see Table 1), according to which

few speakers (different to the test set ones) utter pre-defined commands or other phrases inside the multi-

room space, to be used for offline transformation of the acoustic models. We apply MLLR separately for

each microphone channel, ending up with channel-specific, environment-adapted (but not speaker-adapted)

acoustic models. For comparison purposes, adaptation of the clean acoustic models is also considered in our

experiments.
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4. Simulated and real corpora for indoor automation

TaggedPThree challenging multichannel datasets are employed for the development and evaluation of the proposed sys-

tem: (a) The DIRHA simulated corpus (DIRHA-sim), (b) the DIRHA real corpus (DIRHA-real), and (c) the

ATHENA real database (ATHENA-real). All sets have been acquired in multi-room smart environments and include

one-minute long recordings of a variety of commands and activation phrases in Greek, as well as non-speech events

and background noises, deeming the recordings very realistic for always-listening, distant command recognition for

home automation. The next paragraphs describe the corpora in more detail, and Table 1 summarizes them.

4.1. DIRHA-sim corpus

TaggedPThe DIRHA simulated corpus2 (Cristoforetti et al., 2014) for Greek comprises simulated recordings of speech in

the ITEA apartment that has been set up within the context of the DIRHA project at the Fondazione Bruno Kessler

(FBK) in Trento, Italy. The apartment, as shown in Fig. 5(a), is equipped with 40 microphones distributed in five

rooms, either in linear arrays of 2�3 microphones, or in pentagon-shaped arrays of six microphones placed on the

ceilings of the Kitchen and Livingroom that are considered as the most active rooms. Note that the apartment Corri-

dor, although equipped with a pair of wall microphones, is not considered as an independent room. The correspond-

ing recordings are therefore excluded in our experiments.

TaggedPTo create the simulations, high-quality speech (48 kHz, 16 bits PCM format, 50 dB SNR on average) were first

captured in a sound-proof studio using a professional close-talk microphone. Twenty speakers (10 male, 10 female)

were recorded, resulting to 1703 utterances containing approximately 140 min of various speech types, including

phonetically rich sentences, read and spontaneous commands, system activation key-phrases, and conversational

speech.

TaggedPSubsequently, acoustic simulations were realized by convolving this material with more than 9 k RIRs, estimated

for each of the 40 microphones from 57 source locations, uniformly distributed inside the apartment and having 4�8

orientations each. Real, long-duration background noises and shorter acoustic events were also added in the simula-

tions, for example music, various appliance sounds, drilling noises, water pouring, door knocking, etc., originating

from randomly selected locations, or uniformly distributed in the apartment rooms, possibly concurrently. As a

result, 150 one-minute long simulated recordings of speech and noise were created. For our experiments, half of

these data, involving half of the speakers, are held out as a development set and the rest form the test set.
Fig. 5. Floorplans of the two multi-room spaces considered in the paper: (a) the ITEA apartment is a multi-room home with 40 microphones and a

surface area of approximately 50 m2, used in the creation of the DIRHA-sim and DIRHA-real corpora. (b) The ATHENA office is a two-room

space with 20 microphones and a surface area of about 35 m2, used in the collection of the ATHENA-real corpus. Black dots in the plans represent

microphones installed on the walls in pairs or triplets, or arranged in pentagon-shaped arrays on the ceiling. Inter-microphone distance is 30 cm for

pairs and 15 cm for triplets, whereas, in the ceiling array, the peripheral-central microphone distance is 30 cm.

2 The DIRHA simulated corpus is publicly available at http://dirha.fbk.eu/simcorpor.

http://dirha.fbk.eu/simcorpora
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4.2. DIRHA-real corpus

TaggedPThe DIRHA-real database, presented in this paper for the first time, is a smaller set of real, instead of simulated,

recordings acquired in the ITEA apartment. The environment, as well as the microphone configuration, is exactly

the same as in the DIRHA-sim corpus. The data include five speakers, each recorded in 12 one-minute sessions,

uttering phonetically rich sentences, commands preceded by system activation key-phrases, and in free conversation

with a second speaker. Speaker positions are static, uniformly distributed across sessions inside four rooms of the

apartment (4 sessions take place in the Livingroom, 4 in the Kitchen, 2 in the Bedroom, and 2 in the Bathroom). Var-

ious background noises and non-speech events also occur during the recordings, such as music, appliance sounds,

and other typical home environment sounds. We use this corpus in our experiments as previously unseen, test data

only.

