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Abstract—Nowadays, the interaction between humans and
robots is constantly expanding, requiring more and more human
motion recognition applications to operate in real time. However,
most works on temporal action detection and recognition perform
these tasks in offline manner, i.e. temporally segmented videos are
classified as a whole. In this paper, based on the recently proposed
framework of Temporal Recurrent Networks, we explore how
temporal context and human movement dynamics can be effec-
tively employed for online action detection. Our approach uses
various state-of-the-art architectures and appropriately combines
the extracted features in order to improve action detection. We
evaluate our method on a challenging but widely used dataset
for temporal action localization, THUMOS’14. Our experiments
show significant improvement over the baseline method, achieving
state-of-the art results on THUMOS’14.

Index Terms—Action Detection, Action Anticipation, Online
Action Detection, Skeleton, THUMOS’14

I. INTRODUCTION

Human Action Recognition (HAR) is one of the most
prominent tasks in the field of computer vision, with various
applications in robotics [35], [36], [37], data retrieval [42],
[43], healthcare [38], [39] etc. Most works deal with action
recognition in an offline setting, i.e. the temporal boundaries of
an action in a video are known. However, online applications
such as on autonomous cars or assistive robotics require
recognition capabilities in a continuous video stream, where
the starting and ending points of an action have to be estimated
on-the-fly, e.g. in order to avoid a car crash [40] or even a
human fall [41].

Therefore, the difference between the two approaches lies
in the time of the decision. Specifically, in the case of offline
recognition the action will be observed in its entirety, whereas
in online recognition, the decision will have to be taken before
the action is completed. Many methods have been developed
for the recognition of human action with remarkable results,
however they operate under the condition that recognition is
made once the action is completed and the network has been
fed with all the necessary information. This condition cannot
be however satisfied in an online setting, where only present
and past information can be used, making the generalisation
of offline methods problematic.

The recently proposed Temporal Recurrent Networks
(TRN) [1] introduced a way to bypass the lack of future
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Fig. 1. The TRN Cell Architecture as described in [1].

Fig. 2. The Pipeline of the One-Stream model which is fed directly by the
extracted C3D features.

information by using recurrent networks to predict features
that correspond to future frames. TRN processes videos se-
quentially and for each frame it combines past, present and
predicted future information to extract action class probabili-
ties. Inspired by TRN, we explore different ways to enhance
temporal action detection. Our contribution is two-fold:

• We employ 3D convolutional networks (I3D [5] & C3D
[4]) both in action anticipation and prediction. In this way,
information about the temporal context of each frame is
encoded both by the recurrent network and in terms of
visual features.

• We incorporate human pose in our framework, postulat-
ing that the dynamics of the human movement provide
valuable information about the temporal boundaries of an
action.

Two-stream features are introduced as an input to our model
which are interpreted as appearance and motion features. Some
combinations of the above mentioned extracted features have
therefore been selected in order to increase the efficiency of
our model. Experiments on the THUMOS14 [8] public dataset,
show significant improvement over the baseline both in action
recognition and anticipation.

The rest of this paper is organized as follows: Section II
provides a review of the literature work in the field. The
methodology applied throughout our experiments is analyzed
in section III. Section IV deals with the experimental setup,
the dataset and the evaluation methods we utilize, whereas in
Section V we discuss the results of our experiments. Finally, in
Section VI we present our conclusions and propose directions
for further research.
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II. RELATED WORK

A. Human Action Recognition

Action recognition in videos has stimulated the interest
of the research community for years. Traditional methods,
utilizing feature descriptors paved the way to more complex
neural networks, being proposed nowadays.

Early works on action recognition extracted hand-crafted
features, such as Histogram of Oriented Gradients (HOG) /
Histogram of Optical Flow [9], extended Speeded-Up Robust
Feature [11], Dense Trajectories [12] and encoded each video
using Bag-Of-Words, Fisher vector and other orderless rep-
resentations. Support Vector Machines were typically used to
classify those features.

