Περιεχόμενα
Introduction to the theory and algorithms of statistical pattern recognition with applications to recognition of sounds (e.g. speech, music), visual objects, audio-visual events, and other spatio-temporal sensory or symbolic data. Bayesian decision and estimation theory (Maximum Likelihood, Maximum-A-Posteriori). Nearest neighbor decision rule. Methods for clustering (e.g. k-means) and unsupervised learning. Decision trees. Methods for feature transformation and selection in pattern space, and dimensionality reduction: principal component analysis (PCA), linear discriminant analysis (LDA), independent component analysis (ICA). Methods for linear and nonlinear regression. Pattern classification methods with linear discriminant machines: Perceptrons και Support Vector Machines. Hidden Markov models (HMMs), Gaussian Mixture models (GMMs), Expectation-Maximization algorithm, Viterbi algorithm. Dynamic Bayesian nets. Probabilistic graphical models. Deep learning methods: Deep, Convolutional, Recursive Neural Nets (DNNs CNNs, RNNs). Analytic and laboratory exercises.
Προσωπικό
Petros Maragos Διδάσκων (Instructor)
Alexandros Potamianos Διδάσκων (Instructor)
Panagiotis Filntisis
Βοηθός
Nancy Zlatintsi
Βοηθός
Περιεχόμενα
Βιβλίο
- [KS] Γ. Καραγιάννης και Γ. Σταϊνχάουερ,
Αναγνώριση Προτύπων και Μάθηση Μηχανών,
ΕΜΠ, 2001 (βιβλίο). - Σ. Θεοδωρίδης και Κ. Κουτρουμπάς,
Αναγνώριση Προτύπων,
Ιατρικές εκδόσεις Π.Χ. Πασχαλίδης, 2011. - Π. Μαραγκός,
Συμπληρωματικές Σημειώσεις Αναγνώρισης Προτύπων και Φωνής,
ΕΜΠ.
Συμπληρωματικές Σημειώσεις
Μάθηση Μηχανών και Αναγνώριση Προτύπων | |||||||||||||||
|
Βιβλιογραφία
- [DHS] R. O. Duda, P.E. Hart and D.G. Stork,
Pattern Classification,
Wiley, 2001. - [Bishop] C. M. Bishop,
Pattern Recognition and Machine Learning,
Springer, 2006. - [Goodfellow-et-al], I. Goodfellow, Y. Bengio and A. Courville,
Deep Learning,
MIT Press, http://www.deeplearningbook.org.