4.3. ATHENA-real database

TaggedPThe ATHENA-real database3 (Tsiami et al., 2014b) is a multimodal4 database for home automation. It consists of

240 one-minute long sessions recorded in the two-room office environment depicted in Fig. 5(b), where 20 micro-

phones are installed, either in linear arrays of 2�3 microphones on the walls, or in a pentagon-shaped array of six

microphones placed on the ceiling of the main office room. Additionally, head-mounted close-talk microphones are

worn by the speakers to provide clean speech as reference for transcription and experimentation. Overall, the corpus

contains data by 20 speakers, recorded while still or moving inside the two rooms, uttering phonetically rich senten-

ces, system activation phrases followed by home automation commands, as well as in conversation with another

speaker in some sessions. Most speech segments highly overlap with one of 15 acoustic events (e.g., opening/closing

doors and windows) and four types of background noise, i.e., ambient office noise, vacuum cleaner, radio music, fan

noise, thus rendering the database quite challenging and realistic. Similarly to the DIRHA-sim corpus, the data are

split into a development and a test set in our experiments.

4.4. Additional speech material: Greek large vocabulary close-talk speech for acoustic modeling

TaggedPIn the absence of in-domain Greek speech material for acoustic modeling, we utilize the clean recordings of the

“Logotypografia” database (Digalakis et al., 2003), collected for the development of Greek ASR. The corpus is akin

to the Wall Street Journal task (Paul and Baker, 1991), consisting of 72 h of large-vocabulary continuous speech of

read newspaper text with 50 k unique words, and containing a total of 125 speakers (55 male, 75 female) recorded in

three environments (studio, office, and a quiet room) using two microphones (a head-mounted one and a desktop). A

subset of this material, 22.6 h in duration, recorded with the head-mounted microphone, is used to build clean acous-

tic models for key-phrase detection and command recognition, as described in Sections 3.3 and 3.4, respectively.

TaggedPFurthermore, the high quality (> 50 dB) utterances within this subset were contaminated to provide material for

training reverbed acoustic models (see Section 3.5). In particular, distorted data were generated by convolving the

available utterances with one of ten randomly selected source-microphone impulse responses, measured in the ITEA

apartment environment, and also adding white Gaussian noise at a randomly chosen level among three possible ones.

5. Experimental framework and system evaluation

TaggedPThe design of the experimental framework for the development and evaluation of the presented system pipeline is

complex due to the inter-dependency of the connected modules. To account for the behavior of each component indi-

vidually and relatively to the others, we group experimental tasks into three categories, discussing details in the

following subsections, mainly:

TaggedP1. Individual: every module of the pipeline is tested separately in terms of standard evaluation metrics such as pre-
s

3 T
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cision, recall, and F-measure for the detection tasks, and word accuracy for recognition, by assuming ground-
he ATHENA-real database is available upon request at http://cvsp.cs.ntua.gr/research/athenadb.

inect RGB-D data are also available, depicting the user activating the system by performing a gesture (raised hand in fist) in addition to the

en key-phrase.
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TaggedPtruth inputs, e.g., the module of key-phrase detection is evaluated for segmented speech based on the annotated

boundaries.
TaggedP2.
 Combined: a pair of connected modules is tested together in order to assess their dependencies and to explore

possible strategies for their joint optimization, while assuming ground-truth inputs from the preceding modules

in the pipeline. For example, the performance of command recognition is examined in conjunction with that of

command detection given ground-truth speech boundaries.
TaggedP3.
 Full: the whole pipeline is tested when all its components are fully functional and no ground-truth information is

provided.
TaggedPAn overview of the adopted experimental framework is summarized in Fig. 6. Apart from the described processes

of simulating and contaminating data for development and testing, another issue that is depicted in the diagram con-

cerns the ability of the implemented pipeline to generalize and perform well on new data. For this purpose, we con-

sider the DIRHA-real corpus as an unseen test set for evaluating the system that is developed on the DIRHA-sim

development set. Although the two databases correspond to the same environment of the ITEA apartment, the cross-

database experimentation shed light on the effectiveness of training on simulated data and then testing on real data.

The proposed experimental setup targets the maximization of sentence accuracy (SAcc), which is the percentage of

correctly recognized sentences (commands) penalized by the insertion rate of falsely detected commands, taking

into consideration that an excessive number of false alarms will render the system unusable in practice. This measure

reflects well the efficiency of the system in terms of user experience and is expected to provide an indication of

the system behavior related to speech understanding and dialogue management (not considered in this paper). Opti-

mization of the various tunable system parameters (summarized in Table 2) is discussed in detail in the following

sections.