Although such methods have shown promising results [44],
the abundance of visual data and advances in hardware design
led the research community to embrace neural network mod-
els. Convolutional Neural Networks (CNN) in particular, have
provided significant improvements in image recognition tasks
[18], something that intuitively bolstered their application to
videos and action recognition. Initially, Donahue et al. in [13]
proposed to add a recurrent layer to the CNN to encode state
and capture temporal sequence and long-term dependencies.
Due to 2D features limitation of 2D CNNs, Ji et al. developed
a 3D CNN model [15] that extracts features from both spatial
and temporal dimensions through 3D convolutions, thereby
capturing the motion information encoded in multiple adjacent
frames. Based on this work, Tran et al. created an efficient
descriptor -C3D [16]- which can be used as a pre-trained
feature extractor for other video analysis tasks. In [14], a
two-stream network, introduced by Simonyan and Zisserman,
analyzes spatiotemporal features via RGB images and optical
flow. The 3D-fused extension [19] of the previous model
introduces a better performance by fusing spatial and flow
streams after the last convolutional layer. Finally, Carreira et
al. combined the above models into a new one -I3D [5]- aiming
to very deep, naturally spatio-temporal classifiers.

On the other hand Noori et al. based on the fact that
skeleton based action recognition can avoid explicitly model
the dynamics of actions, propose in [20] the use of OpenPose
[21] and Recurrent Neural Networks (RNNs) [22], [23] to
recognize the activities.

B. Offline Action Detection

Regarding the variant of offline recognition, the sample
videos are entirely known a-priori, so the task is to estimate
the starting and ending timestamp of each action. This type
of problem has the advantages of the whole frame sequence
knowledge and the lack of processing time limitation. Early
works [24], [25], [26] used sliding windows, where each
window is considered as an action candidate, subject to classi-
fication. Escorcia et al. [27] exploit Long Short-Term Memory
(LSTM) cells to encode a video sequence as a set of discrete
states in order to demonstrate proposal scores, while Gao et
al. proposed the TURN TAP [28] where a long untrimmed
video is decomposed into video units, which are then reused

Fig. 3. The pipelines of the eleven possible two-stream models, of which the
six most effective combinations have been selected. In particular, the selected
are: i)ResNet-200 - BN-Inception, ii)I3D (RGB) - I3D (Flow), iii)C3D -
OpenPose, iv)ResNet-200 - OpenPose, v)I3D(RGB) - OpenPose, vi)OpenPose
- BN-Inception

as basic building blocks of temporal proposals. Furthermore,
Shou et al. [29] introduced the CDC network, which makes
dense per-frame predictions through downsampling in space
and upsampling to localize the temporal boundaries. Finally,
Long et al. presented GTANs [30], which, in contrast to the
previous methods, leverage the temporal structure in an one-
stage action localization framework.

C. Online Action Detection

Online Action Detection was initially proposed by De Geest
et al. [31], who also created the TVSeries dataset for the same
purpose. The same research group later proposed a two-stream
LSTM model [32], focusing both on the interpretation of the
frames and on the temporal dependencies between actions. The
RED network [33], created for action anticipation, can also
be used for action detection, if the anticipation time is set to
zero. The main idea of this work is the prediction of feature
actions using a CNN for feature extraction in combination
with a LSTM and a reinforcement loss. Generative Adversarial
Networks (GANs) have been also proposed by Shou et al. [34]
to predict starting time precisely.

Temporal Recurrent Network (TRN) [1] proposed by Xu
et al. is a novel method which uses the predicted future
information to enrich the online action detection accuracy.
Based on this work we explore different feature extraction
and fusion methods to better estimate information about the
temporal dynamics of actions and therefore to achieve higher
scores both in anticipation and recognition task.

III. METHODOLOGY

To address the problem of online action recognition we
propose a framework consisting of two main components, one
that explores the temporal context of videos, and one that
corresponds to the TRN cell proposed in [1].

A. TRN Cell

We first provide a brief description of the TRN cell, which
is crucial for the intuition of our method. In particular, the
central idea behind TRN is to anticipate future frames’ features
and aggregate it with past and present information to properly
categorize the action. As shown in Fig. 1, it consists of
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the temporal decoder, the future gate and the spatiotemporal
encoder. Both the temporal decoder and the spatial encoder
are LSTM units, where the former accepts serial input vectors
and exports the predicted future information and the corre-
sponding hidden states. The second unit sequentially receives
the concatenated input and future vectors as well as the hidden
state and estimates a probability distribution for each action.