5.1. Evaluation of individual modules

TaggedP5.1.1. Evaluation of multi-room speech activity detection

TaggedPThe multi-room SAD component is trained on the development sets and evaluated on the test sets of the DIRHA-

sim and ATHENA-real databases in terms of precision, recall, and F-measure. Detection is evaluated for each room

independently by framing the detected segments in non-overlapping frames of 10 ms and comparing them with the

corresponding frames of the room localized speech/non-speech annotations. Average scores are taken over all the
6. The experimental framework that is followed to develop and evaluate the proposed pipeline in simulated and real data that correspond to

smart environments: the ITEA apartment and the ATHENA office. Simulations of far-field speech are realized by convolving clean recordings

RIRs in order to produce simulated acoustic scenes (DIRHA-sim) for experimentation, and to contaminate large vocabulary clean speech

, Logotypografia) for robust training, i.e., for training reverbed acoustic models. The individual components are trained/adapted on the “dev”

of the DIRHA-sim and ATHENA-real databases where they are also optimized separately or jointly. Evaluation is performed on the corre-

ding “test” sets. The DIRHA-real corpus is used as an unseen set for the final evaluation of the system in terms of sentence accuracy (SAcc).



Table 2

The proposed system is tunable by a set of nine parameters optimized for maximum back-to-back

performance of the four modules in the pipeline.

Module Parameters

Symbol description Operation ranges

SAD SPP Speech prior log probability ½¡3;¡2:5; . . . ; 3�
SIP Speech/non-speech insertion penalty ½0; 10; . . . ; 110�

Key-phrase detection FWIP Filler/word insertion penalty ½¡300;¡250; . . . ;¡100�
T Filler/word log-likelihood difference threshold ½¡3;¡2:5; . . . ; 3�

Command segmentation lmin Min command duration ½0:5; 1; . . . ; 2:5�
lmax Max command duration ½0:5; 1; . . . ; 2:5�
dmin Min distance between key-phrase and command ½0:5; 1; . . . ; 2�
dmax Max distance between key-phrase and command ½2; 2:5; . . . ; 8�

Command recognition WIP Word insertion penalty ½0; 10; . . . ; 50�

I. Rodomagoulakis et al. / Computer Speech & Language 46 (2017) 419�443 433
TaggedProoms of the examined multi-room environments. The Receiver Operating Curves (ROCs) shown in Fig. 7 are

obtained by manipulating the SPP and SIP parameters as described in Section 3.1. The best F-measures on the

DIRHA-sim and ATHENA-real databases are 0.83 and 0.95, respectively, indicating that the performance is almost

excellent in the ATHENA office, but SAD remains challenging in the ITEA apartment, where many inter- and intra-

room speech overlaps occur.

TaggedP5.1.2. Evaluation of command detection and recognition

TaggedPThe individual tasks of command detection and recognition are evaluated assuming ground-truth room-localized

time boundaries of the speech intervals and command sub-segments, respectively. The next paragraphs present

results and comparisons showing the effectiveness of the adopted methods for robust modeling and multichannel

processing. Command detection and recognition are realized using either the “EV-best” microphone (selected for

each speech segment), the proposed channel combination aproach (“mics-combined”), or a state-of-the-art beam-

forming. For the latter, Minimum Variance Distortionless Response (MVDR) beamforming is employed, based on

the work of Lefkimmiatis and Maragos (2007), where a single-channel Wiener post-filter is applied with weights

estimated using Minimum Mean Square Error (MMSE). The necessary alignment of the beamformed channels is

performed by employing TDOAs estimated by the speaker localization method described in the work of Tsiami

et al. (2014a). Comparisons are conducted in the subset of sessions in which the user is located in rooms where pen-

tagon-shaped arrays are installed approximately at the center of their ceilings and used for beamforming. Addition-

ally, the performance of the central microphone of these arrays is presented (“central”), along with the performance

of the close-talk microphone, which is available only in the ATHENA-real database. In order to demonstrate the

effectiveness of robust training on contaminated data followed by environmental adaptation, experimentation is
Fig. 7. ROC curves showing the trade-off between precision and recall of the multi-room SAD as tuned by its parameters (SPP, SIP), whose val-

ues are indicatively shown next to the corresponding operating points. The operation is mostly affected by SPP which causes improved recall

when increased, while SIP, which regulates the smoothness of the detection results, is less critical and thus kept constant across the depicted oper-

ating points.
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TaggedPconducted using both clean and reverbed acoustic models, as well as their adapted versions. Note that the parameters

of command detection (T, FWIP, dmin, dmax, lmin, lmax) and command recognition (WIP), summarized in Table 2, are

optimized for each set of acoustic models and each database in terms of F-measure and word accuracy, respectively.

Optimization has been held on the development sets of the two databases by using ground-truth speech boundaries,

in a subset of sessions, in which the user was located in rooms with ceiling arrays, from which the central micro-

phone was used for detection and recognition, respectively. More details follow.

TaggedPCommand detection results. TaggedPAs described in Section 3.3, command detection involves key-phrase detection

followed by command segmentation. Starting with the evaluation of key-phrase detection, the corresponding

F-measures are shown in Fig. 8. It is evident that the reverbed models outperform the clean ones significantly, and

that performance increases further when they are adapted to the actual environment. For example, in the case of the

central microphone, the absolute improvement from the original clean to the adapted reverbed models is dramatic,

averaged to 56% across the databases (from 0.21 and 0.35 to 0.73 and 0.96 in the DIRHA-sim and ATHENA-real

databases, respectively). Moving from single- to multi-channel detection, the EV-best microphone yields further

improvements compared to the central microphone, mainly in the case of using original clean models, in which the

performance is absolutely increased by 7% and 15% in the two databases. The EV-best microphone is outpeformed

by the proposed channel combination via majority voting by 2:3 and 6% on average, in the two databases, respec-

tively. The proposed approach achieves the best F-measures in the DIRHA-sim (0.75) and ATHENA-real (0.96) cor-

pora with the latter being close to the F-measure achieved when using the close-talk microphone (0.98).

TaggedPRegarding beamforming, the combination of MVDR-MMSE with the original clean models yields significant rel-

ative improvement of 67% (from 0.21 to 0.35) and 31% (from 0.35 to 0.46), against the central microphone in the

two databases, respectively. However, beamforming results drop significantly when using reverbed models trained

on contaminated signals, which are mismatched with the denoised beamforming signals. Although adaptation

improves beamforming performance, overall, the best F-measure results obtained in the two databases (0.54 and

0.81) are significantly lower than the ones (0.75 and 0.96) corresponding to the proposed multichannel methods com-

bined with robust modeling. The inferior performance of beamforming can be explained by several reasons. First,

source localization errors caused by speaker movements and reverberation effects may affect the signal alignment

stage. For example, an average F-measure increase of 8% (7:33 and 8.67% for adapted clean and reverbed models)

is observed in the DIRHA-sim database when we use ground-truth instead of estimated locations. Secondly, post fil-

tering appears to be beneficial only when using clean models. When using unadapted reverbed models, the F-mea-

sure is improved by 6% after removing the post filtering stage. Finally, note that the employed acoustic models are

adapted to perfectly aligned beamformed signals based on the available ground-truth source locations. The perfor-

mance may increase further if source localization errors are accounted in the adaptation process.

TaggedPFig. 9 shows an example of how the T and FWIP parameters of key-phrase detection were optimized on the devel-

opment set of the DIRHA-sim database. The parameters were swept over a range of values in order to maximize the
Fig. 8. Key-phrase detection F-measures in the test speech segments using their ground-truth boundaries. Channel selection and the proposed

channel combination are compared to MVDR-MMSE beamforming in sessions where the user is located in rooms with ceiling arrays. The perfor-

mance of the central microphones in the corresponding rooms and the close-talk microphone (in the ATHENA-real database) are also reported for

completeness.



Fig. 9. Optimizing the parameters of key-phrase detection in a subset of sessions in which the user was located in the Kitchen of the ITEA apart-

ment. Detection was performed using the central microphone and the reverbed models for the recordings in the development set of the DIRHA-

sim database. (a) Histograms of LLD values for key-phrase and filler segments demonstrating their discrimination by an appropriate T threshold.

(b) Manipulating the filler/word insertion penalty (FWIP) included in Viterbi decoding for the estimation of the corresponding likelihood probabil-

ities.
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TaggedPF-measure. As the histogram of Fig. 9(a) indicates, the selected value for threshold T is 0.15. Increasing or decreas-

ing T favors precision or recall respectively. Accordingly, based on the curves of Fig. 9(b), the F-measure is maxi-

mized over a wide range of FWIP values between ¡300 and ¡100 in the log-likelihood domain (the value of ¡250

is used).

TaggedPThe command segmentation stage is evaluated separately by assuming ground-truth inputs namely, room-local-

ized speech boundaries and key-phrase end-points. We experiment with a variety of values in order to tune the four

temporal parameters (dmin, dmax, lmin, lmax) of the algorithm. The detection criterion is segment-based: a command

segment is considered as correctly detected if the estimated one covers 90% of its duration and the total distance

between their boundaries is lower than 100 ms. The command recall on the DIRHA-sim corpus is 0.94 for the fol-

lowing parameter values (in seconds): ðdmin; dmax; lmin; lmaxÞD ð0:5; 2:0; 2:0; 4:5Þ. Accordingly, the obtained com-

mand recall on the ATHENA-real corpus is perfect for values (0.5, 5.0, 2.0, 6.0). The optimal combination of

parameter values is found by applying a greedy search in the four-dimensional parameter space, as depicted in the

examples of Fig. 10.

TaggedPCommand recognition results. TaggedPThe evaluation of command recognition is shown in Fig. 11. Similarly to key-phrase

detection, robust modeling appears to boost performance significantly compared to the original clean models. For

example, in the case of the central microphone, the absolute improvement from the original clean to the adapted

reverbed models is also dramatic, averaged to 43.8% across the databases (from 21:4 and 68.6% to 94:7 and 97.6%

in the DIRHA-sim and ATHENA-real databases, respectively). Further improvements are obtained by using channel

selection and channel combination. Compared to the central microphone, the EV based channel selection and the
Fig. 10. Optimizing the command segmentation parameters (dmin, dmax, lmin, lmax) of Algorithm 1 in the development set of the DIRHA-sim corpus

in order to maximize command recall. For visualization purposes, the 4-D parameter space is projected onto 2-D ones, where the projected param-

eters are set to their optimal values. The presented pairs of parameters were found to affect performance the most. Each parameter search has a res-

olution of 0.5 s.