B. Exploiting Contextual Information

Inspired by the two-stream model used in [1], we experi-
mented by extracting I3D features, which are low-level spatial
features. Those are computed using an I3D network that is pre-
trained on Kinetics [5], to improve the ability of the model
to generalize and avoid overfitting. We extract the 2×(1024-
dimensional) frame-level features from the last global average
polling layer. The two-stream features - appearance and motion
- are concatenated and fed to a Linear layer with a ReLU
activation. Then, the fused information enters the TRN cell,
as shown in Fig. 3.

In addition we experimented with C3D features, being a
very generic video feature representation [4]. This is because
3D convolutional modules can extract both spatial and tem-
poral components, as opposed to the ResNet that is utilized
by the original method [1] but limited to appearance represen-
tation. The aforementioned one-stream features are computed
using C3D network pre-trained on Sports 1M, something that
reduces the need to fine-tune. We extract 4096-dimensional
features per frame from the fc6-layer and we insert them
directly to the TRN cell, as shown in Fig. 2.

Skeleton joint coordinates are of high precision and can
accurately represent the temporal dynamics of actions [45], so
we experimented with 2D skeletons extracted from OpenPose
[6], over the baseline RBG and Optical Flow features. Thus,
134-dimensional vectors per frame were created. The human
pose consists of 25 keypoints for pose/foot estimation and 2×
21 keypoints for hand estimation. Since 2D models are used,
each keypoint consists of two spatial variables, its coordinates
and a confidence parameter. We first normalize the features
we get from OpenPose to address different camera setups.
Specifically, we define the middle of the pelvis as the center
of our coordinates and normalize with respect to the distance
between the pelvis and the shoulders (average height). In the
case of multiple actors in a frame the one whose coordinates
have the highest confidence score is used.

Since the extracted skeleton features are primarily motion
features [45], we added another stream to the C3D model.
Specifically, we arranged the C3D features in the appearance
stream and the pose features in the motion stream. This
framework shows indeed an improvement in performance,
compared to the corresponding one-stream model. Motivated
by these results we apply the same framework to the I3D
model: we arrange the I3D RGB data in the appearance stream
and the OpenPose data in the motion stream.

Although the sequences of skeleton features sufficiently
represent the temporal dynamics, the appearance and scene
information is still missing. Based on the previous claim and

Fig. 4. The pipelines of the four possible two-stream fused models, of which
the selected are: i) ResNet-200 concatenated with OpenPose - BN-Inception,
ii) I3D (RGB) concatenated with Openpose - I3D (Flow).

on the feedback from our experiments so far, we attempted to
combine each of our two-stream models - baseline and I3D -
with the information from the skeleton. Specifically, we fused
the RGB data with the OpenPose data and created a fused
two-stream model as shown in Fig. 4.

IV. EXPERIMENTAL SETUP

For the evaluation of our model we used the THUMOS’14
dataset [46] as it contains long and untrimmed videos from
various sports events, which are annotated with 20 actions. Its
training set however contains only trimmed videos that cannot
be used for the task of temporal localization. As a result, based
on the previous work [33], we train our model on the validation
set (200 untrimmed videos) and validate it on the test set (213
untrimmed videos).

All experiments were preformed on Nvidia GeForce RTX
2080 Ti GPUs. Adam optimizer was used for the training
session [47] with learning rate and weight decay parameters
set to 5 × 10−4. Due to GPU memory limitations, the batch
size was set to 2 and the input sequence length was set
to 64, whereas we included 8 decoder steps. To permit fair
comparisons against the original method [1], we performed in-
house testing for the baseline TRN with the previous settings.

As for video preprocessing, we extracted video frames at
30 fps and experimented with video chunk sizes of 6 and
16, in line with the examined set of experiments. The TV-L1
Optical Flow [48] algorithm was used to extract the optical
flow frames through the Dense-Flow tool. Finally, we report
per-frame Mean Average Precision (mAP) for evaluation. To
provide more insight, we also report mAP for anticipation
times ranging from 0.25 to 2 sec.