Fig. 11. DSR word accuracy (%) on the test-set command segments of the DIRHA-sim and ATHENA-real databases assuming ground-truth

boundaries. Channel selection and the proposed channel combination are compared to MVDR-MMSE beamforming for simulations in which the

user is located in rooms with ceiling arrays. The performance of the central microphones in the corresponding rooms and the close-talk micro-

phone (available on ATHENA-real data only) are also reported.
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TaggedPproposed channel combination via N-best hypothesis rescoring improve the average word accuracy in most cases.

For example, when using adapted reverbed models, the EV-best and mics-combined approaches outperform the cen-

tral microphone by 9.8% and 14.6%, respectively, in the DIRHA-sim database. The corresponding improvements

are moderate in the ATHENA-real database, where further analysis showed that the central microphone is very often

chosen by the employed channel selection method as the most reliable, yielding similar results with the EV-best and

mc-combined recognition approaches. Overall, similarly to the key-phrase detection results of Fig. 8, channel combi-

nation combined with the MLLR-adapted reverbed acoustic models lead to the best recognition in the DIRHA-sim

(94.7%) and ATHENA-real (97.6%) corpora, with the latter being close to the performance of the close-talk micro-

phone (99.9%). Moreover, it is interesting to mention that the reverbed models exhibit cross-environment robustness.

Although they have been trained on data produced in the ITEA apartment, they perform well on the ATHENA office

data as well. It seems that the contamination process increases data variability and thus modeling becomes robust to

mismatched conditions. Finally, we observe that recognition results in the DIRHA-sim corpus, using MVDR-

MMSE beamforming with original and adapted clean models, show an absolute increase of 7 and 4% compared to

the proposed channel combination approach. In this case, beamforming appears to be an effective solution for recog-

nition if no contaminated data are available for training reverbed models. However, its maximum performance on

both databases is significantly lower by 6 and 12.5%, compared to the proposed method. Note that the optimum val-

ues of the WIP parameter in the aforementioned experiments were among [10, 20, 30].

TaggedPNext, we compare various signal-based channel selection measures reported in the literature. We conduct the

comparisons in all available datasets acquired in the environment of the ITEA apartment, where the variability

across the microphones of the entire apartment is expected to provide insights regarding the examined channel selec-

tion methods. These datasets are the development and test sets of the DIRHA-sim database as well as the DIRHA-

real dataset (see Table 1). The employed EV measure is compared to SNR and cross-correlation (xcorr) measures.

The latter is an average of the maximum values of the cross-correlations between all possible pairs of signals

recorded by neighboring microphones within an array. This measure gives an indication of how reverberant the

acoustic signal that reaches the microphones of an array is, and may be used for array selection. Based on SNR and

EV, selection is realized for every speech segment in order to obtain the EV-best and SNR-best microphones.

Accordingly, based on xcorr, the central microphone of the most confident array is selected. The results of Fig. 12

show that the EV-best microphone results in better recognition compared to the SNR-best and xcorr-best micro-

phones. The absolute improvement has been, on average, measured to 7.7% and 1.2%, respectively, over the three

employed test sets. Additional comparisons show that the EV-best microphone is by far better than a randomly

selected microphone, although there is room for improvement in order to reach the “oracle” selection that results in

the best possible microphone per segment in terms of recognition accuracy. Nevertheless, all the presented selection

strategies achieve better performance in comparison to the best microphone (“best-mic”), selected a-posteriori and

remaining the same for all sessions.

TaggedPAdditionally, to better understand the behavior of the various microphones in the ITEA apartment in relation to

speaker location, we visualize the recognition results for the test-set simulations of the DIRHA-sim corpus, as shown

in Fig. 13. Each cell corresponds to the result of a specific microphone, for a specific simulation, using ground-truth



Fig. 12. Comparison of signal-based channel selection methods for command recognition in all ITEA-apartment datasets, assuming ground-truth

boundaries and using adapted clean models. Channel selection is conducted over all the available microphones in the apartment. Based on the EV,

xcorr and SNR measures, the most confident microphones (EV-best-mic, xcorr-best-mic, SNR-best-mic) are selected from the 40 microphones in

the entire apartment targeting command recognition independently of which room the source is located in. Random and oracle selection (the best

microphone per segment in terms of recognition accuracy) are also reported for completeness, along with the microphone with the best overall per-

formance (all-best-mic) selected a-posteriori for all sessions.
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TaggedPcommand boundaries. Simulations are grouped by source location, e.g., simulations where the user is in the bath-

room (BA) are represented by the first two rows. Correct recognition of a command is depicted in the lightest colors

(white/light blue) for microphones inside/outside the room where the user is located. Accordingly, black/dark blue

cells indicate erroneous recognition. Overall, as expected, the microphones in the same room with the source per-

form significantly better. The probability of a microphone to recognize correctly a command uttered in the same

room is measured to 0.7 compared to the probability of 0.55 corresponding to correct recognition by microphones

outside the room. It also appears that the EV-best microphone is located in the same room with the source in approx-

imately 75% of the cases. Both facts are evident by observing that the cells in the diagonal blocks are mainly white

with more crosses than the cells on the off-diagonal blocks.
Fig. 13. Performance analysis and channel selection over microphones located inside and outside the room where a command was uttered. Recog-

nition results of commands with ground-truth boundaries are grouped in rooms and correspond to the test-set simulations of the DIRHA-sim cor-

pus. The adapted reverbed acoustic models are used for recognition. Rows correspond to simulations and columns to microphones. From left to

right, the microphones in the Bathroom (BA), Bedroom (BR), Kitchen (KT) and Livingroom (LR) are indexed. From top to bottom, the simula-

tions where the system user is in the corresponding rooms are indexed. Black or dark cells reflect command recognition errors inside or outside

the room, respectively. The EV-best microphone is also depicted for each simulation (once per row) by a cross (“C”) sign, black when recognition

is correct, white otherwise. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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5.2. Evaluation of combined modules

TaggedPEvaluation of the individual components shows that the employed methods may accomplish satisfactory levels of

performance, when assuming ground-truth inputs. A question that arises is how these components can be fine-tuned

in order to function effectively in the pipeline where errors are expected to propagate. To address this issue, we focus

on testing pairs of successive pipeline components operating back-to-back and given ground-truth input from their

preceding components, if such exist. The goal is to find the best configuration of parameters for each examined pair

in order to maximize the performance of the combined modules. At this stage of partial integration, two such pairs

are considered, with results in Fig. 14: (a) command detection, getting input from SAD and (b) command recogni-

tion, getting input from command detection, which is for the sake of this experiment, preceded by ground-truth

SAD. For convenience, we denote the first component of each pair as C1 and the second one as C2. For each pair, the

tunable parameters of the C1 component are varied over a range of operating points. Subsequently, the parameters of

the C2 component are optimized based on ground-truth input or alternatively on the input provided by the C1 compo-

nent. The output of each component is evaluated using an appropriate metric, identical to the one defined previously

in the evaluation of the isolated tasks. It is interesting to note that the maximum C2 performance does not correspond

to the best C1 performance in terms of the employed metrics. For instance, in Fig. 14(a), the maximum F-measures

(0.86 and 0.89) of command detection (C2), for the two considered optimization schemes, achieved with a SAD

operating point yielding a lower F-measure (0.86) compared to its maximum (0.95). However, by optimizing the C2

parameters based on real inputs from the C1 components, the maximum F-measure of command detection is

increased by 4% (from 0:86 to 0.89%) for the SAD-command detection pair, while the maximum SAcc in command

recognition is increased by 1.5% (from 84:5 to 86.0%) for the command detection-command recognition pair. Fur-

ther investigation of optimization strategies is presented in the next section, where the full integrated pipeline is eval-

uated.

5.3. Evaluation of full system pipeline

TaggedPThe final stage of the presented bottom-up experimental framework involves the evaluation of the full pipeline

functioning without any ground-truth knowledge. First, we compare baseline systems in the test sets of the DIRHA-

sim and ATHENA-real databases, and, subsequently, we present the performance of the proposed system compared

to a baseline system. The final results are reported on all available databases, including also the unseen data of the
Fig. 14. Investigating the inter-dependency of pairs of successive components of the proposed system pipeline: (a) command detection following

SAD and (b) command recognition following command detection. In each plot, the tunable parameters of the C2 component are either fixed to

optimal values assuming ground-truth input (as in each isolated evaluation) or optimized to the input provided by the C1 component with its

parameters varying over a range. The depicted C1 and C2 component performance are reported on the test set of the ATHENA-real corpus, using

the EV-best microphone and the adapted reverbed acoustic models (for command detection and recognition).
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TaggedPDIRHA-real dataset. Note that all considered acoustic models in these experiments, referred to in the following text,

are MLLR-adapted.