V. RESULTS

The utilized models that we mentioned in Sec. 3 are shown
in Fig. 2,3,4, while the results we obtain from our experiments
are depicted in Tables I, II, III. These are organized based on
the methodology used to extract the features. Specifically in
Table I, ResNet-200 and BN-Inception were used for RGB
and Flow features extraction respectively, while, in Table II
and III, we used C3D and I3D respectively. In all three tables,
we denote the use of OpenPose features, either by replacing or
complementing flow and RGB features, thus creating motion
features and appearance features respectively.
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Fig. 5. Visualization of our best method - I3D

TABLE I
CHUNK SIZE 6 EXPERIMENTS, USING RESNET-200, BN-INCEPTION AND OPENPOSE

Method Features Encoder Decoder - Time predicted into the future (seconds)
Chunk size = 6 frames 0.25s 0.50s 0.75s 1.00s 1.25s 1.50s 1.75s 2.00s Avg

Baseline RGB – Flow 25.93 26.15 25.89 25.79 25.73 25.66 25.68 25.66 25.57 25.77
Ours {RGB + OpenPose} – Flow 24.25 23.11 25.63 26.72 26.18 25.57 24.94 24.40 23.94 25.06
Ours RGB – OpenPose 37.57 25.54 25.93 26.44 26.60 26.28 25.57 24.75 24.00 25.64
Ours OpenPose – Flow 36.30 21.77 22.59 23.57 23.19 22.28 21.30 20.49 19.83 21.88

TABLE II
CHUNK SIZE 16 EXPERIMENTS, USING C3D AND OPENPOSE

Method Features Encoder Decoder - Time predicted into the future (seconds)
Chunk size = 16 frames 0.25s 0.50s 0.75s 1.00s 1.25s 1.50s 1.75s 2.00s Avg

Ours C3D (One-Stream) 35.43 34.34 31.05 28.22 26.46 25.37 24.75 24.39 24.22 27.35
Ours {C3D (RBG)} – OpenPose 36.44 32.98 30.56 28.37 26.61 25.38 24.54 23.78 23.22 26.93

TABLE III
CHUNK SIZE 16 EXPERIMENTS, USING I3D AND OPENPOSE

Method Features Encoder Decoder - Time predicted into the future (seconds)
Chunk size = 16 frames 0.25s 0.50s 0.75s 1.00s 1.25s 1.50s 1.75s 2.00s Avg

Ours I3D 55.25 52.57 46.69 41.94 38.39 35.90 34.22 33.00 32.08 39.35
Ours {I3D (RGB) + OpenPose} – {I3D (Flow)} 49.21 46.65 40.78 36.42 33.19 30.90 29.42 28.43 27.71 34.19
Ours {I3D (RGB)} – OpenPose 47.43 44.59 40.08 36.77 34.24 32.37 31.29 30.56 30.06 35.00
Ours {I3D (RGB)} – {I3D (Flow) + OpenPose} 44.47 29.55 31.92 29.62 27.21 25.63 24.78 24.20 23.68 27.07

By inspecting Table I, where chunk size has been set
to 6 frames, we observe that the baseline method, using
ResNet-200 for RGB information and BN-Inception for flow
information, displays the highest accuracy of 25.77% for the
precision task, the prediction accuracy for the classification
task however is only 25.93%. By replacing flow information
with OpenPose features we notice that, while the average
decoder accuracy decreases slightly to 25.67%, the encoder
accuracy is significantly improved and reaches 37.57%. How-
ever, it is true that the use of OpenPose features to enhance
or replace RGB information does not provide any further
improvement, either in the anticipation phase or in the process
of detection. It is worth mentioning though that, in both cases
that we used OpenPose, we observe better performance for the
period 0.5s - 1.25s, but also much smaller than the baseline
in longer-term predictions, something that leads to a decline
of the average accuracy in these cases.

Table II shows the results for C3D, giving one-stream
features, where the chunk size has been set to 16. We highlight
that the use of human pose as motion features, by introducing
a second stream in our model, gives a boost compared to the

simple C3D in the phase of action detection, from 35.43% for
the former to 36.44% for the latter, as opposed to action antic-
ipation, for which the accuracy drops to 26.93%. Additionally,
we should note the large discrepancy between the performance
of short-term and long-term anticipation, reaching as much
as 10%. By comparing this table to the previous one, we
observe that OpenPose shows, as motion information, better
anticipation performance, compared to the corresponding sim-
ple model, in the interval 0.75s - 1.25s. Moreover, although
in C3D models we observe larger anticipation accuracy, the
action detection accuracy does not exceed that of the models
of Table I.