TaggedPThe first set of results is presented in Fig. 15(a) in order to show the effectiveness of the EV-best microphone

against MVDR-MMSE beamforming when employed at the stages of key-phrase spotting and command recognition,

in the easier-to-implement approach of simply using clean acoustic models. Clean models are expected to be more

matched with the denoised beamformed signals. The comparison takes place in the subset of sessions where the tar-

get command is localized in rooms with pentagon-shaped ceiling arrays (ITEA Livingroom and Kitchen, ATHENA

office), where beamforming is expected to be more beneficial. Combined with adapted clean acoustic models, the

EV-best microphone outperforms beamforming by 5:9 and 19.3% on the DIRHA-sim and ATHENA-real corpora.

The performance is also better by 5.8% and 12:6%; respectively, compared to the central microphone of the ceiling

arrays. Due to its superiority against beamforming, which suffers by source localization errors and unwanted distor-

tions caused in the post-filtering stage, we consider this system (EV-best microphone with adapted clean acoustic

models) as the baseline. Additionally, there are practical reasons that strengthen this choice and make it an interest-

ing alternative, compared to the proposed approach. Training clean acoustic models and adapting them in the target

environment is easier than producing simulated data needed for the training of reverbed acoustic models. Addition-

ally, channel selection is practically less time-consuming than the proposed majority voting and rescoring

approaches for channel combination.

TaggedPIn the two baseline systems presented above, the parameters of each component have been optimized separately,

based on component-specific metrics and given ground-truth inputs. This will be referred to as the S1 optimization

scheme, and it corresponds to the most straightforward approach in which the modules are optimized individually

before their combination, while no other fine-tuning is performed afterwards. As this may lead to suboptimal config-

urations due to the inter-component dependencies that are not taken into account, a second scheme, named by S2, is

also considered, where each component is optimized given inputs from sequentially optimized preceding compo-

nents. For example, the parameters of command recognition are optimized based on input from an optimized com-

mand detector, already optimized based on input from optimized SAD. Further, a third optimization scheme is

considered, referred to as S3, that involves parameter tuning based on joint optimization of all components to maxi-

mize SAcc. The grid of parameters that is searched belongs to a nine-dimensional space (see Table 2), containing

1152 points produced by selecting at least two values for each of the nine system parameters based on the obtained

results of the individual modules, as described in Section 5.1. We apply a brute-force parameter search by testing the

grid points one by one in order to find the global maximum in terms of SAcc. Fig. 15(b) shows how the performance
Fig. 15. Baseline system and optimization results. (a) Comparison of the EV-best microphone (baseline) against MVDR-MMSE beamforming

using the adapted clean models and individual optimization (S1) of the components. The comparison is conducted on a subset of sessions where

the user is located in rooms with pentagon arrays installed at the center of their ceilings (ITEA Livingroom and Kitchen, ATHENA office). The

performance of the central microphone of these arrays is reported as a single-channel recognition scenario. (b) Improving the baseline system by

using the adapted reverbed models and two more optimization scenarios in which the pipeline components are optimized sequentially (S2) or

jointly (S3). The results correspond to all sessions of the employed test sets.



Fig. 16. Proposed and oracle system results. (a) The proposed system, in which channel combination is employed at the stages of command detec-

tion and recognition, is compared to the baseline, in which the EV-best microphone is used, combined with clean and reverbed models. (b) Com-

parison with a hypothetical system in which certain components (SAD and/or command detection) of the proposed system are replaced with

oracle ones that process ideally the inputs given by their preceding components.
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TaggedPof the baseline system improves when employing the reverbed models instead of the clean ones and then optimizing

the system parameters using schemes S2 and S3. The accomplished relative improvements in SAcc using S2 and S3

instead of S1 are and 22% on the DIRHA-sim database, while on the ATHENA-real database are and 13%. Note

that the employed optimization schemes have been conducted on the development sets of the corresponding data-

bases.

TaggedPFig. 16(a) shows the performance of the proposed pipeline, including the S3 optimization scenario for all datasets.

When comparing channel-combination vs. just using the EV-best setup, we obtain an absolute improvement of 1.3%

and 2% for DIRHA-sim and ATHENA-real data, respectively. On both databases, the system has been optimized on

their corresponding development subsets. On the other hand, the DIRHA-real dataset is treated as an unseen test

dataset for which the DIRHA-sim optimized parameterization is applied. As mentioned before, although the former

consists of real recordings in contrast with the latter which is simulated, the two databases have been acquired in the

same apartment. Consequently, by sharing the models and the optimized parameters from simulated to real data, we

are able to test the effectiveness of the simulation process for training and optimization. The obtained SAcc is 60%

on the real unseen data of the DIRHA-real dataset, while the corresponding results on the DIRHA-sim and

ATHENA-real databases are 38.7% and 76.6%, respectively. The proposed system outperforms the baseline by

15%, 11.2%, and 14.4% in the three databases, respectively, yielding a significant absolute improvement of 14% on

average.

TaggedPAdditionally, based on the results of Fig. 16(b) that correspond to a hypothetical scenario of a system operating

with oracle components that give perfect results, the most significant degradation on the DIRHA-real dataset appears

to occur at the command detection stage. The poor performance on the DIRHA-sim corpus can be explained by the

fact that the simulated conditions are extremely challenging, presenting a variety of noises and speech overlaps that

occur in the same room where the user is located and cannot be fully resolved by the current pipeline design. Indica-

tively, a significant absolute improvement of 42% would be achieved if the current SAD module was substituted by

an oracle providing ground-truth key-phrase plus command segment boundaries. On the other hand, the obtained

SAcc of 76.6% on the ATHENA-real database is closer to the one yielded by systems O1 and O2 (82:3 and 89%),

with oracle SAD and command detection, respectively. Compared to the results on DIRHA-sim data, the perfor-

mance on ATHENA-real data is better mainly due to the absence of strong overlaps in speech segments.

TaggedPFurther error analysis of the obtained SAcc (60%) on the DIRHA-real dataset shows that: (a) the percentage of

correct sentences is 63.33%, (b) the insertion rate of falsely detected commands is relatively small (3.33%) and (c)

the recognition word error rate of correctly detected commands is 4.33%. It is worth noting that a large portion of

misrecognized words is due to confusion between synonyms. For example, recognition may incorrectly produce
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TaggedP“shut the door” instead of “close the door”. In such cases, the meaning of the uttered and recognized commands is

the same, and such errors will not be detrimental for speech understanding and dialogue management.
6. Conclusions, discussion and future work

TaggedPIn this work, we detail the design, optimization and systematic evaluation of a speech processing and recognition

pipeline for an always-listening voice enabled user interface in Greek. The pipeline aims at robust far-field spoken

command recognition in challenging multi-room smart environments as homes and offices equipped with sparsely

distributed microphone arrays. The proposed system architecture is based on the synergy between multichannel

speech activity detection, key-phrase detection, and automatic speech recognition building on a channel selection

and decision fusion scheme to benefit from a distributed network of microphones inside the rooms.

TaggedPThe systematic evaluation of the developed system is based on a bottom-up experimental framework, from the

individual components to the complete integration using both simulated and real data, offering valuable insight

regarding the behavior of the integrated components and their dependencies. The results show that overall, the pro-

posed design constitutes a robust solution for always-listening distant speech recognition. The applied channel selec-

tion approach to the tasks of command detection and recognition on the ATHENA-real database yields 46% relative

improvement in sentence accuracy compared to a conventional solution of beamforming, while the proposed

channel combination approaches further increase the absolute system performance by 1.8%. Regarding acoustic

modeling, data contamination in simulated conditions similar to those of the testing environments, leads to a relative

improvement up to 36% compared to clean models. Finally, it is found that sequential and joint optimization of the

pipeline components yields up to 14 and 22% relative improvement in sentence accuracy over isolated component

optimization.

TaggedPThe proposed system achieves promising command recognition results in the two corpora with real recordings,

i.e., the two-room ATHENA-real and the multi-room DIRHA-real corpora, reaching sentence accuracy scores of

76.6% and 60%; respectively with the latter being representative of the system performance in real unseen data. On

the other hand, the moderate performance of 38.7% on the simulated corpus DIRHA-sim can be explained mainly

due to the high simulated noise contaminating the recordings, but also due to the appearance of speech overlaps

occurring either across rooms or even in the same room. Inter-room overlaps may be resolved by using room selec-

tion but intra-room speech overlaps may be unsolved based on the current design of the pipeline. As a result, such

overlaps may affect both the envelope variance estimation in channel selection and also the rule-based command

detection that depends on the speech boundaries that speech activity detection provides. It is worth noting that when

command detection and recognition are fed with exact speech segments for each speaker, the performance is signifi-

cantly improved to 80% for the simulated DIRHA dataset.

TaggedPSeveral directions of improvement may be followed based on the presented insightful results of this work. To

name a few, speech activity detection may be benefited by incorporating speaker diarization and sourse separation

methods in order to cope with intra-room speech overlaps, resulting to finer speech segmentation. Additional gains

are feasible in speaker localization, as well as in command detection and recognition tasks, by capturing and process-

ing multimodal information from the targeted noisy scenes using cameras and other sensors. For example, detection

of audio-gestural activation key-phrases (as included in the ATHENA-real database) may be helpful when speech is

noisy and overlapped. Last but not least, the exploitation and integration of the promising DNN-based approaches

for speech still constitute an open field for research which may boost significantly the performance of such systems.

Besides, the opportunities are increased due to the upcoming, growing market of commercial interfaces for home

automation such as the Amazon Alexa and Google Home products, which establish speech technologies for every-

day living and calls for further research. To conclude, a simplified version of the presented system has been imple-

mented, performing online, always-listening command recognition in real time. Details, demos, and code are

provided by Tsiami et al. (2016).
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