The results of employing I3D as well as its variations are
shown in Table III, where the chunk size is set to 16 frames.
We notice that both the simple I3D model and its modifications
show much better performance, with the simplest I3D model
giving the biggest boost and reaching 39.35% in the antic-
ipation phase and 55.25% in the detection phase. However,
the use of OpenPose in this set of experiments, both as an
additional cue to RGB and flow information and as a unique
motion information did not offer any improvement. On the
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contrary, it limited its effectiveness. This divergence is likely
due to the substantially strong capacity, offered by I3D flow
information.

VI. CONCLUSION

In this paper, we propose several ways to improve online
action detection, building upon Temporal Recurrent Networks.
Our results highlight the value of temporal context and human
pose as useful cues for localizing action in time. We demon-
strate that most of our models outperform the original TRN
method [1] by a significant margin, even though our baseline
results are lower than the original paper’s due to the smaller
batch size we used, with the best of them (I3D) achieving
state-of-the-art results. Specifically, observing the variations
of models’ behavior in the analysis and detection phase, we
believe that the use of different models for anticipation and
recognition could benefit the task of online action detection.
We plan to pursue this goal in our future work.
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and R. López. 2020. I-Support: A robotic platform of an assistive bathing
robot for the elderly population. In Robot. Auton. Syst., 2020.

[36] G. Chalvatzaki, Petros Koutras, A. Tsiami, C. Tzafestas and P. Maragos.
i-Walk Intelligent Assessment System: Activity, Mobility, Intention,
Communication. In Proc. ECCV Workshops, 2020.

[37] J. Hadfield, G. Chalvatzaki, P. Koutras, M. Khamassi, C. S. Tzafestas
and P. Maragos. A Deep Learning Approach for Multi-View Engagement
Estimation of Children in a Child-Robot Joint Attention Task. In Proc.
IROS, 2019.

[38] Y. Gao, X. Xiang, N. Xiong, B. Huang, H. J. Lee, R. Alrifai, X. Jiang,
Z. Fang. Human Action Monitoring for Healthcare Based on Deep
Learning. In IEEE Access vol. 6, pp. 52277, 2018.

[39] D. Burns, N. Leung, M. Hardisty, C. Whyne, P. Henry, S.tewart McLach-
lin. Shoulder Physiotherapy Exercise Recognition: Machine Learning the
Inertial Signals from a Smartwatch. In Physiol, vol. 39, 2018.

[40] Y. Yao, M. Xu, Y. Wang, D. J. Crandall, E. M. Atkins. Unsupervised
Traffic Accident Detection in First-Person Videos. In Proc. IROS, 2019.

[41] G. Serpen and R. H. Khan. Real-time Detection of Human Falls in
Progress: Machine Learning Approach. In Proc. CASE, 2018.

[42] M. Ramezani and F. Yaghmaee. A review on human action analysis in
videos for retrieval applications. Artif. Intell. Rev. 46, 4, 2016, 485–514.

[43] X. Zhai, Y. Peng, and J. Xiao. 2013. Cross-media retrieval by intra-
media and inter-media correlation mining. Multimedia Syst. 19, 5, 2013,
395–406.

[44] H. Wang and C. Schmid. Action Recognition with Improved Trajecto-
ries. In Proc. ICCV, 2013

[45] Y. Du, Y. Fu and L. Wang. Representation Learning of Temporal
Dynamics for Skeleton-Based Action Recognition. In IEEE Trans. on
Im. Proc., vol. 25, no. 7, pp. 3010, July 2016.

[46] Y.-G. Jiang, J. Liu, A. Roshan Zamir, G. Toderici, I. Laptev, M. Shah,
and R. Sukthankar. THUMOS challenge: Action recognition with a large
number of classes. In Proc. ICCV 2013.

[47] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv:1412.6980, 2014.

[48] J. Sánchez & E. Meinhardt-Llopis, & G. Facciolo. TV-L1 optical flow
estimation. In Proc. IPOL, 2013.

 http://crcv.ucf.edu/THUMOS14/
USER
Text Box
Proceedings European Signal Processing Conference (EUSIPCO-2021), Dublin, Ireland, August 2021


	Introduction
	Related Work
	Human Action Recognition
	Offline Action Detection
	Online Action Detection

	Methodology
	TRN Cell
	Exploiting Contextual Information

	Experimental Setup
	Results
	Conclusion
	References



